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ABSTRACT

In this paper, we introduce U-Mp, a new system for schema map-
ping generation. U-Mp builds upon and extends existing schema
mapping techniques. However, it mitigates some key problerthis
area, which have not been previously addressed. The key aéne
U-MAP is to exploit theusageinformation extracted from thquery
logsassociated with the schemas being mapped. We describe-our ex
perience in applying our proposed system to realistic eétddsom the
retail and life sciences domains. Our results demonstnateftective-
ness and efficiency of U-kp compared to traditional approaches.
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process to be as accurate as possible, especially that Bowifg
data cleaning operations are generally quite expensive.

To this end, several systems (e.g., [3, 7, 11, 16, 22]) haea be
proposed in the literature for the generation of schema mgpp
Over the last decade, these research efforts, and in darttbe Clio
project [11], played a great role in making the schema mapfiaid
reach higher levels of maturity. Nevertheless, there disateral is-
sues with the existing schema mapping tools, as their getenaap-
pings do not take into consideration specific cases, whiehvary
common in real-world schemas.

These issues include: (1) the unawareness of those talges re
senting special case entities, which havel&pA relationship with
higher-level entity types; (2) the inability to generateamiagful map-
pings, which involve joining tables with certamany-to-manyre-
lationships; and (3) the inability to resolve attribute respondence
conflicts which can arise during mapping generation. All lefse
issues will be explained in detail later in the paper.

The semantic approach for schema mapping [3] attempts to ad-
dress some of these issues. However, it is only applicabnwvine
schemastonceptual modelare available — a hard requirement to sat-
isfy in many real-world scenarios. Moreover, we will als@shthat
even when the conceptual models are available, there arg coam
1. INTRODUCTION mon cases, in which the method proposed in [3] will not be &ble

One of the most common data management tasks is the trarsform accurately generate the desired mappings.
tion of data residing in one data source according to a gickersa In this paper, we introduce the U-A# system, which mitigates the
into the schema of another source. The problem of autontistatia- above problems by leveraging theageinformation available in the
covering the necessary transformation rules to carry asttésk is query logs of the data sources being mapped. We show thatedhis
known asschema mappingand the discovered rules are usually re- resource, while not exploited before in the context of schenap-
ferred to asnappings ping, can be very valuable in generating significantly higipeality

There are multiple scenarios in which schema mapping issrece mappings. We summarize our contributions as follows.
sary. The first scenario idata exchangée.g., [23]), where the data e We describe a new mechanism for handling tables ha\8rg
needs to be physically moved from one source to anotheraperh relationships The mechanism takes into account how to detect
for data migration purposes. The second scenarilaia integration those tables, how to learn from the query log whether they are
(e.g., [29]) where it is required to answer queries expidsesed overlapping or not, and finally how tnergethem appropriately
on some mediated schema, while the result is obtained fromeso in the generated mappings.

underlying sources, usually with different schemas. Thergue-
sult, in this case, needs to be transformed to conform to gdiated
schema before returning it to the user. Other applicati@nagtos
include schema evolution (e.g., [30]), peer data managesystems
(e.g., [15]), and model management [5].

Itis evident, however, that the quality, and hence usefdnef the
transformed data hinges on the quality of the mappings usethé
transformation. Therefore, it is crucial for the mappinggetion
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We describe a new version of the chase algorithm [17] (com-
monly used for mapping generation). The new version, called
theaggressive chasenables the generation of mappings span-
ning all types ofmany-to-many relationshipgs long as such
mappings are deemed “semantically meaningful” based on the
analysis of the query log.

We describe a novelonflict resolutiortechnique, which identi-
fies the most likely mapping to resolve the attribute corvesp
dence conflicts across thagical relationsof the two schemas.

At the core of this technique are two new methods: one for
context-based matchingf attributes between logical relations
and queries from the log; and another fontext-based group-
ing of attributes to limit the search space of possible mappings
We describe an experimental study on a working prototype for
U-MaP using databases from the retail and life sciences do-
mains. Our results demonstrate the effectiveness of Ak M
dealing with the issues we raise in this paper as oppose+o pr
vious approaches.

The rest of the paper is organized as follows. Section 2 pteseir

SIGMOD’11,June 12-16, 2011, Athens, Greece. :
running example and also some necessary background ontheac
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mapping problem and the existing solutions for it. Sectidhustrates
some key outstanding issues with those existing solutidre U-
Map approach is explained in detail in Section 4. Our experiaent
evaluation is given in Section 5. Section 6 describes ttatedlwork,
and Section 7 finally concludes the paper.

2. RUNNING EXAMPLE AND BACKGROUND
2.1 Running Example

In this subsection, we describe our running example, whieh w
will be referring to throughout the paper. The example shdmwn
Figure 1 is from the retail domain. In particular, it repnetsethe
schemas of two bookstores. Each schema covers informaticn
tomers, books, authors, and orders — but using two diffeselnéma
structures. Although not shown in the figure, it is assumeat th
attribute correspondences are also given. They could hiere
been generated manually or using an automatic schema mgtchi
tool (e.g., [24]). Any two attributes with the same name inthbo
schemas correspond to each other (exgGustomer.c_uname and

Y_Customer.c_uname). There are also correspondences between pairs

of attributes on both sides which do not have the exact same na
(e.g., X Distributor.d_uname andY_Customer.c_uname). Finally, only
non-key attributes are included in correspondences @ere is no
correspondence farid).

2.2 The Schema Mapping Problem

Consider the situation where we have two database systatis, e
with its own schema. It is required to develop declaratidesuhat
specify how data records can be transformed from one schiéraa (
source) to another (the target). The generated rules arerain
calledschema mappings

We consider the most common formalism for schema mappings

which issource-to-target tuple-generating dependenaisimplys-

t tgds Each mapping specifies how one or more records (with each

record coming from a different table) from the source schehmuld
be used to generate one or more records in the target schehea. T
mapping should clearly indicate how the multiple recordsr(ore
than one) at each schema are related (i.e., their join pedi and
additionally how the data values should be copied from thecs
attributes to the target attributes.

We use a “query-like” representation for the mappings, Wividl
be illustrated in the following example.

Example 1: In our bookstores example, the following mapping spec-
ifies how a book record along with its corresponding authoonme

in the X-Schema are transformed into three records in h8chema,
particularly, in they_Book, Y_Book_Author, andY_Author tables.

for a in X_Author, b in X_Book

where (a.a.id = b.b_a_id)

= exists &' in Y_Author, b’ in Y_Book, ba’ in Y_Book_Author

where (a’.a-id = ba’.ba_a.id A b’.b_id = ba’.ba_b_id)

with (a’.a_-fnrame = a.a_fname A a'.a_lname = a.a_Iname

A b’.b_title = b.b_title A b’.b_pub_date = b.b_pub_date)

my

The commonly used approach for schema mapping is the one
adopted in the Clio system [11], which is based on analyzhgy t
referential_ntegrity constraints in the source and target schemas. We
will refer to this approach as tHRIC-based approachA more recent
approach relies on using additional semantic informatiooué both
schemas, which can be found in their associated conceptocéim
(e.g., ER diagrams, UML). This approach will be referred $cattze
semantic approachin what follows, we overview the two approaches
(with a little more emphasis on the RIC-based approach sincpro-
posed techniques will be building on it).

HCompiling
Mappings

L

Figure 2: The RIC-based schema mapping process.
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2.3.1 RIC-Based Approach

This approach proceeds in four main steps as shown in Figure 2

Step 1 (Constructing Logical Relations):At first, we construct what
is referred to as thiogical relations separately for each schema. A
logical relation is meant to group together all teéatedconcepts (or
attributes) in a schema, even if these concepts do not rasithe
same table in the schema. In other words, a logical relatiorbe the
result of joining multiple tables together.

Since there is typically a large number of possible joinseabne
in a schema, where most of them is not semantically mearirf
goal in this step is to limit the generation of logical reteis to the
meaningful ones only. For this purpose, the RIC-based tqubkn
“expands” each table4, in the schema into its corresponding logi-
cal relation by joiningA with all the tables it references to get some
intermediate logical relation. Then, the just-generatgdrimediate
logical relation is, in turn, joined with all the tables ifeeences, and

' so on. The final logical relation correspondingAds the one which

does not contain any more foreign keys.

The process we just described is essentially applying theechl-
gorithm [17] on each table, where the set of constraintsiegpmur-
ing the chase are the referential integrity constraintsaicheof the
schemas (i.e3ls andXr for .S andT respectively).

Step 2 (Creating Mappings): Once the logical relations are identi-
fied for both schemas, the second step is to find all the palogfal
relations (one from each schema), which cover one or maribute
correspondences froii. Each such pair will constitute a mapping.

Example 2: Considering the mapping:; from Example 1, we find
that it mapsa logical relation fromS, specified in thefor and first
where clauses, to a logical relation froffi, specified in theexists

and secondvhere clauses. The attribute correspondences between
the two logical relations are specified in thth clause, in order to
show how values should be copied from the source attribotéiset
target attributes

When a target attribute does not have a corresponding setice
tribute, we cannot simply have it populated by nulls, beedusay

Thefor clause specifies the tables from which the source records be a required attribute, where nulls are not allowed. Mogedvmay

are collected. The followinghere clause specifies the predicates for
joining these records. Moreover, tlkeists clause indicates the ta-
bles of the generated records in the target schema. Simithetfirst
where clause, the seconghere clause also provides the join predi-
cates for the target records. However, in addition, it atsmas how
the target attributes are populated using the values ofdbecs at-
tributes, as shown in the last two linesraf. O

More formally, the schema mapping problem can be defineddy th
tuple (S, T, ¥s, X7, V, Xs7), whereS, T, g, X7, andV are in-
puts, whileXsr is the desired outputS andT are the source and
target schemas respectivelys andXr are the constraints (typically
referential integrity constraints) defined on eachSoind T respec-
tively. V is the set of attribute correspondences betw&emnd T,
which can be either automatically computed in a precedimgsa
matching step, or directly provided by the usEfr is the set of s-t
tgds representing the desired schema mappings.

2.3 Existing Solutions

not have a default value, which makes it necessary to syiathasw
values for its population. These synthetic values, usuallgrred to
aslabeled nulls are generated usir§kolem functions

Skolem functions ensure that their outputs are differergvelrer
their inputs are different. One of their essential uses is&intain
the referential integrity in the target database. So formgta a book
record inT" will only be linked to the record of its own author, and not
any other author records. In this case, the Skolem functiges to
generate the book id and author id in th®&ook andY _Author records,
respectively, should be identical to the ones used to genéra for-
eign keys in the correspondingBook_Author record.
Step 3 (Minimizing Mappings): The third step is an optimization
step, which has been introduced in [13]. In this step, thefkgéner-
ated mappings can beinimizedcby discarding all the mappingsub-
sumecbr impliedby other mappings. The criteria for when a mapping
is considered to subsume or imply another mapping are givgr8i.
Step 4 (Compiling Mappings): The final step is to compile the min-
imal set of mappings into an executable script, e.g. SQLigser



X_Customer X_Order
c_id o_id X_Book
C_uname o_date b id
¢_passwd b_title
c_fname b aid
c_lname X_Order_Line Thul
o ad_id o b_pub_date
ol_b_id
X_Distributor oliqt‘y
= o_c_id
d_id [«—o_d_id
d_uname o_bill_ad_id X Author
d_passwd o_ship_ad_id =
d_company a_id
d_ad_id a_fname
d_discount X_Address a_lname
ad_id
ad_street
X_Country ad_city
co_id i ad:state
co_name L ad_co_id

(a) X-Schema

7 Y_Order Y_Order_Line
Y_Customer oid ol_oid
c_id [¢— o_c_id ol_b_id
c_uname o_date ol_qty
c_passwd o_bill_street
c_fname o_bill_city
c_Iname o_bill_state Y_Book
c_company o_bill_cntry b_id
c_street o_ship_street b_title
c_city o_ship_city b_pub_date
c_state o_ship_state
c_cntry o_ship_cntry
c_discount
Y_Book_Author
Y_Author ba_b_id
a_id «— ba_a_id
a_fname
a_lname

(b) Y-Schema

Figure 1: Schemas of two bookstores.

Running this script should actually move the data from thes®to
the target while making the necessary transformationsghwvould
still respect the constraints of both the source and thetarg

2.3.2 Semantic Approach

The semantic approach for schema mapping [3] does not olyly re
on the source and target schemas, as is the case with thaltiRd@-
based approach. Instead, it takes ¢baceptual modelor both the
source and the target into account as well. Examples forrimdtion
that can be found in conceptual models, but not in schemekida
thecardinalitiesof the relationships between entities, and also special
types of relationships like this-Arelationship.

In many cases, this additional information helps in digtisging
the more meaningful mappings from the less meaningful dfiesly
the RIC-based approach is used, then such mappings widethgo
be equally meaningful to the mapping tool. The details of hbas
semantic approach exploits this information can be fouri@]in

3. ISSUES WITH EXISTING SOLUTIONS

In this section, we describe in more detail the issues imaivhen
relying on the RIC-based approach. At the same time, we pairthe
situations in which the semantic approach can address sbthese
issues, and those situations in which some issues remagsalued.
Most clearly, the semantic approach will not be helpful wdar the
conceptual models are missing, which needless to say, isnanoo
scenario in the real world. We now explain each of such issues

3.1 Unawareness of IS-A Relationships

In many schemas, multiple tables can represent differestialp
izations of a higher-level abstract concepsaperclasge.g.,student
andinstructortables would both store information abgérson$. In
other words, they have d8-Arelationship with the superclass (which
may not itself have have a separate table in the schema). tShiels
will thereby have common attributes pertaining to theiresafass, in
addition to other attributes specific to each of them.

A key question is whether these tables are disjoint or nottter
words, can the same real-world entity have a record in eatheske
tables? The answer to this question determines how thestabtaild
be correctlymerged Merging the tables will be needed if they are
to be mapped from the source schema to a single table in thettar
schema. If they are disjoint, then the merger can be achiesied a
simple union. Otherwise, they will need to beter-joinedto guaran-
tee that no data duplication occurs in the target databdss.cén be
illustrated by the following example.

Example 3: In our bookstore example, the tablgsCustomer and
X_Distributor can both be thought of as having an IS-A relationship
with some abstract conce@uyer Hence, if we blindly apply the
RIC-based method, we will generate the two mappingsandms
given below.

for ¢ in X_Customer, ad in X_Address, co in X_-Country
where (c.c.ad.id = ad.ad_id A ad.ad_co_id = co.co.id)

= exists ¢’ in Y_Customer

with (c’.c_.uname = c.c.uname A c’.c_passwd = c.c_passwd
A c¢’.c_fname = c.c_fname A c’.c_lname = c.c_lname

A c'.c_street = ad.ad_street A c’.c_city = ad.ad_city

A C'.c_state = ad.ad_state A c’.c_cntry = co.co_name)

for d in X_Distributor, ad in X_Address, co in X_Country
where (d.d_ad.id = ad.ad_id A ad.ad_co_id = co.co_id)

= exists ¢’ in Y_Customer

with (c’.c_.uname = d.d_uname A c’.c_passwd = d.d_passwd
A c¢’.c_ccompany = d.d_company

A c'.c_street = ad.ad_street A c’.c_city = ad.ad_city

A C'.c_state = ad.ad_state A c’.c_cntry = co.co_name)

These two mappings separately map the records of each of
X_Customer andX_Distributor in the X-Schema to theY_Customer ta-
ble in theY-Schema. However, we may be able to determine that
X_Customer and X_Distributor are overlapping; i.e., some distributors
also have records iX_Customer (perhaps to maintain the contact per-
son information for the distributor). In this case, the baspping to
populateY_Customer should look as follows.
for (c in X_Customer outerjoin d in X_Distributor),
ad in X_Address, co in X_Country
where (ad.ad-id = ifnull(c.c_ad-id,d.d_ad_id)

A ad.ad_co.id = co.co_id)

= exists ¢’ in Y_Customer

with (c’.c_.uname = ifnull(c.c_uname,d.d_uname)

A c’.c_passwd = ifnull(c.c_passwd,d.d_passwd)

A c¢’.c_fname = c.c_fname A c’.c_lname = c.c_Iname
A c¢’.c_ccompany = d.d_company

A c'.c_street = ad.ad_street A c’.c_city = ad.ad_city

A C'.c_state = ad.ad_state A c’.c_cntry = co.co_name)

Note that the mappingn. first computes theouter join of
X_Customer and X_Distributor to ensure that records belonging to
the same real world entity from both tables are merged firEhe (
ifnull function is used to merge common attributeXigustomer and
X_Distributor into a single attribute iry_Customer. It returns the first
parameter, or the second in case the first was null.) Themettweds
of the resulting outer join are used to populate th€Wstomer table.
This approach guarantees that a given real world entity,(a.gis-
tributor) will only have one record il_Customer. If X_Customer and
X_Distributor were disjoint, then just usingr. andms would be suffi-
cient to populater_Customer with the union of the two source tables,
and hence no special treatment is needed in this case.

Of course, beyond our running example, many other examgist e
in the real world for tables with overlapping sets of ensiti€onsider
for instance singers and actors, graduate students amddttss, mo-
bile phones and digital cameras — to name just a few.

Using the semantic approach to detect I1S-A relationshipsyedl
as the disjointness of the involved tables, can only be plesithe
conceptual model for each schema is available and if theidtsess
constraints are specified in them. Unfortunately, the RéGell ap-
proach, which is more commonly used does not recognize I8 r
tionships or disjointness constraints.

It is worth mentioning that a newly introduced technique][d¢&n
handle a special case of this problem. In particular, [1&8spnts
a post-processing mapping re-writing algorithm, whichufes on
maintaining the key constraints (equality generating depacies, or

ma

maq




egds) on the target. This technique works well when the keipates
in the source tables (with an IS-A relationship) are mappeti¢ key
attribute in the target table. The re-written mappings eilsure that
records for the same entity in the source tables will be nabbpped
to different records in the target table, since they all Hheesame key
in the source, and that key will be mapped to the target as well

However, it is quite common that keys are just serial numbarts
are not included in the correspondences because they davethy
semantic meaning (as in Example 3). Instead, new keys asrated
at the target for each newly inserted record. In this scentre tech-
nigue in [18] cannot prevent duplicate records in the tabgetause
even if they refer to the same real-world entity, each wilblssigned
a separate key, and hence no key constraint violations egliio

3.2 Incomplete Coverage of Logical Relations

As we explained in Section 2.3.1, the RIC-based approaasreh
the chase algorithm to generate the logical relations. @lgisrithm
chases foreign keys in the forward direction only; i.e.pitdws the
edges in the schema going from the foreign key in one tablestpti-
mary key in the other table, but it never chases them in thesitp
direction. The joins resulting from this chase will alwayslbssless
i.e., at least one of the relations participating in the jn be recon-
structed just by applying projection on the join result. Taet that
the generated logical relation is a result of a losslessgoarantees
that all the records in that relation are semantically megifoi.

In contrast, if the join involved edges going in oppositeedtions,
then the join will be consideredlassy join i.e., it is not guaranteed
that any of the participating relations can be reconstdijtst by ap-
plying projection on the join result. In this case, some @f tecords
in the output relation may not even be meaningful. Moreotiee,
number of possible lossy joins in a schema can be overwhglrkior
these reasons, the RIC-based approach does not consisligijdos
when generating the logical relations.

Z-Schema (target), there must be a logical relation in th&chema
which connects the authors to the customers through the datgks
made by the customers. As explained in Example 3, the RI€ebas
approach will not generate this logical relation. Instaawill pop-
ulate the target table using the two logical relationsXatustomer
andX_Author. In other words, some records will contain the customer
(reader) names only and others will contain the author naongs
with no linkage between them — which defeats the whole p@rpds
building the target tabled

We will now show a scenario where chasing foreign keys in eppo
site directions can indeed result in semantically meaasgylogical
relations, and hence the need for a mechanism to distingeisteen
the situations in which lossy joins should be consideredthode in
which they should not.

Example 6: In the X-Schema, consider that the tablg_Author has

an extra attribute_nationality, which referenceX_Country. Clearly,
there is no meaning in creating a logical relation conngciuthors to
customers through the Country table just because a customer resides
in the same country where an author is a citizen!).

It is worth noting that the semantic approach attempts tatifje
some of the situations where a lossy join is meaningful bysicter-
ing the cardinality constraints for the relationships begw entities,
as indicated in the conceptual model. If for example twotistin
the source have a many-to-many relationship and two carnepg
entities in the target also have a many-to-many relatignshien a
mapping is generated from the join of the two correspondmgce
tables to the join of the two corresponding target tables mapping
is generated even if the joins are lossy, because in thisttesgeman-
tic approach considers the compatibility of the cardigadiinstraints
as an indication that the mapping is semantically meaningfu

Even if we assume that the source and target conceptual sodel
are available, this strategy of the semantic approach watillchave

However, we argue that some lossy joins may in fact be meaning two main drawbacks. First, a mapping involving lossy joinsynbe

ful, and hence it is essential to include them in the finallpegated
mappings.

The following two examples will illustrate the concepts obsy
and lossless joins, as well as when they result in meanimgtdrds
and when they do not.

semantically meaningful even if the cardinality consttgifior the re-
lationships in both schemas are not compatible. For exantipée
relationship between order lines and authors is one-toynrathe
X-Schema and many-to-many in theSchema, yet the mappingns
(from Example 4), which maps the two relationships is seralhy

Example 4: Consider the case when the RIC-based technique gener-meaningful. The semantic approach will not generate

ates the target logical relation starting from th@rder_Line table. It
will chase the foreign keys referencing thésook andy _Order tables,
and then it will chase the foreign key W.Order, which references
Y_Customer. At this point, no more foreign keys will be left to chase,
and the algorithm stops.

Note that this chase does not relate the order line infoonad the
book’s author information, although it is quite logical tavMe them re-
lated. The reason is that in tNeSchema, Y_Book andY _Author have a
many-to-many relationship. Thus, each book is not direetfgrenc-
ing its author(s), but rather they are connected throughtenmediate
table which references both of them. Since the chase aigodinly
goes in one direction, it stops at tiieBook table.

Ideally, we would like the mapping responsible for populgtthe
Y_Order_Line table to connect each order line record with its corre-
sponding author record as shown in the mappingoelow. However,
the RIC-based approach will never genenate
for ol in X_Order_Line, b in X_Book, a in X_Author, - - -
where (ol.ol_b_id = b.b_id A b.b_a_id =a.a.id A - - -)
= exists ol’ in Y_Order_Line, b’ in Y_Book,
ba’ in Y_Book_Author, @’ in Y_Author, - - -
where (ol’.ol.b_id = b’.b_id A b’.b_id = ba’.ba_b_id
A a.aid=ba.ba,aid A---)
with (a’.a_fnrame = a.a_fname A a'.a_lname = a.a_Iname
A b’.b_title = b.b_title A b’.b_pub_date = b.b_pub_date
A ol.ol.qty =ololgty A---)O

To make our point even clearer regarding the need for corisgle
lossy joins in certain situations, we present the followéxgmple.

Example 5: Consider that we have a third scherdaSchema, con-
taining a single table callezlReader_Author, which tracks the readers
for each author. Henc&;Schema will simply look as follows.

Z_Reader_Author(r_fname, r_Iname, a_fname, a_Iname)
When we generate mappings from thi&chema (source) to the

ms

Second, if relationships between corresponding entitié®th the
source and the target have compatible cardinality comstrathen
still a mapping between the joins of their participatinglésbcan
be semantically meaningless. This was shown in Example &revh
the composite relationship betwe&nAuthor and X_Customer (go-
ing throughX_Country) is many-to-many, and similarly the compos-
ite relationship betweely_Author and Y_Customer (going through
Y_Book_Author, Y_Book, Y_Order_Line, andY _Order) is also many-to-
many. Still, however, generating a mapping between the éhation-
ships is meaningless, primarily because the first relahipn@n the
X-Schema) is itself not semantically meaningful.

Moreover, some of the recent works [8, 19] proposed thatsuser
can provide certain “joins”, which are deemed importantdosider
during the construction of logical relations, to compeedat those
missed by the chase algorithm. However, no automatic mefitvod
discovering such important joins have been presented.

3.3 Unresolved Correspondences

During the construction of mappings, sometimes it is ncarcheow
to populate the target attributes using the source at&ritmites. This
situation occurs when the correspondences between tliteusgs of
the two logical relations being mapped are conflicting. Szarflicts
may exist even if the original set of correspondendésis conflict-
free. To see why, note that constructing a logical relatigically
involves joining tables together. Sometimes the same tabieluded
in the logical relatiormore than onceIn this case, the attributes of
such a table will appear multiple times in the logical redat{certainly
with different semantics, or contexts, depending on thepoédicates
used each time the table is joined).

Now, if a repeated attribute in a source logical relationesponds
to some target attribute, populating that target attritthgteomes un-



resolved since its values can be obtained from more thanaumrees
attribute.

Example 7: In the X-Schema, the X_Order_Line table has two foreign

keys referencing_Address, representing the shipping and billing ad-

dresses associated with the order line. Clearly, the lbgitation for
X_Order_Line will include the address attributes (i.e., street, city,,
etc) more than once.

Similarly, the target logical relation for_Order_Line also contains
more than one set of address attributes (to capture thadikihip-
ping, and customer addresses). The mappirggiven below is the
one which correctly resolves all the conflicts in the attiéboorre-
spondences between the source and target logical relations

me for o in X_Order, ol in X_Order_Line, adl in X_Address,
ad2 in X_Address, col in X_Country, co2 in X_Country, - - -
where (ol.ol_o_id = 0.0_id A ol.ol_bill_ad.id = adl.ad.id
A ol.ol_ship_ad.id = ad2.ad.id A adl.ad_co.id = col.co_id
A ad2.ad_co.id = co2.co_id A - - -)
= exists 0" in Y_Order, ol’ in Y_Order_Line, - - -
where (ol'.ol_o_id =0’.0_id A - - -
with A 0’.0_date = o.0_date A ol'.ol_gty = ol.ol_qty
A 0'.0_bill_street = ad1.ad_street A 0’.0_bill_city = adl.ad_city
A 0'.0_bill_state = ad1.ad_state A 0'.0_bill_cntry = col.co_name)
A 0'.0_ship_street = ad2.ad_street A 0’.0_ship_city = ad2.ad_city
A 0'.0_ship_state = ad2.ad_state A 0’.0_ship_cntry = co2.co_name)
A--)O

The existing RIC-based approach cannot independentlyrdite

that me¢ from Example 7 is the correct mapping. Hence, it gener-

ates a number of mappings equal to the number of all possi@js w
to resolve the correspondence conflicts. It then becomesgbes
duty to select the correct mapping, which is both time-cariag and
error-prone. Using the semantic approach will not help is¢hse ei-
ther, because the conceptual model (if available) doesorgamn the
necessary information to recognize thag is the correct mapping.

Some recent extensions to the RIC-based approach attempt to

duce the amount of effort needed to resolve the correspoedam-
flicts. In particular, [1] proposed to assist the user in kéng the
ambiguity among mappings using data instances. Given alegal
instance from the source for a given mapping, the user isdagke
choose the correct values for the target attributes inebilvéhat map-
ping. The user choices will then determine which of the ambig
mappings is correct. Also, [20] describes a GUI which allaivs
user to duplicate certain tables in the schema, and therifspee
correspondences for each one of the duplicates separ&uath du-
plications can help in resolving correspondence conflicts.

However, the above two approaches still require a lot of huma

time and effort, especially for large and complex schemdss fe-
comes evident in Section 5.2, where we found that after thetoac-
tion of logical relations for a moderate-sized schema, ntioa@ one
thousand attributes in those logical relations were invdlin corre-
spondence conflicts.

4. THE u-map APPROACH

In this section, we describe our approach in the UAystem. We

been added during the initial merging step. Finally, thenipding
mappings” step is not shown in the figure because WrPMurrently
focuses only on the generation process itself for the magpin

Merging Constructing Creating Mappings A ey

Sibling H Logical Relations H (with conflict H ",{'n'”'mfz'"g H 59‘"”.“"9
Relations (Aggressive Chase) resolution) appings appings
Figure 3: The schema mapping process used in U-Mp. Bold-

faced steps are either newly introduced or modified, compagto
classical RIC-based schema mapping.

4.1 Managing Sibling Relations

To properly handle the issue aferlapping sibling relationgables
having an IS-A relationship with an abstract superclasd, vahose
records overlap), we need to introduce a pre-processinyastd a
post-processing step. The goal of the pre-processing stepfirst
discoverall the overlapping sibling relations in the schemas, aed th
to mergeand replace them with some derivedper relations This
way, the schema mapping problem will appear to the next stehe
pipeline to be free of any issues related to overlappingrgjhlela-
tions. In the post-processing step, however, all the outpappings
will need to bere-writtento replace any reference to the super rela-
tions with the original sibling relations they represent.

For the pre-processing step, we initially use a simple seh&mn
discover candidate sibling relations. We consider thattiainbes are
siblings if they have one or mosharedattributes. Two attributes are
considered to be shared across two tables if they both gamelsto
the same attribute in the other schema. Although simple gttieme
is effective enough to discover sibling relations with athigcall. In
our running example, botk_Customer andX_Distributor will be con-
sidered siblings because their attributesname andd_uname both
correspond t@_uname in Y_Customer for instance.

Since we are only interested averlappingsibling relations, we
now need to filter out all the disjoint sibling relations, atheé non-
sibling relations which might have been erroneously retdrhy the
initial discovery scheme. This is where we rely on the quegsl|

The key idea is to determine if there were already specificigsie
looking for that overlap. In particular, we scan the querg,land
for each pair of tables we find to be joined on their primaryskey
we check this pair against the discovered pairs of siblitaticns. If
found, then we mark the pair as overlapping. All pairs whictrev
not found to be joined on their primary keys are filtered outté\that
if the two tables were disjoint, or not siblings in the firsapé, then
their primary keys will be unrelated and it would be poinslés join
them using their primary keys.

Each pair of overlapping sibling relations will then be mestdnto
a new super relation, which is the outer join (on the primaysh of
the two sibling relations. The attributes of the super retewill be
the union of the attributes of both relations, as shown irfallewing
example.

Example 8: Consider that the two relationX_Customer and

show how we can boost the schema mapping quality when we takeX-Distributor in the X-Schema are found to be overlapping sibling re-

query logs into account to address all of the aforementidssuaks.
In particular, we enrich the schema mapping process adrihasl

in Figure 3, where thdoldfaced steps are either newly introduced

or significantly modified. Each one of the introduced/modifi¢eps
addresses one of the issues raised in Section 3, mainly bgitxg
information present in the query log.

The “merging sibling relations” step is introduced as a pre-
processing step to merge groups of tables, which seem to pe-a s

cialization of the same parent abstract concept (and ayepaig),
into a single unified relation. Then, during the “constmgtlogical
relations” step, the classical chase algorithm is repldned more
aggressive version, which is able to discover additionaizstically
meaningful logical relations. Moreover, the core “cregtinappings”
step is extended to enable conflict resolution for attrilmatgespon-
dences, which may arise in situations similar to those deesdrin
Section 3.3. The minimization step remains unchanged in ARM
However, a post-processing “re-writing mappings” stemisoduced
to ensure that the generated mappings only refer to origatations
in the input schemas and not to any derived relations thdtldwave

lations. Then, their super relation (callXtBuyer) will be defined
using the following query.

select ifnull(c.c_id,d.d_id) bu_id,

ifnull(c.c_uname,d.d_uname) bu_uname,
ifnull(c.c_passwd,d.d_passwd) bu_passwd,

c.c_fname bu_fname, c.c_Iname bu_Iname,

d.d_company bu_company, d.d_discount bu_discount,
ifnull(c.c_ad_id,d.d_ad_id) bu_ad_id

from X_Customer c outerjoin X_Distributor d

on c.c_id=d.d_id

Note that each pair of common attributes XaCustomer and
X_Distributor are mapped to a single attribute ¥aBuyer using the
ifnull function. For example;_uname in X_Customer andd_uname in
X_Distributor are mapped tbu_uname in X_Buyer using the function
ifnull(c_uname,d_uname). O

X_Buyer =

To complete the merging process, both the schema and thg quer

log need to be updated such that the newly created supeiorslat
properly replace the sibling relations they represent.tkerschema,
any foreign keys referencing the sibling relations sho@dipdated to
reference the new super relation instead. For the quenyitlsgould



also be updated to be consistent with the schema. In patjadch
reference to a sibling relation in a query is replaced byatsespond-
ing super relation. This query re-writing process is fagtsaightfor-
ward because each of the sibling relations can be regardepragec-
tion over the super relation, and hence query re-writing pvibceed
based on the well-understood view-unfolding mechanisrh [25

In case more than one pair of overlapping sibling relatiomsew
discovered, then the process described above will be g é&ateach
pair iteratively, until all the pairs have been merged.

As a result of this merging process, the output mappingssiilll
be referring to the super relations, which were not part efdhg-
inal input schemas. Therefore, in the post-processing stéphe
mappings will be re-written — also using the view-unfoldimgcha-
nism. But this time, the views defining the super relationgims of
their underlying sibling relations will be used instead € F&ample
8). During rewriting, every reference to an attribute in pesurela-
tion representing the merger of two attributesndb, is replaced by
ifnull(a,b) (with the order being currently arbitrary in U-A#), lead-
ing to mappings similar tan4 in Example 3. Note that the use of the
ifnull function in the final output mappings is comparable to theafse
skolemization/concat functions in [26] for instance.

4.2 Aggressive Chase

Now that we are confident that the updated input schemas aiill n
have any overlapping sibling relations, we can proceed thiglfcon-
structing logical relations” step. We have seen in Secti@nti3at re-
lying on the classical chase algorithm in this step can t@suohissing
some meaningful logical relations. In this section, we deschow
we can exploit the information in the query logs to extenddassical
chase algorithm into a more aggressive version, where eten wo
foreign keys are left to chase in the forward direction, tlgwathm
may still decide to chase a foreign key in the reverse dacti

We start by formally analyzing the situations where the sitzed
chase will either discover or miss interesting logical tielss. Let
us first note that a logical relation can essentially be isgreed by a

B is neither m-1 nor 1-m (i.e., there is NO common ancestor 6t b
A and B in the directed tree representation &j.

The two types of relationships, CA-m-m and CAF-m-m, aresilu
trated in Figures 4(b) and 4(c) respectively. The classibake can
construct logical relations capturing m-1 and CA-m-m iielaghips,
because starting from the common ancestor the chase cageprot
the forward direction to include both A and B. However, it gan
capture CAF-m-m relationships (for the absence of a commoes
tor), although such relationships can be interesting asshag/n in
Examples 4 and 5 in Section 3.2. We show next how we discover
interesting CAF-m-m relationships with the help of quergdo

(b) CA-m-m

(c) CAF-m-m

Figure 4: Possible relationships between two tablesd and B, in
a logical relation.

Building the FR-Index: In U-MAP, prior to executing the chase
algorithm, we first analyze the query log and build an indexcst
ture, which we refer to as theR-Index(short for Forward-Reverse
Index). Each entry in the FR-Index contains a pair of opppséf-
erences; i.e. two different foreign keys referencing thaesarimary
key (see Figure 5(b) for an example). The first referencerisidered
the forward reference, and the second one is consideredvRrese
reference. What characterizes the specific pairs maintairthe FR-
Index is that joining the referenced table with the two refeing
tables using such pairs of foreign keys should result in zasically
meaningful output.

The FR-Index is constructed as follows. Each query encoedtie
the query log is modeled as a graph, where nodes represdabitbe

directed treewith the root being the table where the chase starts. The involved in the query, and edges represent the join prezioased to

other nodes represent the other tables visited during theegchand
the edges indicate the direction in which the chase occurwith
classical chase, the directed tree is alwaysadiorescencdi.e., all
edges point away from the root). If the chase is permittedctuo
in the reverse direction (as we will explain shortly), thba tirected
tree will be a general one, where edges can either point tevay a
from the root.

Moreover, we can classify the types of associations betveg¢en
tributes in a logical relation as follows. Given two attriesia andb
in the same logical relation, which originally belong tolehA and
B respectively, the relationship betwednand B can either be 1-1,
1-m, m-1, or m-m. Without loss of generality, we will only fo€ on
the m-1 and m-m relationships (since 1-m is identical to mvemgy
that the two tables are switched, and 1-1 is a special caselgf m

In the directed tree representation of a logical relatiormal rela-
tionship occurs betweeA and B if A is the ancestor oB, as shown
in Figure 4(a). For m-m relationships, we can actually ferttiassify
them into two typescommon-ancestor many-to-maagdcommon-
ancestor-free many-to-masmgcording to the definitions below.

Definition 1: Common-Ancestor Many-to-Many (CA-m-m) Rela-
tionships: Two relationsA and B, which are both used in construct-
ing the same logical relatiory, are said to have a common-ancestor
many-to-many (CA-m-m) relationship if there exists a théthtion

C also used in constructing,, such that the relationships between
C and A is many-to-one and betweénhand B is also many-to-one
(i.e.,C is the common ancestor of bathand B in the directed tree
representation of\).

Definition 2: Common-Ancestor-Free Many-to-Many (CAF-m-
m) Relationships: Two relationsA and B, which are both used in
constructing the same logical relatioA, are said to have a common-
ancestor-free many-to-many (CAF-m-m) relationship itfiEre does
NOT exist a third relationC' also used in constructing., such that
the relationships betweefi’ and A is many-to-one and betweetn
and B is also many-to-one; and (2) the relationship betweteand

join each pair of tables. If the same table is used more thae on
the query, then it will be represented by multiple nodes engtaph.
For a node withn incoming edges, thég) possible pairs of such
edges are stored in the FR-Index. Since each edge in a giirecepa
either be considered as a forward or a reverse referencer(di
on which edge is traversed first), a pair of edges'} is stored twice
in the FR-Index: asde’) and as ¢’ ,e) to account for both cases.
The following example illustrates how a single query is gnad,
and how the FR-Index is populated as a result of this analysis

Example 9: Consider a query posed on teSchema that requests
for customer “John Smith” all the pairs of books written bg game
author that John has ordered within less than 30 days. Thy guiié
look as follows.

Q1 select b1.b_title, b2.b_title, al.a_fname, al.a_lname
from Y_Customer c1, Y_Order o1, Y_Order_Line ol1,
Y_Book b1, Y_Book_Author bal, Y_Author al, Y_Order 02,
Y_Order_Line ol2, Y_Book b2, Y_Book_Author ba2
where cl.c_id=01.0_c_id and ol.o_id=ol1.0l_o_id
and oll.ol_b_id=b1.b_id and bl.b_id=bal.ba_b.id
and bal.ba_a_id=al.a.id and c2.c.id=02.0_c.id
and 02.0.id=0l2.0l_o.id and ol2.0l_b_id=b2.b_id
and b2.b_id=ba2.ba_b_id and ba2.ba_a_id=a2.a.id
and bal.ba_a_id=ba2.ba_a_id and b1.b_title< >b2.b_title
and abs(ol.o_date-02.0_date)<30 and ol.o_c_id=02.0_c.id
and c1.c_fname="John’ and c1.c_Iname='Smith’

The graph constructed fap; is shown in Figure 5(a), and Fig-
ure 5(b) shows how the FR-Index is finally populated as a resul
analyzing@. Thebold edges are the ones corresponding to the op-
posing references, which get stored in the FR-Index. Nattiththis
case,)Y_Order_Line andY_Book_Author give an example of an interest-
ing CAF-m-m relationshipO
Aggressive Chase Algorithm: Given the FR-Index, the chase algo-
rithm can now be modified as shown in Algorithm 1. Startingrira
given tableA, the algorithm will execute a series of alternatingnds
of chase (forward chase, reverse chase, forward chaseetc). The
first round is a regular forward chase whetds joined with all the
tables it references to create the first intermediate lbgétation. The




OpOaOa
(a) Query Graph

FR-Index

Reverse
(Y_Order_Line.ol_b_id, Y_Book.b_id)
(Y_Book_Author.ia_b_id, Y_Book.b_id)

Forward
(Y_Book_Author.ia_b_id, Y_Book.b_id)
(Y_Order_Line.ol_b_id, Y_Book.b_id)

(b) FR-Index

Figure 5: Q1's query graph and the corresponding entries in the
FR-Index for Example 9.

second round is a reverse chase, where the algorithm witkobach
forward reference it used in the previous round against BRdriglex.
If one or more lookups for the forward references returnespond-
ing reverse references, then the algorithm will proceedbying the
current intermediate logical relation to all the referemgciables cov-
ered by the reverse references returned from the FR-Indexalfer-
nation between forward and reverse chase rounds will thetireee,
until a forward chase round is reached, where there are ribefur
foreign keys to chase. The aggressive chase algorithmheill stop.

Algorithm 1 AggressiveChasel; input table, FR-Index)

1: A = A/ {initialize logical relationA with input tableA}
2. F = set of forward references outgoing frain

3: R = set of reverse references incomingito

4: while F is not emptydo

5:  {forward chasg

6 for fin F (wheref is a forward reference of the fornk.a; — B.b;)
do

7. A = output of joiningA with B

8: endfor

9:  {reverse chage

10: for fin F do

11: if an entry(f, r) exists in the FR-Index (wherneis a reverse refer-

ence of the formA.a; < C.cj then

12: A = output of joiningA with C

13: end if

14:  end for

15:  {update forward and reverse refererjces
16: F =set of forward references outgoing fram
17: R =setof reverse references incomingito
18: end while

19: returnA

Note that with the above algorithm, the path from one tablarto
other in the directed tree of the generated logical relatEmcontain

one or more reverse edges, and hence the two tables may ret hav

a common ancestor. Therefore, the aggressive chase indpedes
the CAF-m-m relationships as long as they are deemed ititeges
according to the query log.

4.3 Resolving Correspondence Conflicts

Once we have constructed all the logical relations in botiests,
the next step is to construct the mappings between them. Véowe
we explained in Section 3.3 that the correspondences betthieat-
tributes of the two logical relations may not be conflictefrdn this
section, we explain the process we follow in UAKIto resolve these
conflicts, and hence find the most meaningful mapping in sitah s
ations. This is in contrast to simply generating mappingsafbthe
possible resolutions of the correspondence conflicts.

Problem Formulation: We will now formulate the problem of con-
flict resolution as follows. Given two logical relatiodsandB with
attributes{a1, az,...,ar} and {b1,b2,...,bs} respectively, and a
set of correspondences in the form(ef, b;),: € [1,1],5 € [1, J],
a pair of correspondences are said tocbeflicting if they were in
the form of((as, b, ), (ai, bj,)) or {(ai,, b;), (aiy, b;)). In these two
cases, the attnbuteb@l, bj,, ai;, anda;, are said to beonflicting
attributes

Moreover, unlike the attributes of regular schema tablasheat-
tribute in a logical relation is associated with what we rdfeas a

logical attribute path which specifies how this attribute was reached
when constructing the logical relation. Hence, the sanmioate from
the same table may appear multiple times in the logicaliceglabut
each time with a different associated path. It can be foyradfined

as follows.

Definition 3: Logical Attribute Path ( LAP(a)): A logical attribute
path is a sequence @& join predicates connecting an initial tablé,

to an attributea in some tabled i, where K > 0.

Consider that;, denotes the primary key of a tahle,, and that
ay, denotes a foreign key id,, k € [0, K]. Thus, if all the join
predicates inL AP (a) represent forward references, thém P(a) is
given as follows.

LAP((I) = “(Ao.ai() = Al.ail ), (A1.ai/1 = Ag.ai2), ey
(AK71.ai;(71 = AK.aiK), AK.a”.

Otherwise, if the join predicates ihAP(a) include opposing ref-
erences, theil AP(a) is given as follows.

LAP( ) — “(AO a.é) = A1~ai1)7 ey (Ak71.ai;€7

(Ak aLk = Ak+1 a

1 = Ak.aik)7

”
Zk+1) ., Ak.a”.

In view of the above discussion, the conflict resolution peobis
to search the space of all possibtenflict-freemappings between the
attributes ofA andB, and find the mapping that is most semantically
meaningful in terms of how the attributes (with their asated paths)
are matched on both sides.

Example 10: Figure 6 shows some conflicting correspondences be-
tween the attributes of thé_Order_Line andY_Order_Line logical re-
lations. In particular, it focuses on those conflicts betwéwe “city”
attributes on both sides. Each attribute is shown along itggbath in

the figure. (Note that the table names in the paths are alsiteevior
space limitation.J

X-Schema
X_Order_Line Logical Relation Attributes

Y-Schema
Y_Order_Line Logical Relation Attributes

conflicting
correspondences

LAP(b,)
"YOL.ol_o_id=YO.0_id,YO.o_bill_city"

LAP(a,)
"XOL.o_bill_ad_id=XAD.ad_id,XAD.ad_city"

LAP(ag)
"XOL.o_ship_ad_id=XAD.ad_id,XAD.ad_city"

LAP(bg)
"YOL.ol_o_id=Y0.0_id,YO.0_ship_city"

LAP(b,o)
kYOL.0l_o_id=Y0.0_id,YO.0_c_id=YC.c_id,YC.c_city)

LAP(a,) ‘
“XOL.0_c_id=XC.c_id,XC.c_ad_id=XAD.ad_id,XAD.ad_city"

Figure 6: Correspondence conflicts for all “city” attribute s when
mapping the logical relations for X_Order _Line and Y_Order _Line.

Solution Overview: Our proposed solution is centered around two
ideas, which translate into two consecutive stages.

e Attribute Grouping:The purpose of the first stage is to reduce
the size of the search space by excluding as many illogical ma
pings as possible, and hence ensure that they will not be erro
neously selected in the following stage. This is achievefirby
dividing the attribute sets of each éf andB into groups of
semantically-related attributes. Then, the only mapptws
sidered are those where no two attributes in the same group on
one side are mapped to two attributes in different groupfien t
other side.

e Usage-based Conflict Resolutiohhe second stage actually se-
lects the most meaningful mapping. Its main idea is to match a
pair of attributes fromA\ andB only when theiusage patterns
(as reflected in their respective query logs) seem more cempa
ible compared to other alternative matches.

4.3.1 Attribute Grouping

The intuition behind this stage is based on the observatiatcon-
flicting attributes in a logical relation result from usirtgetsameson-
ceptsin differentcontexts For example, as we mentioned in Example



7, the logical relations fox_Order_Line andY_Order_Line both contain
multiple versions of address attributes (i.e., stregy, state, . ., etc),
where each version corresponds to a different context (@lling ad-
dress, shipping address, customer address etc).

Formally speaking, the full context of an attributein a logical
relation is given byLAP(a). Consequently, an attributeis said to
have a more similar context to attributecompared to attribute if
LAP(a) and LAP(b) share a longer prefix compared IoAP(a)
andLAP(c).

The idea of grouping is to ensure that attributes havinglaimon-
texts are grouped together. This way, we can match wholepgrou
of attributes across the source and target logical relatidrhis ap-
proach is in contrast to matching individual attributes,ickhmay
lead to matching two attributes in the same context on one tsid
two attributes in two different contexts on the other sidrick would
clearly result in a wrong mapping.

Goal: Our goal is to generate attribute groups that satisfy the fol
lowing properties: (1) All attributes in the same group moston-
conflicting with one another; (2) Given any two attributeandbd in
two different groups=: and G. respectively, the common prefix of
LAP(a) and LAP(b) cannot be longer than the common prefix of
LAP(a) and LAP(c), for any other attribute in G1; and (3) The
number of generated groups must be minimal given that thisfisa
the above two properties.

The first property ensures that matching attributes fromgroap
on one side to another group on the other side will not invalrrg
further conflict resolution. The second property ensurasdtiributes
within the same group are closer to each other, in terms af ¢be-
texts, compared to attributes in other groups. Finally,tttel prop-
erty ensures that groups satisfying the first two propegiesot un-
necessarily split into smaller subgroups, which in turnuees that the
space of possible mappings to be explored is kept to a minimum

Attribute Grouping Algorithm:  The input to our grouping algo-
rithm is the list of all conflicting attributes in the logiaalation, along
with their paths. The output is a list of groups of attributasisfying
the properties described above. The algorithm operatesllasv$.
For each conflicting attribute, LAP(a) is inserted into arie, or
a prefix tree. Briefly, a trie is a tree structure for efficigratoring
strings (logical attribute paths in our case). Each leakergtdres one
of the inserted paths. Internal nodes store the common gdoefix|
the paths stored in its descendant nodes. Each node alstamsain
pointers to the set of attributes represented by its desegsdand
hence are considered to be represented by that node as well).

The populated trie is then used to partition the attributesgroups
as follows. We perform a depth first search starting from thet r
node. For each visited node, if some attributes in the sedtpiter
sents conflict with one another, then this set cannot be deresd as
a group, and its descendant nodes are visited in the stadeatt
first search order (i.e., the set of attributes must be fughkt). Con-
versely, if the set of attributes in the visited node are mtflicting
with one another, then the set will be considered as one ajutut
groups, and none of node’s descendants will be visited fiogfurther
splitting is performed). The pseudocode for this algorithas been
omitted for space limitations.

Example 11: Figure 7 shows how the conflicting attributes are
grouped in ther_Order_Line logical relation. The list of such conflict-
ing attributes, along with their paths, is given in Figura)7@fter all
the paths are inserted into a trie, the populated trie wéhttook as
shown in Figure 7(b). The output groups in this case are tteafe
attributes associated with each one of the second-levas@ugh-
lighted nodes). This is because they are all conflict-freegmposed
to the set of attributes associated with the root node (& gbs, and
bio in the root node are all “city” attributes, and hence theyflcin
with one anotherld

Note that the attribute grouping stage is optional, in thesedhat
conflict resolution (described next) can occur even if thelattes
were not grouped. However, we found in our experiments that t
grouping constraints introduced in this stage indeed mefpatecting
the next stage from making wrong decisions, and hence inepitoy
overall quality of the generated mappings.

4.3.2 Usage-based Conflict Resolution

The goal of this stage is to match the groups generated dthreng
attribute grouping stage between the source and targetaloggla-
tions. (If no grouping was performed, then each individuaitaute
will be considered as a group.) The straightforward apgraaculd
be to match the common path prefixes defining the shared d¢ontex
among the attributes in each group.

For example, the common path prefixes for the attributes én th
two groups representing the billing and shipping addressebe
logical relation of X_Order_Line are “(X_Order_Line.ol_bill_ad_id
=  X.Address.ad.id),” and  “(X-Order_Line.ol_ship.ad_id =
X_Address.ad.id),” respectively.  Similarly, for the logical rela-
tion of Y_Order, the common prefixes for the attributes in the two
corresponding groups areY_ Order.o_bill.” and “Y_Order.o_ship_”
respectively.

Clearly, in this case, measuring the textual similaritywesn the
prefixes on each side can lead us to the correct matchingn$tanice,
we can break up each prefix into a set of text fragments and then
measure the Jaccard similarity coefficient between thdtimegsets.
However, this approach will not be useful if the attributenirrg was
not similar in both schemas — for exampleg ibill_city ando_ship_city
are instead namaedlcityl ando_city2. An even more extreme example
is when the two schemas are in two different languages.

For this reason, we do not assume that textual similaritwéen
the prefixes always exists, and instead we rely on a differaumtce of
information. In particular, we assume that a group of attéb rep-
resenting certain concepts in a given context are expeotedHibit
differentusage patternsompared to another group of attributes rep-
resenting the same concepts but in a different context. ¥ample,
the usage of the billing address attributes can be diffefiremt the
usage of the shipping address attributes as reflected irutry tpg.

Usage-Based Schema MatchingThe idea of relying on the usage
information for matching attributes has already been psedadn [10].
However, the focus in [10] was on full-fledged schema matghin
our case, we need to match the attributes of two logicalioglatrather
than two schemas. Moreover, the fact that the same schenbtat
may occur multiple times in a logical relation poses new leingles
which were not addressed in [10].

The technique proposed in [10] can be summarized as folldws.
relies on collecting statistical information from the quéogs for each
attribute, or each pair of attributes (e.qg., their co-ooence frequency
in the select clause, or in theelect andwhere clauses respectively,
and so on). Then those collected statistics are comparedsatie
two schemas. The set of attribute correspondences, whsalt nethe
highest similarity for the collected statistics in both eatas (based
on a scoring function described in [10]), is returned as ttleema
matching output.

A New Matching Problem: In our problem setting, however, we
found that before we can match the attributes of logicaltieia
as described above, a totally sepanmatching problermeeds to be
solved first — one that requires a new strategy too. In paaticthe
statistics collected from the query logs for those attelsuwvhich ap-
pear multiple times in the logical relation must now be sptitoss the
different versions of each such attribute. For this purpeaeh occur-
rence of this attribute in the query log musttpatchedo one of the
versions in the logical relation. This way we can correctgaunt for
the statistics pertaining to each individual version.

Matching in this scenario will beontext-based if an attribute oc-
curs in a query in @ontextsimilar to that of a given version of the
same attribute in the logical relation, then they are matabgether.
We call this problemattribute context matchingTo understand how
we address this problem, we will explain next how we spectfy a
tribute contexts when they occur in logical relations andjueries,
and how we actually match them.

Attribute Contexts in Logical Relations: As we mentioned earlier,

the context of an attribute is generally determined based on its path,
LAP(a). This path, however, can sometimes be too long, and hence
represents a very specific context, which will unlikely neidth the
contexts found in the query log. In principle, we only neegl¢bntext
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VD UUUUVDUUUOUDUTUTDO

(a) Paths of conflicting attributes in the
X_Order_Line logical relation

“street”
{lbg}}

“street”

(b) The trie built for all the paths in (a)

Figure 7: Attribute grouping for the Y_order Line logical relation. The output groups of attributes are highlighted.

of an attribute to be specific enoughdistinguishit from the contexts
of the other versions of the same attribute in the logicaitieh.

Let us consider that attributs, a2, . . ., a» } in alogical relation
A are different versions of the same attributan some tabled. The
paths of all attributes;,i € [1,n], will have the same beginning
(the root of the logical relation) and ending (attribufe Only the
internal components in these paths are what distinguism tihem
one another. Hence, the least specific path for an attriniadagical
relation which can still distinguish it from all other atitites in the
same logical relation is given by the following definition.

Definition 4: Minimal Distinguishing Logical Attribute Pat h
(MDLAP(a)): Given an attributez in a logical relationA, the min-
imal distinguishing logical attribute path af, or M DLAP(a), is
defined as the minimabffix of LAP(a), such that there does not ex-
istan attributeb in A, whereM DLAP(a) is also a suffix oLAP(b).

In conclusion, for the purpose of attribute context matgtanross
logical relations and queries, the context of an attrilauie a logical
relation is given by DLAP(a).

Attribute Contexts in Queries: In order to identify the context of the
attributes appearing in a query, we first need to build itsyjgeaph
as described in Section 4.2. Then, using this graph, we capuiz
the path of join predicates leading to the table instancereveach
attribute belongs. This is achieved by starting form theenimdthe
graph representing the attribute’s table instance, anu\tsiting the
chain of its ancestor nodes in the graph. The format of this fost an
attributea will be identical to that ofLAP(a) given in Definition 3.
However, we will denote the path extracted from a querbyP(a)
— short forquery attribute path

The main difference between a query and a logical relatidhas
the former is represented by a general directed graph, wiel&atter
is represented by a rooted directed tree. As a result, eadbust in a
logical relation will only have one path starting from thetoBut in
theory, an attribute in a query may have multiple paths. (Inran-
ning example, for instance, a query may request all addsesbizh
were used both as billing and shipping addresses for the satee
In this case, each address attribute will have two path&spanding
to its billing and shipping roles.) Therefore, for the sakgenerality,
an attribute in a query is allowed to have multiple contexgahding
on how many paths are discovered for it in the query.

Context Matching: To decide whether an attributg appearing in
a query is actually an occurrence of an attributeappearing in a
logical relation, we need to first match their recognizedtexis (or
paths). For this purpose, we use the following strategy. damh
path QAP;(aq) associated wittug, if MDLAP(a;) is a suffix of

QAP(aq), thena, is considered to be an occurrencefin the

query.

This criterion guarantees that given the contextpfn the query,
a4 Will be unambiguously matched to a single attributg,in the log-
ical relation. This is because the contexipfis already known to be
unique in the logical relation. And since the contextdgmust beas
specific as, or even more specific th#mt of a;, thena, cannot be
matched to any other attribute in the logical relation gitest con-

text. In caser, has more than one context (as discussed earlier), then
it may be matched to more than one attribute in the logicalice —
one for each such context.

By solving the context matching problem as described abuoxee,
can then directly apply the usage-based matching techdiegeibed
in [10] to resolve the correspondence conflicts across toddgical

relations, and thereby find the most meaningful conflice-freapping.

5. EVALUATION

To evaluate our approach, we have conducted experimenigin t
main scenarios: the bookstores scenario, and the life cesesce-
nario, as will be described next. Unfortunately, researichmarks
such as STBenchmark [2] were not suitable for our experimbat
cause they did not include query log information, which isaied for
the operation of U-MP.

5.1 Bookstores Scenario

In this section, we describe an experimental study whoséigoa
to measure the effect of each of the new features introdutekei
U-MAP system on the quality of the generated mappings, in com-
parison with the classical RIC-based approach. We alsoy dtusl
performance of the mapping generation process.

Dataset: We have considered schemas from the bookstores domain,
based on the industry-standard TPC-W benchmark [27]. TPC-W
gives the specifications for building an online bookstore|luding

the database schema, the data stored in it, and the systedoachr

In order to simulate the presence of two different bookssystems,

we created two perturbed versions of the specified schemasigi-

lar to those shown in Figure 1. The schemas used in the expetsn
however, contain more tables (e.g. related to the shoprngrdor-
mation), and more attributes (e.g., book subjects and $éveks). In
summary, the two schemas used in our experiments contatalafo

18 tables and 82 attributes, covering 30 different corredpoces.

In order to generate the query logs, we used the Wisconsileimp
mentation of TPC-W [28], and ran the bookstore system uroer t
different workload mixes specified by the benchmark. Inipatar,
there are three such mixes: a browsing mix, a shopping mik.aan
ordering mix, where the read-only Web interactions cont&i®5%,
80%, and 50% respectively. By running the system under each m
we could generate two corresponding query logs for the soancl
target schemas. The query logs were generated by re-wititéngrig-
inal queries so that they conform to each of the two schemas. T
ensure heterogeneity, we assumed that the two schemas sse@-a
ated with the two most different query logs (browsing for soeirce,
and ordering for the target). A single run of each workload mas
performed by running 30 emulated browsers, which simutiasky
submit requests to the bookstore system for about 3 hourgserh
runs resulted in query logs containing 5,231 and 11,424iegiéor
the source and target schemas respectively.

It is worth noting that TPC-W is focused on a single use casthfo
bookstore database, namely that of the bookstore’s onlis®mers.
Hence, it does not account for other typical use cases ofahees
database, such as the queries made by the shipping depgrtheen
accounting department, etc. In the query logs we used, wd td



account for those use cases as well, while making the srhalbss
sible changes to the original query logs. In particular, wsuaed
that queries requesting the information of specific ordezsat only
coming from the online customers. But they might also be ogmi
from the shipping department (which will normally be intsted in
the order’s shipping address), and the accounting depattfwhich,
in contrast, will be interested in the billing address). Wmassumed
that the requests of the accounting department are generaik fre-
quent than those of the shipping department. The ratiosalkait,
unlike the accounting department, the shipping departrieennly
concerned with an order until it gets shipped.

Methodology: We implemented the U-MpP system such that all of
its new features can either be enabled or disabled. In patiove
refer to the following four features: merging sibling réteis (MSR),
aggressive chase (AC), attribute grouping (AG), and useged con-
flict resolution (UCR). To indicate that a given feature isatiled, we
prefix it with “!” (e.g., “IAC” implies that aggressive chads not
used). Clearly, if all four features are disabled, then WAWvill be-
have similar to a classical RIC-based mapping system.

In the experiments, we run U-M using its 16 possible configura-
tions. For each run, we measure the precision and recallropaong
the generated mappings against a set of manually-creadaddjtruth
mappings. Both the generated and ground truth mappingssept
the set ofminimizedmappings (i.e., they are the outcome of step 3
described in Section 2.3.1). For our experimental settivegfound
the total number of ground truth mappings to be 15. Moreower,
also measured the processing time given the different amafiigns

of U-MAP, averaged over 20 independent runs each. The experiment

were conducted on a 4-core Windows 7 machine with 2.66 GHz cor
speed and 6GB of RAM.
Unlike the RIC-based approach, we did not directly compare U

MaP to the semantic approach in our experiments. Beside the fact

that no implementation for the semantic approach was dlaita us,
we were also more interested in the general case, where aptoat
model does not necessarily exist. (In fact, no conceptualatsovere
available for the bookstore schemas we used.) Moreover,oukel ¢
show in Section 3, that even in the presence of the concepiocéls,
the semantic approach will neither help in discovering safthe
meaningful logical relations, nor will it help in resolvirgprrespon-

dence conflicts.

——
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U-MAP (MSR, IAC, IAG, UCR)
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Figure 8: Precision and recall for the different U-M AP configura-
tions, including the classical RIC configuration.

5.1.1 Quality Study

Overview: Figure 8 shows the precision and recall measurements for

each of the 16 configurations of U-A®. Figure 8 shows that the best
configuration is where all the new features are enabled. ddrifigu-
ration resulted in a precision and recall of 0.93 and 0.8@aetvely.
In particular, exactly 14 mappings were generated with atsefpos-
itive and two false negatives.

The false positive is because of generating an incorrect- map
ping between the logical relations &fBuyer (the super relation of
X_Customer and X_Distributer) and Y_Order, which incorrectly maps
the customer address attributes<iBuyer to the shipping address at-
tributes inY_Order.
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The reason for this glitch is that the highest-score mapflaged
on the scoring function described in [10]) between the tvgidal re-
lations is discarded during the minimization step despéindp the
correct mapping. However, we have set our implementatiamn su
that if the highest-score mapping is discarded, it gepdacedwith
the second highest-score mapping, and so on. We found tisat th
replacement strategy generally leads to better resultspared to
no-replacement. In some cases however (as in this casekuilts
in generating incorrect mappings. The choice of replacémersus
no-replacement is controlled by a configurable parameter-MApP.

The two false negatives are because we assumed that théveoare
ground truth mappings between the logical relationsxgfddress
andY_Order, and similarly between those &fCountry andY_Order.
These mappings correspond to mapping the address infamatice
to the billing address iry_Order, and once to the shipping address.
In U-M AP, however, we only generate the highest-score mapping be-
tween each pair of logical relations, and hence the secanthgrtruth
mapping (which scored less) was missed.

Another observation from Figure 8 is that the precision reaat
zero whenever both AG and UCR are both disabled (includieg th
RIC configuration). The reason is that in all of these casmspum-
ber of incorrectly generated mappings is exponentiallgdabecause
all the possible mappings for all possible conflict resolusi are gen-
erated without any grouping constraints.

Itis also worth mentioning that in all of our experimentsgeuting
each of MSR, AC, and AG has always been accurate; i.e., @rerla
ping sibling relations were correctly detected and mergbengver
MSR was enabled, meaningful reverse references were tgrdee
tected and chased whenever AC was enabled, and the attribate
correctly grouped whenever AG was enabled. In what follows,
study the impact of each individual new feature on the qualitthe
generated mappings.

Effect of Merging Sibling Relations: To assess the impact of MSR,
we will compare the best configuration, where all new featare
enabled, to that where all are enabled except for MSR. Thasgioa
and recall dropped from 0.93 and 0.87 for the former configumao
0.56 and 0.67 respectively for the latter configuration. antipular,
in the latter configuration, 18 mappings are generated witalsg
positives and 5 false negatives (compared to 1 and 2 regelgctor
the former).

Clearly, the false positives in this case are mostly becafigen-
erating mappings involvingk_Customer and X_Distributor, while the
false negatives are becausenot generating the mappings involving
X_Buyer.

Effect of Aggressive Chase:The configuration where all new fea-
tures are enabled except for AC results in a precision anallret
0.79 and 0.73 respectively. In this case, exactly 14 majspang gen-
erated, similar to the best configuration. However, unliieliest con-
figuration, 3 false positives and 4 false negatives occurexpected,
the additional false positives are due to the generation afpimgs
involving the chase of_Order_Line without including the author in-
formation. Also, the additional false negatives are atted tonot
generating the mappings involving the chas& @frder_Line with the
author information included.

Effect of Attribute Grouping: When using the configuration where
all the new features are enabled except for AG, we find thaptae
cision and recall drop to 0.75 and 0.8 compared to 0.93 aidr@-8
spectively, when all features are enabled, including AGsEfigures
correspond to 16 generated mappings, with 4 false positinels3
false negatives.

In the absence of grouping constraints, the conflict remwigtep
will have to search for the best mapping within a large numndfer
possible conflict resolutions. For this reason, it becomesemrone
to errors. And indeed, this is what we observed in this expent.
Both the false positives and false negatives occurred,igaigc be-
cause some of the generated mappings incorrectly mappedsadd
attributes from the same group in tReSchema to address attributes
in two different groups in th&-Schema. For example, the mapping
between the logical relations of Address andY_Order mapped the
street, city, and country attributes in tixeSchema to their corre-
spondingcustomeraddress attributes in theSchema. Conversely,



however, the city attribute in the-Schema was mapped to thehip-
ping city in the Y-Schema.

Effect of Conflict Resolution: Figure 8 shows that the configuration
where all the new features are enabled except for UCR, azhiav
recall of 1. This is expected because with no conflict regmiyuthe
mappings corresponding to all possible resolutions arergéed, in-
cluding all the desirable ones. The precision however ditgps 0.93
to 0.55, compared to the best configuration. Clearly, themess that
many incorrect mappings are also generated in this casavrticyar,
27 mappings are generated for this configuration. This numgbes
up to 2763 generated mappings for the configuration whete AGt
and UCR are disabled (i.e., with no grouping constraints).

5.1.2 Performance Study

Although the mapping generation process is typically a time-
offline process, and hence the computational efficiency soatea
lower priority compared to the quality of the generated niagp— we
still, however, report here the performance results in apeements
to demonstrate the practicality of U-A#.

In terms of the processing time, the configuration wherehalhtew
features were enabled took about 12.5 seconds to genditiie mlap-
pings. The remaining configurations ranged from 0.3 to 16s@%,
except for the four configurations where both MSR and AG wése d
abled, which took several hours each. These four caseseédduying
all the possible ways to match 16 address attributes on tiresside
with 12 address attributes on the target side. Additionalig two
target attributes_uname and c_passwd had 4 different ways to be
matched to the source attributesuname, c_passwd, d_uname, and
d_passwd. This striking difference in the processing time underssor
the value of the “merging sibling relations” and “attribgeuping”
features in U-M\P.

5.2 Life Sciences Scenario

To further assess the validity of our approach, we repohimgec-
tion our experience with a larger-scale real-world datafreenh the
life sciences domain. In this scenario, we only focus on grséesn
(as opposed to two parallel systems serving as the sourctharalr-
get). This is primarily because it is the one where inforomaton
both its schema and its queries were available to us. Whissaoreng
the accuracy and performance of the complete mapping Fisest
possible in this case, studying this particular system widlsgsite
helpful in showing that: (1) the issues UA¥ is addressing are in-
deed likely to occur in real-world schemas, and (2) the ugsfgema-
tion can help us better understand the semantics of a detablema,
and hence perform a better job in mapping it to other schemas.

In particular, we could obtain the schema of a functionalogeics
database [4] from its authors. The database keeps tracklidmai
of biological measurements collected for over 60,000 #szamples
of the Arabidopsis plant, including both mutant and nornaathples.
It has been in operation for over four years serving biolsgigorid-
wide, who are interested in this particular plant.

The schema, whose layout is shown on the right side of Figure 9
contains 35 tables and 273 attributes. We could not get a¢odbe
full-fledged query log for this database. However, we coldthin a
list of 73 query templategor parameterized queries), which are em-
bedded in the source code of the application that runs onftibpAd-
though the frequency information for these queries wasingsshey
were still an excellent source of information for the usagtigrns of
the different tables and attributes in the schema. Tablerirsarizes
some statistics, which characterize the schema and queeéen-
sider in this scenario. We now discuss how such charadtarisan
highlight the value of our newly introduced features in Uai¥

Sibling Relations: While this schema does contain 6 sibling relations
(two groups of three relations each), none of them is ovpitep
However, thepeople table (magnified in the left side of Figure 9) in
fact represents different types of people: customers stipgethe
analysis, providers of the samples, specialists who pladtharvest
the samples, and analysts who collect and analyze the nesasnts.
Therefore, a very likely alternative design would have asae table
assigned to each type of people. Moreover, the roles of thegple
often overlap, causing such tables to become overlappitiggirela-
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Table 1: Statistics from the life sciences scenari
Schema and Queries

0.

# tables 35
# attributes 273
# query templates 73
Sibling Relations
# sibling relations 6
# overlapping sibling relations ‘ 0
Aggressive Chase
# pairs of opposite edges 106

# interesting pairs of opposing references 3

# logical relations using opposing references 7
Conflict Resolution

# logical relations with conflicting attribute

# conflicting attributes in all logical relation:

16
1267

tions. For example, the analyst can also be the person whisgad
harvests the sample, and so on. In this case, we can only hswid
ing duplicate records in the target database, if we appatgyi merge
those overlapping sibling relations prior to mapping getien.

Aggressive Chase:We analyzed all the referential integrity con-
straints in the schema and found that the overall number io§ p&
opposing references is 106. Moreover, by analyzing theiegiasso-
ciated with the schema, we discovered that 3 out of those 408 p
are interesting. An interesting pair is one that is useditotjoree ta-
bles in some query, and hence suggests that their attrichitesd be
associated. When applying the aggressive chase, the digcbwter-
esting pairs are used in constructing 7 different logickdtiens. To
appreciate the significance of this finding on the qualityhef gener-
ated mappings (between this schema and any other schemadteve
that all mappings involving any of the 7 aforementioned dadjire-
lations will be missing important associations, and hermesiclered
incorrect, unless the aggressive chase is applied.

Conflict Resolution: The schema in Figure 9 contains numerous
cases where one table refers to another table multiple tiemesfor
a different purpose each time (similar to the billing ancppimg ad-
dresses in the bookstores scenario). For example, the ¢abésl
trayinfo (shown in the left side of Figure 9, and which covers infor-
mation about each experiment for planting sample tisseés)ances
the people table three times to track the persons who planted, har-
vested, and analyzed the results for the tissue samplesdtrafer-
ences a table callegipedet (not magnified in the figure, however, it
is a general-purpose table used to maintain the possiptsof dif-
ferent concepts in the schema) twice — once to track the tfpleeo
tissue being planted, and another for the growing mediura.typ

As a result of these and many other similar cases in the sgHggna
of the constructed logical relations were found to contaiotal of
1267 conflicting attributes(!). Considering the number @fppings
these logical relations will be involved in, and the numbEcarre-
spondence conflicts they will generate, we can immediatedjize
how impractical it is to leave the conflict resolution task floe user
to perform manually in complex real-world scenarios.

6. RELATED WORK

The problem of mapping generation has received a lot of dten
especially in the last decade(e.g., [3, 6, 9, 11, 13, 21, 23}he con-
text of the Clio project, several techniques were proposethfipping
discovery, first for relational data sources [21], and tlrXML data
sources [23]. Later, the notion of “nested mappings” wathiced
in [13], which showed how we can combine multiple mappings to
gether into a single nested mapping.

Besides Clio, other research efforts were made for the disgof
complex mappings beyond the simple attribute corresparegerThe
semantic approach [3] described in Section 2 is an exampsvelal-
ready mentioned, a key drawback in this approach is thatdheap-
tual models, which it relies upon, are not often present at-veorld
scenarios. iMap [9] focuses on finding complex relationsveen
attributes in both schemas suchmige=rate*(1+tax). Bohannon et
al. [6] introducedcontextual schema matchinig which a match be-
tween a pair of attributes is valid only when certain cormdis are met
in the data instances.

None of the above techniques, however, relied on query [0g8/
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Figure 9: The life sciences schema (right side) with the dagll rectangle containing thepeople and trayinfo tables magnified (left side).

in a recent overview paper on the Clio project [11], it wasefbyi

mentioned that query logs can be used to find associatiomsebat
attributes. The paper essentially refers to non-RIC-basedciations
like having the first two letters in the course ID for instamcpial to
the department ID. This idea is complementary to the teclasgve
propose in this paper.

More recently, several works have focused on the post mgppin
generation phase, where the generated mappings are tenmit
obtain a new set of mappings with desirable properties. kame
ple, [26, 19] are two independent approaches for re-writiagppings
to generate SQL scripts capable of computing what is knowthes
core solutionfor a data exchange problem [12]. Also, [14] shows
how schema mappings can be normalized in the same spiritichwh
relational schemas are normalized. The technique proposgd]
addresses the situation where key constraints and fuattaepen-
dencies (egds) hold on the target. Given a mapping scendhcw
tgds along with target egds, a best-effort algorithm isgivere-write
this scenario into one with no egds, which can be efficientgcated.
However, we explained in Section 3.1 that this techniquehzardle
the problem of merging sibling relations, but not when thg ke
tributes are not mapped across the source and the targete Hée
above works either do not consider the same problems we ssliire
this paper, or only handle special cases for some of them.oltdv
be useful, however, to have them incorporated into the ‘mizétion
step” in Figure 3.

As described in Section 3.3, Muse [1] and +Spicy [20] attetopt
solve the problem of unresolved correspondences. Howgaar,so-
lutions involve substantial manual labor and can be tedioutarge
and complex schemas. Our work is also related to the usaggstba
schema matching technique presented in [10] in the sens¢hiya
both exploit the query logs. However, as we explained iniSeet.3,
this work is only focused on the generation of simple atteltorre-
spondences across two schemas.

7. CONCLUSION

We have presented U-Mv, a schema mapping system, which em-
phasizes the value of the usage information in the query togsl-
dress several unresolved problems in the schema mappiag \afe
also verified the effectiveness and efficiency of Uxivby running it
on realistic databases from the retail and life sciencesaittsn Our
results suggest that the best quality for the generated imgps ob-
tained when all the new features in UA¥ are turned on.
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