
EIRENE: Interactive Design and Refinement of Schema
Mappings via Data Examples ∗

Bogdan Alexe
UCSC

abogdan@cs.ucsc.edu

Balder ten Cate
UCSC

balder.tencate@gmail.com

Phokion G. Kolaitis
UCSC & IBM Research - Almaden

kolaitis@cs.ucsc.edu

Wang-Chiew Tan
IBM Research - Almaden & UCSC

wangchiew@us.ibm.com

ABSTRACT
One of the first steps in the process of integrating information from
multiple sources into a desired target format is to specify the re-
lationships, called schema mappings, between the source schemas
and the target schema. In this demonstration, we showcase a new
methodology for designing schema mappings. Our system Eirene
interactively solicits data examples from the mapping designer in
order to design a schema mapping between a source schema and a
target schema. A data example, in this context, is a pair consist-
ing of a source instance and a target instance showing the desired
outcome of performing data exchange using the schema mapping
being designed. One of the central parts of the system is a mod-
ule that, given a set of data examples, either returns a “best” fitting
schema mapping, or reports that no fitting schema mapping exists.

1. INTRODUCTION
A schema mapping is a high-level declarative specification of the

relationship between two database schemas, which we refer to as a
source schema and a target schema. Designing schema mappings
is a fundamental step in integrating data from different, heteroge-
neous sources. In many real-life scenarios, the schemas involved
are complex, and designing the right schema mappings is often a
daunting task.

Several mapping-design systems, including research prototypes
such as Clio [5] and HePToX [3] and commercial offerings such
as Altova MapForce1 and Stylus Studio2, have been developed to
facilitate the process of designing schema mappings. All these
systems are based on a design methodology where the mapping
designer is required to provide a visual specification of the rela-
tionship between the source and target schemas, before a schema
mapping can be generated. Visual specifications of the relation-
ship between schemas are inherently ambiguous, in the sense that
a visual specification alone is not enough to uniquely determine a
schema mapping [1]. Indeed, in many cases, several logically in-
∗Research on this paper was supported by NSF grant IIS-0905276
and NSF Career Award IIS-0347065.
1www.altova.com/mapforce.html
2www.stylusstudio.com/xml mapper.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 12
Copyright 2011 VLDB Endowment 2150-8097/11/08... $ 10.00.

I1 J1
!" Data Examples

Fitting GLAV schema mapping or report “none exists”

Ik Jk

User insert/delete/modify fitting

Figure 1: Eirene workflow for interactive design and refine-
ment of schema mappings via data examples.

equivalent schema mappings can be derived from a visual specifica-
tion. Hence, it is often the case that the mapping designer will still
need to study and understand the details of the generated schema
mapping in order to ensure that it has the intended transformation
semantics.

In this demonstration, we showcase Eirene, a system that sup-
ports a methodology for designing schema mappings that departs
significantly from the methodology used by existing systems that
we described above. In Eirene, a schema mapping is derived from
data examples that are provided by the mapping designer, follow-
ing the approach that was developed in [2]. A data example is a
pair of source and target instances that conform to the source and
target schemas respectively. In each data example that is passed to
Eirene, the target instance represents the desired outcome of per-
forming data exchange on the source instance using the schema
mapping being designed. Hence, each data example represents a
partial specification of the semantics of the schema mapping that is
to be designed. Eirene interactively solicits data examples from the
mapping designer and either returns a schema mapping that “best
fits” the given set of data examples or reports that no fitting schema
mapping exists.

Eirene is tailored for generating schema mappings specified by
GLAV (Global-and-Local-As-View) constraints (also known in the
literature as source-to-target tuple generating dependencies, or s-t
tgds). We call such schema mappings GLAV schema mappings.
GLAV schema mappings have been extensively studied in the con-
text of data exchange and data integration [6, 7]. The GLAV schema
mappings contain, as important special cases, Local-As-View (LAV)
schema mappings and Global-As-View (GAV) schema mappings.
Furthermore, they are used in such systems as Clio [5] and HeP-
ToX [3].

In what follows, we will describe the workflow of Eirene shown
in Figure 1. In Section 2, we will describe the individual features
of Eirene that we plan to demonstrate.

Workflow of Eirene Assuming that the goal is to design a schema
mapping from a relational source schema S to a relational tar-
get schema T, the interaction between the mapping designer and

Source schema S
Patient(pid, name, healthplan, date)
Doctor(pid, docid)

Target schema T
History(pid, plan, date, docid)
Physician(docid, name, office)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

History(123, Plus, Jan, Anna)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

(b) Doctor(392, Bob)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(Bob, 392, N3)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

(b) Doctor(392, Bob)

(c) Patient(653, Cathy, Basic, Feb)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(N3, Bob, N4)

History(653, Basic, Feb, N5)

Underlying fitting GLAV schema mapping:

Step 1 (User adds a data example (a)):
Patient(x,y,z,u) ! Doctor(x,v) " History(x,z,u,v)

Step 2 (User modifies existing data example (a)):
Patient(x,y,z,u) ! Doctor(x,v) "
 #w,w’ (History(x,z,u,w) ! Physician(w,v,w’))

Step 3 (User adds another data example (b)):
None exists

Step 4 (User modifies (b) and adds (c)):
Patient(x,y,z,u) ! Doctor(x,v) "

 #w,w’ (History(x,z,u,w) ! Physician(w,v,w’))
Doctor(x,y) " #w,w’ Physician(w,y,w’)
Patient(x,y,z,u) " #w History(x,z,u,w)

Figure 2: An example of Figure 1. Left: Each box is an input set of data examples. Right: Derived schema mapping, or none exists.

Eirene begins with the mapping designer providing an initial set E
of data examples through Eirene’s user interface. Recall that a data
example is a pair (I, J), where I is an instance that conforms to S
and J is an instance that conforms to T.

After the set of data examples has been produced, the mapping
designer can invoke Eirene to generate a GLAV schema mapping
that fits the data examples in E or to determine and report that no
such GLAV schema mapping exists. We say a GLAV schema map-
ping M fits the set E of data examples if for every (I, J) ∈ E ,
J is a universal solution for I w.r.t. M. Universal solutions were
introduced in [4]. They formalize what is, intuitively, the natural
outcome of transforming source data with respect to a schema map-
ping, and they are regarded as the preferred solutions in data ex-
change. More formally, a universal solution of a source instance I
with respect to a schema mapping M is a “most general” target in-
stance that, together with I , satisfies the specifications of M, where
“most general” is defined in terms of homomorphisms (see [4] for
the precise definition).

Depending on the output of the system, the mapping designer
may go back to E and make modifications, such as adding new data
examples, removing some data examples, or inserting new tuples,
or deleting or modifying existing tuples in the data examples. After
this, the mapping designer can invoke Eirene again to test whether
or not there is a GLAV schema mapping that fits the new set E ′
of data examples. As before, Eirene returns such a GLAV schema
mapping, if one exists, or reports that none exists, otherwise. The
cycle of generating schema mappings and modifying data examples
can be repeated until the mapping designer is satisfied. We call this
process the interactive refinement of a schema mapping via data
examples.

Technical Features of Eirene As shown in [2], Eirene is a
sound and complete system for determining the existence of a fit-
ting GLAV schema mapping, given a finite set of data examples.
In other words, Eirene finds a fitting GLAV schema mapping for
a given finite set of data examples precisely when one exists. In
addition, the schema mapping returned by Eirene is guaranteed to
be the most general fitting GLAV schema mapping. That is, the
GLAV schema mapping M returned by Eirene has the property

that for every other GLAV schema mapping M′ that fits the same
set of data examples, we have that the constraints of M′ logically
imply those of M. Furthermore, Eirene is “complete-for-design”
in the sense that for any GLAV schema mapping M, there is always
a finite set of data examples that can be passed as input to Eirene to
derive a GLAV schema mapping that is logically equivalent to M.

We omit here the technical details of the algorithm at the core
of Eirene. For a complete discussion of the properties, including a
complexity analysis showing that the algorithm is worst-case opti-
mal, we refer the interested reader to [2].

Apache Tomcat

EIRENE

Backend

(Java)

A
d

o
b

e
 B

la
ze

D
S

M
e

ss
a

g
in

g

IBM DB2

Mapping

Fitting

UDFs

Data

Examples

Storage

GUI

Adobe

Flash

Figure 3: Eirene: System Architecture.

Implementation Overview In Figure 3, we present a high-level
architecture diagram of our system. The core algorithms behind
Eirene are implemented in Java 6. Our data examples are stored
in an IBM DB2 Express-C 9.7 database. Some parts of our al-
gorithm that help determine whether or not there is a fitting GLAV
schema mapping are implemented as a set of user defined functions
within the IBM DB2 database engine. The graphical user interface
of Eirene for entering the data examples, as well as other features
for analyzing the data examples and the derived schema mappings,
is deployed as a Flash component developed using Adobe Flex 4.

The communication between the user inteface and the core of the
system is performed via the Adobe BlazeDS messaging compo-
nent, embedded within Apache Tomcat.

2. DEMONSTRATION OVERVIEW
We describe here the set of features of Eirene that we will demon-

strate. For simplicity, we assume that the mapping designer wishes
to design a schema mapping between two simple source and tar-
get schemas shown in the top-left corner of Figure 2, where the
source schema has two relations: Patient and Doctor, and the tar-
get schema has two relations: History and Physician. In our actual
demonstration, we plan to showcase Eirene on real-life schemas as
well, such as Mondial3, DBLP4 , and Amalgam5.

Designing a schema mapping from a given set of data examples:
Figure 2 illustrates a sequence of data examples that a mapping de-
signer may enter into Eirene. Due to space limitations, we do not
show the sequence of screenshots from Eirene for entering the data
examples. However, in the actual demonstration, each data exam-
ple can either be entered directly through Eirene’s user interface or
a set of data examples can be created offline in a text file and im-
ported in Eirene. Suppose that, as a first step, the mapping designer
specifies a single data example, shown in the first box, which essen-
tially states that Anna is the doctor of patient Joe, whose health
plan is Plus, and date-of-visit is Jan. In the target relation of the
data example, there is a single fact, also entered by the mapping de-
signer, that consolidates information from the source instance and
omits the name of the patient.

Testing for the existence of a fitting GLAV schema mapping:
At this point, the mapping designer may decide to invoke Eirene’s
fitting algorithm by clicking on the “Schema Mappings / Fitting
Diagnostics” tab on the user interface. (This tab can be seen on
top of Figure 4.) Eirene returns a fitting GLAV schema mapping in
this case, which is shown on under “Step 1” on the right of Figure
2. Note that the GLAV schema mapping is shown as a first-order
formula, where all the universal quantifers have been omitted. This
schema mapping states that whenever a Patient tuple and Doctor
tuple agree on the pid value (i.e., a natural join between Patient
and Doctor), create a target tuple with the pid, healthplan,
date, and docid values from Patient and Doctor.

Refining the data examples: It is possible that the mapping de-
signer may realize that there was a typographical error in the spec-
ified data example after this step. Indeed, Anna should not appear
under docid in the target History tuple. At this point, the mapping
designer may refine the data example into the one shown in the sec-
ond box of Figure 2 through Eirene’s user interface. The mapping
designer may modify the target instance to consist of two tuples: a
History tuple and a Physician tuple which are “connected” through
the value N1. In addition, the office of Anna is given by the value
N2. Observe that the values N1 and N2 in the target instance do not
occur among the values of the source instance and they, intuitively,
represent unknown and possibly different values.

Again, the mapping designer may decide to invoke Eirene to fit a
GLAV schema mapping by hitting on “Schema Mappings / Fitting
Diagnostics” tab on the user interface and the schema mapping will
be refined into the one shown under Step 2 in Figure 2. Intuitively,
this schema mapping states that information from the inner join of
Patient and Doctor should be migrated to the target History and
Physician relations, with appropriate labels to represent unknown
3dbis.informatik.uni-goettingen.de/Mondial
4dblp.uni-trier.de/db
5dblab.cs.toronto.edu/˜miller/amalgam

Figure 4: A visual explanation on why no fitting schema map-
ping exists: under the interpretation that Doctor(392,Bob) in
data example 1 corresponds to Doctor(123, Anna) in data ex-
ample 2, there is no way that the target fact Physician(Bob, 392,
N3) can be mapped consistently to any target Physician fact in
the second data example.

and possibly different values. The GLAV schema mapping under
Step 2 states exactly this: for every Patient and Doctor facts that
join on pid, there must exist History and Physician facts in the tar-
get with appropriate pid, plan, date, and name values copied
from the source, as well as possibly different values w and w′ for
docid and office respectively.

Understanding why no fitting GLAV mapping exists: Further
refinement steps can occur on the data examples. In the third box
of Figure 2, the mapping designer adds a second data example (b)
to the existing data example, and Eirene now reports that no GLAV
schema mapping can fit. This is because data example (b) describes
a pattern of data migration that is inconsistent with data example
(a): According to (b), every Doctor(pid,docid) fact in the source
must have a corresponding Physician(docid,pid,office) fact in the
target. Observe that the pid value is copied to the second column
of the corresponding Physician fact. However, this is inconsistent
with what (a) states, where a Doctor(pid, docid) has a correspond-
ing Physician(,docid,) fact in the target, and docid gets copied
to the second column of the corresponding Physician fact instead.

Eirene visually presents the inconsistency that we have just de-
scribed in Figure 4. Our visual presentation allows the mapping
designer to gain insight into why no fitting GLAV schema mapping
exist. Intuitively, there is no fitting GLAV schema mapping be-
cause under the interpretation that Doctor(392,Bob) in data exam-

Figure 5: Graphical representation of schema mappings in
Eirene. Top: high-level display of relationships specified by the
schema mappings in Step 4 of Figure 2. Bottom: Zoom-in on
the correspondences asserted by the first schema mapping.

ple 1 corresponds to Doctor(123, Anna) in data example 2, there is
no way that the target fact Physician(Bob, 392, N3) can be mapped
consistently to any target Physician fact the second data example.

In general, whenever no fitting GLAV schema mapping exists for
a given set of data examples, Eirene will depict the inconsistency
it has detected based on two data examples by showing how an
interpretation of source facts from the first data example into the
second data example cannot be extended consistently to the facts in
the target instances of the two data examples.
Graphical representation of schema mappings: To continue with
our running example in Figure 2, the mapping designer modifies
the data example (b) and adds a third data example (c) (shown in
the fourth box). Based on these data examples, Eirene reports the
schema mapping shown under Step 4 on the right. Essentially, this
schema mapping migrates information from the outer join of Doc-
tor and Patient to the corresponding relations in the target. In par-
ticular, Doctors tuples, which may not join with any Patient tuples,
are migrated according to the pattern depicted by data example (b),
and Patient tuples, which may not join with any Doctor tuples, are
migrated according to the pattern depicted by data example (c).

In addition to the textual representation of Figure 2, Eirene has

the ability to present to the mapping designer the generated schema
mapping in a graphical form, which is shown in Figure 5. This
display consists of two parts. The top half of the display shows an
overview of the relationships between source and target relations,
as asserted by each of the schema mapping formulas. In the bot-
tom half of the display, the mapping designer can zoom in on one
of the schema mapping formulas. The mapping designer can ex-
plore how data values are exported from source to target according
to the schema mapping, as well as the equality conditions that must
hold within the source (or target) facts in order for the data migra-
tion to occur. For instance, the first schema mapping in Step 4 of
Figure 2, displayed in the bottom half of Figure 5, shows where
the pid, healthplan, date attributes from Patient and the
pid,docid attributes from Doctor are exported to in the target.
In addition, it also shows that the source Patient and Doctor tuples
must have the same pid value, and the target History and Physi-
cian tuples must agree on the docid value.
Refining an existing schema mapping: Another feature of Eirene
that we will demonstrate is how Eirene facilitates the refinement of
an existing schema mapping. In this case, the mapping designer no
longer inputs a set of data examples to Eirene but instead, she inputs
the schema mapping that is to be refined by Eirene. Given a schema
mapping, Eirene can automatically generate a set of “canonical”
data examples that follows closely the structure of the schema map-
ping, as an initial illustration of the semantics of the schema map-
ping. Furthermore, if one or more “real” source instances are avail-
able, then, whenever possible, the source instances of the data ex-
amples generated by the system will make use of tuples from these
real source instances.

After this, the mapping designer may modify the data examples
and use Eirene to fit a schema mapping on the modified set of data
examples.

It is worth mentioning that this feature allows Eirene to be used
as a component of existing mapping-design systems, such as Clio,
HePToX, Altova Mapforce, or Stylus Studio. The initial schema
mapping that is generated by one of these systems can be passed to
Eirene, where data examples can then be used to drive the process
of refining the schema mapping.

3. REFERENCES
[1] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark:

Towards a Benchmark for Mapping Systems. PVLDB,
1(1):230–244, 2008.

[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan.
Designing and Refining Schema Mappings via Data
Examples. In ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2011 (to appear).

[3] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and
R. Pottinger. HePToX: Marrying XML and Heterogeneity in
Your P2P Databases. In VLDB, pages 1267–1270, 2005.

[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. TCS,
336(1):89–124, 2005.

[5] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In ACM SIGMOD, pages 805–810, 2005.

[6] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In ACM PODS, pages 61–75, 2005.

[7] M. Lenzerini. Data Integration: A Theoretical Perspective. In
ACM PODS, pages 233–246, 2002.

