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Given a pair of two ontologies, the objective of CSR is to learn patterns of features that provide evidence
for the subsumption relation among concepts, and thus, decide whether a pair of concepts from these
ontologies is related via a subsumption relation. This is achieved by means of a classification task, using
state of the art supervised machine learning methods. The paper describes thoroughly the method, pro-
vides experimental results over an extended version of benchmarking series of both artificially created

discu
ubsumption
upervised machine learning

and real world cases, and

. Introduction

Despite the fact that ontologies provide a formal and unam-
iguous representation of domain conceptualizations, it is rather
xpectable to deal with different ontologies describing the
ame domain of knowledge, introducing heterogeneity to the
onceptualization of the domain and difficulties in integrating
nformation.

Although many efforts [1] aim to the automatic discovery of
quivalence mappings between the elements of ontologies, in this
aper we conjecture that this is not enough: to deal effectively with
he ontologies’ alignment problem, we also have to deal with the
iscovery of non-equivalence mappings among ontology elements.
o this end, in this work we investigate the discovery of subsump-
ion mappings. Although the usefulness of subsumption mappings

ay be known to the ontology alignment community, to the best of
wn knowledge, no alignment method has thoroughly investigated
he computation of such mappings. Therefore, the progress that has
een made towards the location of subsumption mappings is not
ufficient, in comparison to the progress made to the computation
f equivalence mapping relations.

Subsumption mappings are particularly useful when we deal
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

ith ontologies whose conceptualizations are at different “granu-
arity levels”: in these cases, the elements (concepts or properties)
f an ontology are more generic than the corresponding elements
f another ontology. Although subsumption mappings between the
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sses the potential of the method.
© 2010 Elsevier B.V. All rights reserved.

elements of two ontologies may be deduced by exploiting equiv-
alence mappings between other elements (e.g. a concept C1 is
subsumed by all subsumers of C2, if C1 is equivalent to C2), in
the extreme cases where no equivalence mappings exist, or in
cases where the assessed/provided equivalences are erroneous, this
cannot be done effectively. This paper conjectures that the direct
discovery of subsumption relations between elements of different
ontologies can enhance the discovery/filtering of equivalence rela-
tions, and vise-versa, augmenting the effectiveness of our ontology
alignment and merging methods. This is of great importance, since,
as it is also stated in the conclusions of the Consensus Track of
OAEI 06 [2], current state of the art systems “confuse” subsumption
relations with equivalence ones.

To make the above claims more concrete, let us consider the
ontologies depicted in Fig. 1. These specify the concept Citation
in the 1st ontology (which is equivalent to the concept Refer-
ence in the 2nd ontology), and Publication in the 2nd ontology
(which is equivalent to the concept Work in the 1st ontology).
Each of these ontologies elaborate on the specification of different
concepts: the second ontology elaborates on the concept Publi-
cation, defining different kinds of publications, while the first
ontology elaborates on the concept Citation, defining different
kinds of citations. Given these ontologies, the fact that equivalent
concepts in the two ontologies do not have the same lexicalization,
and that non-equivalent concepts do have the same lexicalization,
we may distinguish two cases.
ubsumption relations for the alignment of ontologies, Web Semantics:
001

In case that the equivalence mappings between the concepts
of the two ontologies are not known, conclusions concerning sub-
sumption mappings between the concepts of the two ontologies
cannot be drawn by a reasoning mechanism. This case shows in
a very clear way the necessity to discover equivalence and sub-

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 1. Example ontologies for assessing

umption relations between the concepts of the source and target
ntologies.

In the second case where equivalence mappings between the
oncepts of the two ontologies are known, these can be exploited
y a reasoning mechanism to deduce subsumption mappings. How-
ver, in case that equivalence mappings have been computed by an
lignment mechanism, then wrong equivalences shall provide evi-
ence to wrong subsumption mappings. For example, a state of the
rt alignment tool may wrongly assess that the concept Monograph
n the 1st ontology is equivalent to the concept Monograph in the
nd ontology, as their ontological features (e.g. labels, defined prop-
rties, direct super/sub concept, and depth in the taxonomy) are
xactly the same, as far as their surface appearance is concerned.
reasoning mechanism exploiting this equivalence relation would
rongly deduce that the concept Monograph in the 1st ontology

s subsumed by the concepts Book and Publication in the 2nd
ntology. However, the correct relation is that the concept Mono-
raph in the 1st ontology is subsumed by the concept Reference

n the 2nd ontology.
Furthermore, even if one (human or software entity) can assess

hat the concept Work in the 1st ontology is equivalent to the con-
ept Publication in the 2nd ontology, a reasoning mechanism
xploiting this knowledge would correctly infer that Interna-
ional Conference is subsumed by Publication, but it would
ot be able to place International Conference under its direct
ubsumer (i.e. its correct place in the hierarchy), which in this
xample is the concept Proceedings (this is so since the concept
nternational Conference represents publications that appear

n the proceedings of international conferences, while Proceed-
ngs represent publications that appear in any kind of scientific
vent, e.g. workshops). This example shows that even if we exploit
orrect equivalences to derive subsumptions, there are cases where
he subsumptions found are not sufficient for the merging of the
nvolved ontologies.

The above examples provide evidence towards our conjecture:
hat is clearly needed is a method that shall discover subsumption

elations between concept pairs of two distinct ontologies, sepa-
ately from subsumptions and equivalences that can be deduced by
reasoning mechanism. In other words, the method should directly
ursue the location of subsumption mappings, without necessarily
elying on equivalence mappings.

This paper deals with the problem of discovering subsumption
appings between concepts of two distinct ontologies, without

elying on known equivalence mappings among them. This is done
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

y using the “Classification-Based Learning of Subsumption Rela-
ions” (CSR) method for the alignment of ontologies. CSR computes
ubsumption mappings between concept pairs of two ontologies
y means of a classification task, using state of the art supervised
achine learning methods. Specifically, given a pair of concepts
ubsumption relation between concepts.

from the source and target ontologies, the classification method
“locates” a hypothesis concerning relation of concepts, which best
fits to the training examples [3], while generalizing beyond them.
The training examples are generated by exploiting both the source
and target ontologies, without requiring human intervention (this
is thoroughly explained in Section 4). The classification mecha-
nisms proposed exploit features of concepts of different types, for
the representation of concept pairs. A detailed description of the
classification features used is provided in Section 4.

The basic version of CSR has been presented in [4]. The work
presented in this article extends the one presented in [4] to the
following: (a) we investigate six more different types of classifica-
tion features (there are two such types in [4]), that improved the
efficiency of the method in terms of precision and recall (b) we
introduce a new dataset balancing technique based on the seman-
tics of the source and target ontologies, again with a positive impact
on the method, and finally (c) we provide a thorough evaluation of
CSR using three different datasets (in contrast to the one used in
[4]).

The machine learning approach has been chosen since (a) there
are no evident generic rules that capture directly the existence of
a subsumption relation between a pair of ontology elements (e.g.
by means of their surface appearance, labels/vicinity similarity or
dissimilarity), and (b) concept pairs of the same ontology can pro-
vide examples for the subsumption relation, making the method
self-adapting to the idiosyncrasies of specific domains and concep-
tualizations provided, and non-dependant to external resources.

The rest of the paper is structured as follows: Section 2 states
the problem and presents works that are most closely related to
our approach. Section 3 provides necessary background knowl-
edge concerning supervised machine learning and the classification
methods used. Furthermore, this section provides background
information concerning probabilistic topic models, which are used
for the generation of classification features. Section 4 presents
the proposed classification-based method for the discovery of
subsumption mappings, and discusses specific choices regarding
method’s alternative configurations. Section 5 presents and thor-
oughly discusses the experimental settings, as well as the results.
Finally, Section 6 concludes the paper by pointing out the main
aspects of our method and sketching further work for its enhance-
ment and exploitation.

2. Problem definition and related work
ubsumption relations for the alignment of ontologies, Web Semantics:
001

2.1. Problem definition

An ontology is a pair O = (S, A), where S is the ontological sig-
nature describing the vocabulary (i.e. the terms that lexicalize
ontology elements) and A is a set of ontological axioms, restricting

dx.doi.org/10.1016/j.websem.2010.01.001
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he intended meaning of the terms included in the signature [5,6].
n other words, A includes the formal definitions of ontology ele-

ents that are lexicalized by terms in S. Subsumption relations are
ntological axioms included in A. Distinguishing between concepts
nd properties, we consider a partition of S comprising the sets Sp

nd Sc, denoting the sets of words lexicalizing ontology properties
nd ontology concepts, respectively. Let also W be the set of distinct
ords that are in S, or that are extracted from labels, comments or

nstances of ontology elements. For example, concerning the 1st
ntology depicted in Fig. 1, a fragment of its representation is as
ollows: Sp = {to, date, # of pages, title, . . .}, Sc = {Citation,
ork, Proceedings, . . .}, A = {Proceedings � Citation, . . .}, and

= {to, Citation, date, . . .}.
Ontology mapping from a source ontology O1 = (S1, A1) to a tar-

et ontology O2 = (S2, A2) is a morphism f:S1 → S2 of ontological
ignatures such that A2 � f(A1), i.e. all interpretations that satisfy O2s
xioms also satisfy O1’s translated axioms. However, instead of a
unction that specifies equivalences among ontology elements, we

ay align ontologies by articulating five different kinds of binary
elations between the elements of the source and target ontolo-
ies: Namely, equivalence ( ), subsumption (inclusion) (� or �),
ismatch (⊥) and overlapping (�). In this case, the ontology align-
ent problem can be stated as follows: Classify any pair (C1,C2) of

lements of the source and target ontologies, such that Ci is a term
n Si, i = 1,2, to the above relations, consistently w.r.t. to the seman-
ics of specifications in the source and target ontologies, and to the
omputed relations. Having classified any pair (C1,C2) of elements
o these relations, ontologies O1 and O2 can be merged, resulting to
new consistent and coherent ontology. For example, concerning

he ontologies depicted in Fig. 1, such pairs are the following: (a)
Citation, Reference) classified to the equivalence relation ( )
nd (b) (Proceedings, Reference) classified to the subsumption
elation (�).

In this paper we deal with the problem of computing subsump-
ion mappings (subsumption computation problem) which, given the
bove generic problem, is as follows: Given (a) a source ontology
1 = (S1, A1) and a target ontology O2 = (S2, A2) such that S1 = S1c∪S1p
nd S2 = S2c∪S2p, (b) the set W1∪W2 of distinct words that appear
n both ontologies, and optionally (c) a morphism f:S1→S2 from the
exicalizations of properties or concepts of the source ontology to
he lexicalizations of the properties or concepts of the target ontol-
gy (specifying equivalence mappings of properties and concepts,
espectively), classify each pair (C1,C2) of concepts, where C1 is a
erm in S1c and C2 is a term in S2c, to two distinct classes: To the
subsumption” (�) class (meaning that C1�C2), or to the class “�”.
he latter class denotes pairs of concepts that are not known to
e related via the subsumption1 relation, or that are known to be
elated via the equivalence, mismatch or overlapping relations. We
ave to emphasize that in this paper we aim to compute strict sub-
umption relations among classes. Therefore, equivalent ontology
lasses must not be classified to the “subsumption” but to the “�”
lass.

Although the proposed method is ontology-language neutral
i.e. different implementations of the proposed method, can han-
le different ontology languages), throughout this paper we assume
hat ontologies are specified in the OWL-DL language [7].
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

The OWL-DL language has been given its name due to its back-
round on Description Logics (DLs) [7] and specifically to the
HOIN(D) description language [8]. The elementary descriptors of
Ls are atomic concepts (concepts) and atomic roles (properties).

1 This means that a pair of concepts belonging to “�” may belong to the strict
ubsumption relation, as class “�” states our ignorance whether the subsumption
elation holds for a pair of concepts. This is due to the open world semantics of the
WL-DL language.
 PRESS
Agents on the World Wide Web xxx (2010) xxx–xxx 3

Descriptions (i.e. terminological axioms) can be built from these
descriptors inductively, using a set of constructors.

The formal semantics are defined using the notion of interpre-
tation I, that consists of a non-empty set �I (the domain of the
interpretation) and an interpretation function, which assigns to
every atomic concept A a set AI ⊆ �I and to every atomic role R
a binary relation RI ⊆ �I × �I. Moreover, an interpretation I sat-
isfies a strict subsumption relation C�D iff CI ⊂ DI. If A is a set of
axioms, then I satisfies A, iff I satisfies each element in A and thus
constitutes a model of A. Concerning the strict subsumption rela-
tion that we are interested in this paper we specify that a concept
C is subsumed by a concept D (i.e. C�D) with respect to A (i.e. a
set of axioms describing C and D), if CI ⊂ DI for every model I of
A.

2.2. Related work

Due to the evolving nature of ontologies, to the large number of
elements that they comprise, and to the importance of the ontology
alignment task, there are many research efforts towards automat-
ing this task. The majority of these methods focus on discovering
equivalence mappings between ontology elements [1,5] (e.g. con-
cepts and properties). As a result, there has been a dramatic increase
in the efficacy and efficiency of the methods that locate equiva-
lences among ontology elements (i.e. equivalence mappings), while
subsumption mappings have not been thoroughly investigated. In
the next paragraphs we present the alignment methods that are
mostly related to our work and also target the location of subsump-
tion mappings.

The Semantic Matching approach [9] implemented by the
S-Match system, deals with the computation of equivalence,
subsumption, intersection (overlapping) and disjoint mappings
between concepts of ontologies. The mapping relation is computed
by (a) expressing the input ontologies’ concepts into propositional
formulas and (b) by transforming the problem of aligning ontolo-
gies into a propositional satisfiability problem. For the expression
of concepts as propositional formulas the method exploits: (a) the
labels of concepts, (b) the structural knowledge of the ontology,
(c) semantic knowledge extracted from WordNet senses, and (d)
mappings among concepts, which are computed utilizing a set of
methods, such as string based methods, n-gram based methods
and WordNet-based methods. Recently [9], the Semantic Matching
method exploits ontology properties, by expressing the problem as
a Description Logics reasoning problem (instead of a propositional
satisfiability one).

Another interesting approach that aims to the discovery of
subsumption mapping relations is presented in [10]. The authors
introduce the Wordnet Description Logics (WDL) language as a
way to bridge the semantic gap between two different ontolo-
gies and apply Description Logics reasoning services to the two
ontologies, as if they were a single one. The authors argue that prim-
itives (concepts and properties) of any DL language do not have an
“intended” meaning and for this reason they propose the “ground-
ing” of their interpretation to WordNet senses that best represent
their intended meaning. Although the authors do not focus on the
process of how senses are mapped to ontology elements, they pro-
vide specific rules that translate the input ontologies into WDLs
formulas, in order to infer relations among elements of the input
ontologies.

Similarly, in [11] the authors propose the exploitation of back-
ground knowledge in the form of domain ontology for bridging the
ubsumption relations for the alignment of ontologies, Web Semantics:
001

semantic gap between two different ontologies. Specifically, ele-
ments of the two input ontologies are mapped through equivalence
relations (called anchoring matches) to elements of a domain ontol-
ogy (called anchors). Then, based on the relationships among the
anchors encoded in the domain ontology, the method infers how

dx.doi.org/10.1016/j.websem.2010.01.001
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he elements of the source ontology are related to the elements of
he target ontology.

In [12] the previous approach is further developed, as authors
rgue that the main reason for producing erroneous mappings is
he wrongly assessed anchoring matches. As a result, they propose
he use of sense disambiguation techniques via the PowerAqua tool
13], and focus on (a) improving the quality of the automatically
enerated anchoring matches, and (b) discarding erroneous map-
ings. In more detail, the disambiguation technique is based on the
ynonymy degree measure provided by the PowerAqua tool, in con-
unction with a WordNet based technique proposed in their article.
he main intuition of the WordNet based technique is that the simi-
arity of two concepts depends on the relations among the WordNet
enses that best describe their intended meaning.

The authors in [14], instead of targeting to the problem of locat-
ng subsumption mappings between concepts, they argue that in
ll-defined domains such as internet music taxonomies, it is of
aramount importance to loosen the formal constraints of the
ubsumption relation. Specifically, the authors define a measure
named sloppiness) that shows whether it is possible for a concept

to be more general than a concept B, without being more gen-
ral from all subconcepts of B. For defining sloppiness, the authors
ivide the subsumption checking problem to a number of sub-
roblems, where sloppiness expresses the number of sub-problems
hat can not be addressed successfully. The impact a sub-problem
as on the main subsumption problem is encoded with a sub-
roblem specific weight. The computation of these weights is made
y exploiting the normalised Google distance, which captures the
robability of two terms (labels of concepts in this case) to co-
ppear in a web page.

Two more Google-based approaches aim to the location of sub-
umption mappings [15,16] by exploiting Hearst patterns [17]. The
alidity of subsumptions is tested by exploiting the hits returned
y the Google search engine. For example, among other techniques,
he authors propose the use of a threshold value that indicates
hether the hits are sufficient to conclude that the tested subsump-

ion relation holds.
Another approach for the location of subsumption mappings,

haracterized by the usage of heuristic rules, is the one introduced
y the TaxoMap system [18]. Concerning the discovery of subsump-
ion mappings, TaxoMap uses two rules, the intuition of which be
ummarized as follows: (a) if a concept has a label that is included
n the label of another concept, then the first concept is subsumed
y the second, and (b) if there are three concepts from one ontology
hat are the most similar ones to a single concept A from the other
ntology, and these three concepts share a common subsumer, then
he concept A is subsumed by their common subsumer.

Although machine learning techniques have been used in sev-
ral works for schema and ontology mapping [1,5], researchers aim
ostly to the discovery of equivalence mappings between ontol-

gy elements and do not focus on the computation of subsumption
appings between ontology elements, as we do in this work. To the

est of our knowledge, the only approach that targets to the compu-
ation of subsumption mappings is presented in [19]. Specifically,
he authors propose a method based on the Implication Intensity
heory. The main intuition of the approach is that one concept is

ore specific than another, if the words that appear in the docu-
ents associated to the first concept tend to be a sub-set of the
ords that appear in the documents associated to the other one.

he method takes as input a hierarchy of concepts and a set of doc-
ments, each one being classified under a specific concept. Then,
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

he proposed method is applied in order to locate strong deriva-
ions between sets of terms that appear in the documents, and as a
onsequence between their indexing concepts.

Another method similar to the one we propose is detailed in
20]. Specifically, the authors propose a method, called oPLMap, for
 PRESS
Agents on the World Wide Web xxx (2010) xxx–xxx

automatically locating mappings among web directories (i.e. hier-
archy of classes with associated documents to each class). oPLMap
is based on a logical framework, which is combined with probabil-
ity theory (probabilistic Datalog), and aims at finding the optimum
mapping (i.e. the mapping with the highest matching probability).
In terms of the oPLMap method, a mapping determines a “sim-
ilarity” relationship between classes of two web directories. For
example, a mapping may state that an instance of a class A from
the source web directory is also an instance of a class B from target
web directory. These facts may imply either a subsumption or an
equivalence mapping between classes. This is the major difference
of this work and the one proposed in this paper: CSR computes strict
subsumption relations among ontology classes.

All the aforementioned approaches for the computation of sub-
sumption mappings, except TaxoMap, have strong dependence on
external resources: WordNet, domain ontologies or text corpora.
The method proposed in this paper has been devised to be as generic
as possible and independent of any external resource, devoting spe-
cial attention to the idiosyncrasies of the ontologies considered.
Specifically, in this paper we consider the subsumption compu-
tation problem as a classification problem, where a classifier has
to assess whether a pair of concepts belongs to the subsumption
relation. The source and target ontologies are exploited in order
the method to generate the appropriate examples for the training
of the classifier. This is of great advantage, since (a) the proposed
method depends only from the source and target ontologies and
is independent from any third/external domain resource (lexicon,
thesaurus or text corpora), and (b) the proposed method tunes itself
to the idiosyncrasies of the input ontologies.

3. Background knowledge

3.1. Supervised classification

Classification is one of the main problems addressed within the
machine learning discipline. It concerns the classification of exam-
ple cases into a discrete set of classes. When the number of classes is
restricted to two, the problem is referred to as a binary classification
problem.

In supervised classification the inducer is fed with training
examples (data set) E = {E1, E2, . . ., Em}. Each training example Ej ∈ E
is associated with a label which indicates the class it belongs to.
More formally, each training example is a tuple Ej = (�xj, yj), where
�xj ∈ Rn is a vector of features’ values (feature vector) of the train-
ing example sampled from a distribution D, and yj ∈ Y is the class
to which �xj belongs (Y is the set of classes). The objective of the
supervised classification is to induce an unknown function c:Rn → Y
(classifier), that maps previously unseen instances �x, sampled from
the same distribution D, to values in Y. The ith component of the
vector �xj is termed the feature i of �xj .

As already stated in Section 2.1, the subsumption computation
problem can be defined as a binary classification problem, with two
defined classes: class “subsumption” (�) and class “�”, i.e. Y = {�, �}.

3.2. Classifiers

In the context of studying the subsumption computation prob-
lem, we have used specific implementations of the following well
studied and most popular types of classifiers:
ubsumption relations for the alignment of ontologies, Web Semantics:
001

(i) Probabilistic classifiers specify the function c as a probabilistic
function, assessing the probability p(xj,yj) that xj falls within a
category yj. From this category we have selected the archetyp-
ical Naïve Bayes (Nb) classifier [21]. Naïve Bayes is based
on the application of the Bayes theorem and is trained in a

dx.doi.org/10.1016/j.websem.2010.01.001
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supervised learning setting using maximum likelihood for esti-
mating the parameters of its model. The Naïve Bayes classifier
is based on the assumption that predictor variables (i.e. fea-
tures) are independent random variables. Although such an
assumption is quite strong (it does apply very rarely), Naïve
Bayes performs surprisingly well in some real-world problems
(e.g. spam filtering). In the subsumption computation problem,
this assumption concerns the independence of features (these
are presented in Section 4) in a pair of concepts. However,
this is not the case in our problem: For instance, if the con-
cept Proceedings is related to the property conference, the
probability of being related to the property hasPet is affected.

(ii) Memory-based classifiers [22] (sometimes called “lazy” clas-
sifiers) store the training data in memory and when a new
instance is encountered, similar instances are retrieved from
their memory and used for the instance classification. The k-
nearest neighbor (knn) is the most popular classifier of this
method, where k defines the number of instances (neigh-
bors) retrieved from memory and used for predicting the
class of an instance. Usually, the Euclidean distance is been
used for measuring the distance between two instances, while
the importance of each neighbor to determine the class of
an instance is inversely proportional to its distance from the
instance.

The biggest advantage of knn is its simplicity. On the other
hand, its prediction accuracy degrades as the number of fea-
tures grow. Furthermore, it is computationally expensive when
it is applied to large corpora.

iii) Support Vector Machines (SVMs) based classifiers [23]. Support
vector machines map feature vectors to a higher dimensional
space where a maximal separating hyperplane is constructed.
Although this hyperplane separates the instances belonging to
different classes linearly, in the initial dimensional space the
instances may be non-linearly separable. The transformation
of the data to the new space is made through functions called
kernels. Commonly used kernel functions are the Polynomial,
the Radial Basis and the Gaussian Radial Basis functions. In
the binary classification problem two parallel hyperplanes are
been constructed, categorizing the feature vectors. The sep-
arating hyperplane is the one that maximizes the distance
between the two parallel hyperplanes, since the larger the mar-
gin or distance between the parallel hyperplanes is, the better
the generalization error of the classifier will be.

The major advantage of SVMs is that they are quite effective
as non-linear classifiers. However, this comes together with
their biggest disadvantage: The need for fine tuning various
parameters (e.g. the kernel determination and regularization
coefficient). Indeed, different settings greatly influence the
results. In other words, SVMs do not often work “out of the
box”. Finally, these classifiers are computationally expensive.

iv) Decision tree classifiers [24]. Decision tree classifiers exploit a
tree structure in which each interior node corresponds to a
feature. The branch from a node to a child (arc) represents a
possible value of that feature, and a leaf node represents a pos-
sible classification class. Decision trees are trained by splitting
the training examples into subsets based on a feature value
test. This process is recursively applied to the resulting subset,
until a subset cannot be split any further, or a singular classifi-
cation can be applied to the examples of the subset. One of the
most commonly used decision tree classifier is the C4.5. C4.5
utilizes the normalized Information Gain measure in order to
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

choose the feature that best splits the data.

Decision tree classifiers have several advantages [24] that can
e proved very helpful in the subsumption computation problem.
his happens because: (a) they perform well when applied to large
 PRESS
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amounts of data, without being computationally expensive. In our
experiments there are cases where the number of features is very
high (>20,000 features) and there is a high number of training
examples, (b) disjunctive descriptions of cases, an inherent feature
of decision trees, fits naturally to the subsumption computation
problem. This is true since more than one features may indicate
whether a specific concept pair belongs in the class “�,”. (c) Deci-
sion trees are tolerant to errors in the training set. This is true as
far as the training examples, as well as the features values, are
concerned. Moreover, (d) decision tree-based methods are non-
linear classification methods, which means that they are able to
perform well even if the training examples are overlapping (this is
discussed in the next section). Last but not least, (e) decision trees
tend to perform well “out of the box”, without the need of tuning
any parameters.

3.3. Learning from imbalanced data sets

It is very important for the efficiency of any classifier that the
training dataset is balanced in numbers. In other words, the training
examples of all classes should be equal in numbers [25]. To under-
stand the problem, let us consider the training examples depicted
in Fig. 2. The majority class (i.e. the class with the highest number
of training examples) is represented with “−”, while the minority
(i.e. the class with the fewer training examples) with “+”. In order
to be able to represent the training examples, we assume that the
feature vectors are of length equal to two. In Fig. 2(a) there is a
high degree of imbalance between the two classes (there are much
more “−” than “+”). This, in conjunction to the fact that classes are
non-linearly separable, makes the classification task quite difficult.
To illustrate the difficultly, it is obvious that an 1-nearest neigh-
bour classifier would wrongly classify many “+” instances, as their
first most nearest neighbour will most probably be a “−” instance. A
similar behaviour can be observed for all classifiers presented in the
previous subsection. In contrast to that, Fig. 2(b) depicts an “easier”
classification scenario (linear separable, nearly balanced classes).

In the literature there are numerous works that deal with the
data set imbalance problem [26]. In the context of the subsumption
computation problem, to deal with the imbalanced data sets, we
examine three alternatives:

(i) Random over-sampling. This strategy randomly selects exam-
ples from the minority class (i.e. the one with fewer cases) and
re-adds them in this class, until the two classes are equal in
numbers. A common belief is that random over-sampling can
increase the likelihood of overfitting, since it produces exact
copies of examples [26]. On the other hand, there are vari-
ous works [25,26] stating that random over-sampling performs
effectively, especially when it is applied in combination with
decision tree-based classifiers.

(ii) A variation of random under-sampling. This strategy selects to
ubsumption relations for the alignment of ontologies, Web Semantics:
001

Fig. 2. Distribution of training examples in a 2-dimensional space.

dx.doi.org/10.1016/j.websem.2010.01.001
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different types of classification features. This is further detailed
in the next subsection.

(iii) Generation of training examples: The sets of training examples
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fier [26]. For this reason, the proposed under-sampling method
tries to avoid such a situation, by exploiting the semantics of
the input ontologies. A detailed description of the method is
provided in Section 4.

iii) Artificial training examples. This is a method proposed here. It
exploits the semantics of the input ontologies in order to gen-
erate artificial examples of the minority class, for balancing
the dataset. Although this method overcomes the problem that
derives from the application of random over-sampling, there
is always the chance that an artificially created example is not
representative of its class and as a result it provides “noise”. The
proposed method tries to avoid such a situation, by exploiting
the semantics of the input ontologies. A detailed description of
the method is provided in Section 4.

.4. Probabilistic topic models

In conjunction to the other types of classification features
e also study the efficiency of statistically generated features

called latent features/variables). Latent variables were introduced
n the probability topic models [27]. A latent variable is a prob-
bility distribution over words, and a probabilistic topic model
pecifies a certain generative process: Documents (assumed to be
bag of words”) can be generated by mixtures of latent variables.
y emphasizing on latent variables rather than words, proba-
ilistic topic models aim to capture the “significant” features in
erms of which different elements (documents) can be repre-
ented.

Fig. 3(a) depicts an instance of the generative process: Given
a) two latent variables specifying the probability of each word
shown inside the parenthesis next to each word), (b) the probabil-
ty according to which each variable contributes to the generation
f each document (shown by the arrows and the numbers labeling
hem), three different documents have been generated, empha-
izing on topics, whose mixture is represented by a specific
ombination of the latent variables. As it is depicted in Fig. 3(a),
he generative process makes no assumption about the exclusive
ssignment of a word to a variable, thus capturing the notion of
olysemy. Synonymy relations can also be incorporated in the pro-
ess, as different words with similar meanings may be assigned to
he same latent variable. These are important, considering that such
henomena occur frequently as far as the lexicalization of ontology
lements is concerned.

While the above process concerns the generation of documents
y known mixtures of known latent variables, we are interested in
he reverse process (depicted in Fig. 3(b)): Given documents that
xpress the meaning of ontology elements, we need to infer the
atent variables along with their mixture proportions for each doc-
ment. Given that each such document corresponds to an ontology
lement, ontology elements are finally been represented by means
f these latent features. In Section 4, we present in detail how
atent features are being used for the representation of training
nd testing examples.

.5. Latent dirichlet allocation (LDA)

Every probabilistic topic model assumes a specific generative
rocess for a document. This assumption is necessary in order to
e able to reverse the process and infer the latent variables and
heir mixture proportion for each document, as explained in the
revious section.
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

To introduce some notation, P(zi = j) stands for the probabil-
ty that the jth latent feature was sampled for the ith word, and
(wi|zi = j) stands for the probability of the occurrence of word wi

iven the latent feature j. To simplify the notation, P(z) (these are
he numbers labeling the arrows in Fig. 3) and P(w|z) (the probabil-
 PRESS
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ities of the words in latent variables in Fig. 3) indicate which latent
features can be used for expressing the content of a particular doc-
ument and which words are “important” for each latent feature,
respectively. Moreover, Poisson (�), Dirichlet (˛) and Multinomial
(ϑ) stand for the corresponding well known probability distribu-
tions along with their parameters.

The latent dirichlet allocation model [28], given a predefined
number of latent features T, assumes the following generative pro-
cess for each document:

1. Choose N ∼ Poisson(�).
2. Choose ϑ ∼ Dirichlet(�), ˛ = (˛1, ˛2, ..., ˛T )
3. For each of the N words in the document (i refers to the ith word):

• Choose a latent feature zi ∼ multinomial (ϑ).
• Choose a word wi from P(wi|zi), a multinomial probability distri-

bution conditioned on the latent feature zi.

Poisson is introduced for modeling a realistic assumption of the
document length distributions, as it expresses the probability of a
number of words to appear in a document of length N, if words
appear with an average rate (indicated by parameter �). Each ˛j,
j∈[1,T] entry of a can be interpreted as a prior observation count for
the number of times topic j is sampled in a document.

Having said that, the model specifies the following distribution
over words within a document:

P (wi) =
T∑

j=1

P
(

wi

∣∣zi = j
)

P (zi = j)

In the reverse process, where documents are known, standard
machine learning/statistical techniques can be used to infer the
parameters P(z) and P(w|z) according to which the known docu-
ments have been generated. For this purpose we are using a specific
Markov Chain Monte Carlo (MCMC) process called Gibbs sampling.2

It should be stated that the reverse process does not infer the num-
ber of latent features T. T is a parameter of the process and its
value influences the inference of the parameters P(z) and P(w|z).
The interested reader is referred to [27] for a detailed explanation
of this process.

4. The CSR method

As already pointed, CSR [4] addresses the subsumption compu-
tation problem as a binary classification task, using state of the art
supervised machine learning methods. The discrete steps of the CSR
method, as depicted in Fig. 4, are the following:

(i) Enhancement of ontology hierarchies: Reasoning services are
being used for inferring all subsumption relations in each ontol-
ogy [7]. This is a necessary step as it affects the generation of
the training dataset specified in Section 4.2.

ii) Generation of features for the classifier: In previous lines of our
work [4] CSR exploited two different types of classification fea-
tures based on properties of concepts, and on words appearing
in the vicinity of concepts. In this paper we investigate eight
ubsumption relations for the alignment of ontologies, Web Semantics:
001

are being generated according to the rules defined in Section

2 The LDA model implementation with Gibbs sampling that we have used is in
http://www.arbylon.net/projects.

dx.doi.org/10.1016/j.websem.2010.01.001
http://www.arbylon.net/projects
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Fig. 3. (a) The generative process and (b) th

4.2. The balancing of the training dataset is an important issue
that is being tackled in this step, as well.

iv) Train classifier: The classifier is being trained using the training
data set.

v) Generation of testing pairs: Concept pairs are being classified
by the trained classifier. The space of possible concept pairs is
“pruned” according to the method presented in Section 4.4.

Furthermore, although this is not necessary, we have configured
SR to exploit equivalence mappings between elements. Equiva-

ence mappings are being computed automatically by the SEMA
apping tool [29]. These equivalences may concern properties

r concepts. As it will be detailed in Section 4.1, when equiva-
ences between properties of concepts are being computed, then
quivalent properties correspond to the same classification feature,
llowing for more “informed” decisions to be taken concerning the
lassification of concept pairs. Additionally, equivalences among
oncepts are exploited by CSR to generate more training examples
or the class “�,”. The generation of training examples is described
n Section 4.2. At this point we need to recall that the exploita-
ion of mappings of concepts does not guarantee the location of
ll necessary subsumptions for the merging of the input ontolo-
ies.

The main purpose of SEMA [29] is to locate equivalence
appings between the elements (i.e., concepts and properties)

f the source and target ontologies and its use in the con-
ext of CSR is only optional. SEMA combines lexical, semantic
nd structural mapping algorithms: A semantic mapping method
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

xploiting latent dirichlet allocation model [29], requiring no
xternal resources, in combination with the lexical mapping
ethod COCLU (COmpression-based CLUstering) [29] and a map-

ing method that exploits structural features of the ontologies by
eans of simple rules. This combination of approaches contributes

Fig. 4. Overview of th
rence process (reverse generative process).

towards automating the mapping process, resulting to increased
recall and precision. It must be emphasized that the aggregation
of the equivalence mappings produced by the individual meth-
ods is performed through their iterative execution as described in
[29].

4.1. Classification features

Both training and testing examples are pairs of concepts. Given
a source ontology O1 and a target ontology O2, a pair of concepts
(C1,C2), where C1 ∈ O1 and C2 ∈ O2, is represented by a vector (f1, f2,
. . ., fN), where each fi, i = 1, . . ., N depends on the type of features
used and N is the total number of features detected in both ontolo-
gies. Subsequently, we describe the different types of features that
we have used in the experiments.

Type 1: In this case N corresponds to the total number of proper-
ties defined in both O1 and O2 ontologies, and pi to the ith property.
In case equivalence mappings of ontology properties have been
computed, equivalent properties are treated as a single property
pi that is shared by both input ontologies. To represent the direc-
tion of the subsumption relation, given a concept pair (C1,C2), fi is
defined as follows:

fi =

⎧⎪⎪⎨
⎪⎪⎩

0, if pi is associated neither to C1 nor to C2

1, if pi is associated only to C1

2, if pi is associated only to C2

3, if pi is associated to C1 and C2
ubsumption relations for the alignment of ontologies, Web Semantics:
001

For example, the training pair (Citation-O1, Proceedings-
O1) in Fig. 1 is represented by the vector [1, 2, 2, 0, 0, . . ., 0], where
the first three features of the vector correspond to the properties
to (equivalently, of) (equivalent properties are treated as a sin-
gle feature), title, # of pages. All other features correspond to

e CSR method.

dx.doi.org/10.1016/j.websem.2010.01.001
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roperties that are not related to any of the constituent concepts
f the pair and as a result their value is zero.

Using words, instead of properties, any concept C in O1 or O2 is
epresented as a vector of the form (frj

1, frj
2,. . ., frj

N). frj
i
, i = 1, . . ., N,

= 1, 2 (j indicates the left or right side of C in a pair (C1,C2), as shown
n Fig. 5) corresponds to one of the distinct N words extracted from
oth ontologies O1 and O2, and it is equal to the frequency of this
ord in the vicinity of C. The vicinity of a concept comprises its local
ame, label or comment, its properties (including the local names,

abels and comments of properties), as well as the related concepts
r instances. Words are extracted from the vicinity of a concept
fter tokenization, stemming, and elimination of stop words.

By exploiting the equivalence, disjoint and subsumption rela-
ions between ontology elements, as well as the conjunction and
isjunction constructors, we may “extend” the vicinity of an ele-
ent by including words occurring: (i) in the vicinity of all of

ts equivalent and direct super/sub-elements, (ii) in the union
intersection) of the sets of words occurring in the vicinity of its
onjunctive (respectively, disjunctive) elements, (iii) in the com-
lement of the intersection of the sets of words occurring in the
icinity of its disjoint elements.

Therefore, we identify the following types of features:
Type 2: Concerning type 2, fi (as Fig. 5 shows) for a pair of con-

epts (C1,C2) is defined as follows:

i =

⎧⎪⎪⎨
⎪⎪⎩

0, if fr1
i

= 0 and fr2
i

= 0

1, if fr1
i

/= 0 and fr2
i

= 0

2, if fr1
i

= 0 and fr2
i

/= 0

3, if fr1
i

/= 0 and fr2
i

/= 0

For example, the training pair (Citation-O1, Proceedings-O1)
n Fig. 1 is represented by the vector [1, 1, 2, 2, 2, 0, . . ., 0], where
he first five features correspond to the following words: citation,
o, proceedings, title, # of pages. All other features correspond to
ords that do not appear in any of the constituent concepts of the
air and as a result their value is zero.

Type 3: Concerning type 3, fi (as Fig. 5 shows) for a pair of con-
epts (C1,C2), is defined as follows:

i = � × fr1
i + (1 − �) × fr2

i (1)

here � ∈ (0, 0.5) is introduced so as to indicate the direction
f the subsumption relation. If � = 0.5 then symmetric pairs have
n identical representation. Since � is an external parameter, we
ave studied its effect in the classification task in the experiments
onducted.

Type 4: For the 4th type, the TF/IDF [30] values (wj
i
) of the

j

Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

xtracted words are being used, instead of their frequencies (fr
i
).

pecifically, fi is defined as follows:

i = � × w1
i + (1 − �) × w2

i

Fig. 5. Function f.
 PRESS
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where, � is as in equation (1), and for a concept Cj, j = 1,2 in a pair
(C1,C2), wj

i
is defined as follows:

wj
i
= frj

i
× idfi

idfi = log2
#C

ni

frj
i

is the frequency of the ith word, idfi is the inverse of the per-
centage of the concepts that “contain” the ith word in their vicinity,
#C is the total number of concepts in both source and target ontolo-
gies and ni is the number of concepts (0 < ni < #C + 1) that “contain”
the ith word at least one time.

Type 5: In order to overcome the problem of symmetric pairs’
identical representation without introducing the extra parameter
� , we can represent concept pairs as feature vectors of size 2 × N.
Each vector is of the form (f1, f2, . . ., fN, fN+1, fN+2, . . ., f2N), where fi,
i = 1, . . ., 2N is defined as follows:

fi =
{

fr1
i

, if 0 < i < N + 1

fr2
i−N

, if N < i < 2N + 1

In plain words, the feature vector that represents the concept
pair is the concatenation of the vectors that represent the con-
stituent concepts of the pair.

Type 6: Similarly with features of type 5, concept pairs are rep-
resented as feature vectors of size 2 × N. However, fi (similarly to
features of type 4) is defined in terms of the TF/IDF values for the
corresponding words:

fi =
{

w1
i
, if 0 < i < N + 1

w2
i−N

, if N < i < 2N + 1

Beyond properties and words, concepts may be described by
means of latent features. Specifically, in this case, concepts are trans-
formed to multinomial distributions over latent features. This is
done by applying the reverse generative process of the LDA model,
as described in Section 3. Concerning any concept of O1 or O2, this is
represented as a bag of words, extracted from its vicinity. According
to the reverse generative process, the resulting multinomial distri-
bution over a given number of T latent features will be of the form
(lt1, lt2, . . ., lti, . . ., ltT), where lti, i = 1, . . ., T corresponds to the ith
latent feature and specifies the “contribution” of the correspond-
ing feature in approximating the intended meaning of a concept
(i.e. the probability P(z), labeling the arrows in Fig. 3). Therefore,
we identify the following types of features:

Type 7: Concerning type 7, the feature fi (as shown in Fig. 5) for
a pair of concepts (C1,C2), is defined as follows:

fi = � × lt1
i + (1 − �) × lt2

i

Type 8: Concerning type 8, similarly with the features of type 5,
fi for a pair of concepts (C1,C2), is defined as follows:

fi =
{

lt1
i

, if 0 < i < N + 1

lt2
i−N

, if N < i < 2N + 1

Studying the importance of properties of concepts to assess-
ing the subsumption relation between concepts (a) appeals to our
intuition concerning the importance of properties as distinguish-
ing characteristics of concepts, (b) it provides the basis for a method
ubsumption relations for the alignment of ontologies, Web Semantics:
001

considering only equivalence mappings of properties. As far as the
use of words is concerned, (a) their use for describing the intended
meaning of concepts appeals to our intuition, and (b) it does not
necessitate the use of any method for the computation of equiva-
lence mappings among ontology elements.

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 6. Simple example.
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Fig. 8. Disjunction of concepts.

of the class “�”. This category can also be enriched by exploiting
equivalences of concepts and disjunctions. For example, given
the ontology in Fig. 10 the resulting examples are the follow-
ing: (C2,C3), (C2,C4), (C2,C5), (C3,C5), (C4,C5), (C6,C8), and (C7,C8).
Fig. 7. Stated equivalences.

Finally, the use of latent features (feature types 7 and 8) is inves-
igated to show whether they can capture the intended meaning
f concepts more precisely than properties of concepts or words.
imilarly with the case of words as classification features, latent
eatures do not require the use of any method for the discovery of
quivalence mappings among ontology elements in the source and
arget ontologies.

.2. Generating the training dataset

As it has been stated, training examples for classes “�,” and “�”
re being generated by exploiting the source and target ontologies,
ach one in isolation (i.e. the constituent concepts of each training
xample pair belong in the same ontology). Training examples can
lso be generated by exploiting equivalence mappings between the
oncepts of the two ontologies, in combination with the transitive
ature of the subsumption relation. However, as already stated,
his is only an option and it is not a necessity for CSR (in experi-

ents where equivalence mappings are being exploited, we clearly
tate it). The paragraphs that follow specify how examples are being
enerated.3

Training Examples for the class “�”. The basic rules for the gener-
tion of these examples are as follows:

Subsumption relation. Include all concept pairs from both input
ontologies that belong in the subsumption relation. The sub-
sumption relation may or may not be direct. For example, given
the ontologies in Fig. 6, the derived concept pairs are the follow-
ing: (C2,C1), (C3,C1), (C4,C1), (C3,C2), and (C4,C2).
Equivalent concepts. Enrich the set of concept pairs generated by
the above rule, by taking into account stated and inferred equiva-
lence relations between concepts. In detail, for each concept pair
(C1,C2) that belongs in the subsumption relation, and for each
stated equivalence relation Ci ≡ Ci

k
, i ∈ {1,2}, k = 1, 2, . . ., then the

pair (C1, C2
k

) (or the pair (C1
k

, C2)) belongs to the subsumption
relation, as well. For example, given the ontology in Fig. 7, the
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

resulting pair examples are the ones generated from the previ-
ous rule, plus the following pairs: (C2,C5), (C3,C5), (C4,C5), (C6,C1),
(C6,C2), and (C6,C5).

3 In contrast to the rules presented in this section, we have also used a reasoner to
enerate the training pairs of classes “�” and “�”. This alternative was not adopted
s there was no improvement to the results, while the execution time of CSR was
nacceptable for large ontologies. Moreover, the different categories of example
airs are exploited for the balancing of the dataset.
Fig. 9. Concepts of different ontologies.

• Disjunction of concepts. Enrich the set of pairs by exploiting the
disjunction construct in the definition of concepts: When one
concept is specified to be the disjunction of others (e.g. the con-
cept C4�C5 in Fig. 8), and it is specified to be subsumed by another
concept (e.g. by the concept C2 in Fig. 8), then each concept in the
disjunction is subsumed by the more general one (i.e. it holds
that C4�C2 and C5�C2). Therefore, in Fig. 8, the generated exam-
ple pairs by this rule are (C4,C2) and (C5,C2). By taking into account
also the equivalent concepts rule, the concept C4 can be substi-
tuted by its equivalent concept, and therefore, the pair (C6,C2) is
included as well.

• Equivalent concepts of different ontologies (i.e. equivalence map-
pings). As already stated, we may optionally create training
examples for the class “�,”, by exploiting equivalence map-
pings between concepts in different ontologies. In the example
depicted in Fig. 9, where concepts C3 and C6 are mapped as
equivalent, the training examples that can be generated are as
follows: (C4,C5), (C4,C6), (C3,C5), (C7,C3), (C7,C1), (C8,C3), (C8,C1),
and (C6,C1).

Training examples for the class “�”. According to the open world
semantics, we need to exploit the stated axioms for the generation
of training examples: Therefore, in case there is not an axiom that
specifies the subsumption relation between a pair of concepts (or in
case this relation can not be inferred by exploiting the semantics of
specifications), then this pair does not belong to the subsumption
class and it is included in the generic class “�”. Four basic rules
summarize the generation of examples for the class “�” and define
different categories of training examples:

• Siblings at the same hierarchy level. This includes pairs of con-
cepts that are siblings (i.e. share the same subsumer) and that are
not related via the subsumption relation. As a result, all possible
pairs following this rule are characterized as training examples
ubsumption relations for the alignment of ontologies, Web Semantics:
001

Symmetric pairs are also included in this category.

Fig. 10. Siblings.

dx.doi.org/10.1016/j.websem.2010.01.001
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Siblings at different hierarchy levels. If any concept that is in a pair
belonging in the “siblings at the same hierarchy level” category
is substituted by any of its subsumees, then new pair examples
are recursively generated, until the leaf concepts of the ontol-
ogy are reached. These examples constitute a new category called
“siblings at different hierarchy levels”. Similarly to the previous
categories, this one also can be enriched by exploiting disjunc-
tions of concepts and equivalence relations between them. For
example, given the ontology in Fig. 10 the pairs that are generated
are as follows: (C2,C6), (C2,C7), (C2,C8), (C3,C6), (C3,C7), (C3,C8),
(C4,C6), (C4,C7), and (C4,C8). Symmetric pairs are also included
in this category.
Concepts related through non-subsumption relation. This includes
concepts that are related via an object property and are not
related with a subsumption relation or concepts related via an
equivalence relation. As with the previous categories, this cat-
egory may also be enriched by considering disjunctions and
equivalences between concepts. For example, given the specifica-
tions in Fig. 11 the pairs that are generated are as follows: (C1,C3),
(C1,C4), (C2,C6), (C5,C6), (C2,C5) and their symmetric pairs. When
equivalence mappings are exploited, this category also includes
these mapping pairs.
Inverse pairs of concepts that are related with the subsumption rela-
tion. All concept pairs (C2,C1) such that C1 is subsumed by C2, but
C2 is not subsumed by C1, constitute examples for the class “�”.

.3. Creating a balanced dataset

As it is evidenced by the above, the number of training examples
or the class “�,” (minority class) is less than the number of exam-
les for the class “�” (majority class). As mentioned in Section 3.3,

t is very important for the performance of the classifier that the
raining examples for both classes to be balanced in numbers.

The first strategy adopted to deal with the imbalance problem is
he variation of random under-sampling. According to this strategy,
he training examples are chosen as follows:

. All examples for the class “�,” are included.

. Generate examples for the class “�”:
2. 1 Examples that are repeated across different categories for

the class “�” are removed.
2. 2 Select n/t examples from each category of training examples

for the class “�” randomly. n is the number of examples in
class “�,” and t is the number of different categories of class
“�”.

The second strategy is the random over-sampling. According to
his strategy, the training examples are chosen as follows:

. All examples for the class “�” are included.

. Generate examples for the class “�,”:
2. 1 Randomly select examples for the class “�,”, until the two

classes contain equal number of examples.
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

The third strategy exploits the semantics of the input ontologies
o generate new artificial training examples for the minority class
�,”, instead of simply performing random over-sampling that adds
uplicate examples for the class “�,”. Specifically, this strategy is as
 PRESS
Agents on the World Wide Web xxx (2010) xxx–xxx

follows:

1. All examples for the class “�” are included.
2. Generate examples for the class “�,”:

2. 1 All n examples for the class “�,” are included.
2. 2 Generate a artificial examples for the class “�,”, until a + n = r,

where r is the number of the examples for the class “�”.
2. 3 If a+n<r, then perform random over-sampling to the original

n examples for the class “�,”, until a+n = r.

Artificial examples are generated as follows: Given a set of con-
cepts C = {C1, C2, . . ., Cm} with C1�F, C2�F, . . ., Cm�F, then the
disjunction (�) or conjunction (�) of all combinations C(|C|,i) of i
concepts in C, generate concepts that are subsumed by the con-
cept F (e.g. C1�C2�F, C1�C2�Cm�F, or C3�Cm�F). Therefore, these
constitute training examples for the class “�”.

In our case, the disjunction (�) and conjunction (�) of concepts
is performed on their vector representation. Specifically, similarly
to Section 4.1 given two concepts A and B represented as vectors
(frj

1, frj
2, . . ., frj

N), where frj
i
, i = 1, . . .,N, corresponds to the frequency

(respectively, TF/IDF value) of the distinct N words extracted from
O1 and O2, j = A, B, A�B (respectively A�B) is represented by (frC

1 , frC
2 ,

. . ., frC
N) (respectively (frD

1 , frD
2 , . . ., frD

N )). frC
i

and frD
i

are defined as
follows:

frD
i =

{
0, if f Ari = 0 and f Bri = 0

1, if f Ari /= 0 or f Bri /= 0
(2)

frC
i =

{
0, if f Ari = 0 or f Bri = 0

1, if f Ari /= 0 and f Bri /= 0
(3)

It should be pointed out that the strategy for the generation of
artificial training examples is applied only when the concepts in a
pair are represented as vectors of frequencies or TF/IDF values. This
is so because: (a) Statistically generated latent features are always
non-zero (i.e. frj

i
/= 0), which means that fBri and fAri will always

have non-zero values, resulting always to the same vector for all
conjunctions and disjunctions: (1, 1, . . ., 1). (b) Equations (2) and
(3) cannot be applied when properties are used for the generation
of classification features (i.e. features of type 1): in this case we
have not defined a vector representation for a concept.

4.4. Pruning the space of combinations

Taking into account the semantics of the subsumption relation,
it is possible to narrow the search for concept pairs that belong
to the subsumption class. In other words, instead of generating
all possible concept pairs from both ontologies, we may prune the
space of possible concept pairs by excluding pairs of concepts for
which a subsumption relation can not hold, due to the existent and
currently computed relations.

First we provide two short definitions: A root concept is every
concept of the ontology that does not have a subsumer. Root con-
cepts might not have subconcepts, hence are called unit concepts.
We consider that an ontology may include more than one subsump-
tion hierarchies for concepts.

First, to prune the search space, the proposed algorithm checks
whether any concept from the source ontology is subsumed by any
of the unit concepts of the target ontology, and then by any root
concept.

If a pair is not classified in the class “�”, then the hierarchy
ubsumption relations for the alignment of ontologies, Web Semantics:
001

rooted by the corresponding concept of the second ontology is not
examined by the classifier.

If a pair is assessed to belong to the class “�”, then recursively,
the algorithm tests whether the concept from the source ontol-
ogy is subsumed by the direct subsumees of the corresponding

dx.doi.org/10.1016/j.websem.2010.01.001
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pings of properties (Reasoner+Props), or alternatively, equivalences
mappings of both properties and concepts (Reasoner+Props+Con).

Here we have to state that although there are ontology align-
ARTICLEModel
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oncept in the target ontology. This happens until either a pair is
ssessed to belong in the class “�”, or until the leaf concepts are
eached.

. Experimental results and discussion

.1. The datasets

Given that there are no datasets for the evaluation of
ethods concerning the subsumption computation problem, we

re evaluating CSR using three existing datasets for evaluat-
ng alignment methods. For these datasets we have extended
he gold standard specifying their alignment, by including
ubsumption relations among their concepts (i.e. subsumption
appings). The compiled datasets are available at the URL

ttp://www.icsd.aegean.gr/incosys/csr.
The first dataset has been derived from the benchmarking series

f the OAEI contest [31]. As our method exploits the properties of
oncepts (for the cases where properties are used as features), we
o not include the OAEI ontologies whose concepts have no prop-
rties. Furthermore, we have excluded from the dataset the OAEI
ntologies with no defined subsumption relations among their con-
epts (i.e. those in which there is no hierarchy of concepts). This
s done because the proposed method exploits the subsumption
elation in the source and target ontologies to generate training
xamples.

More specifically, all benchmarks (101–304) except those in
ategories R1–R4, define the second ontology of each pair as an
lteration of the same ontology (i.e. the first one, numbered 101).
he benchmarks can be categorized based on their common fea-
ures (as alternations of 101) as follows: (a) in categories A1–A5
210, 237, 238 and 249), the lexicalizations of the elements in the
arget ontologies have resulted from various changes/replacements
uppercasing, underscore, foreign language, synonyms or random
trings) of the corresponding lexicalizations in 101, (b) in categories
6–A7 (225 and 230) the local restrictions in properties (defined
sing the <owl:Restriction> construct) have been removed, some of
he properties have been modeled in more detail, and some unit
oncepts (i.e. concepts with no subsumees) have been removed, (c)
n categories F1–F2 (222, 237, 251 and 258) the hierarchies have
een pruned, resulting in more flat ontologies, and in F2 random

exicalizations of all elements have been introduced, as well. Finally,
d) in categories E1–E2 (223, 238, 252 and 259), similarly to F1–F2,
ierarchies have been expanded in depth, and in E2 random lexi-
alizations of all elements have been introduced, as well. Extensive
nformation concerning the benchmark series is provided in the
AEI 2006 contest site [31].

The second dataset is composed of pairs of real-world ontologies
oncerning course catalogs of the Washington and Cornell Uni-
ersities. These are available in the Illinois Semantic Web Archive
32]. Each university provides two versions of its course catalog:
n extended version and a mini version. By utilizing all com-
inations of the catalogs, the dataset is composed of six pairs
f course catalogs. More specifically, courses are organized into
chools and colleges, then into departments and centers within
ach college. Each course is described by a textual description. The
eason for selecting these ontologies was that due to their real-
orld usage, they contain textual descriptions of the courses they

lassify. Details about the ontologies’ statistics are presented in
able 1.
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

The third dataset is composed of 45 pairs of real-world ontolo-
ies coming from the Consensus Workshop track [33] of the OAEI
ontest 2006 (pairs result from all combinations per two). The
omain of the ontologies concerns the organization of conferences
nd they have been developed within the OntoFarm project [34].
 PRESS
Agents on the World Wide Web xxx (2010) xxx–xxx 11

Detailed information concerning these ontologies is provided in the
Consensus Workshop track site [33].

The gold standard for all datasets has been manually created
by a knowledge engineer. The major guidelines that were fol-
lowed by the engineer in order to find the subsumption relations
are as follows: (a) use existing equivalence mappings in order
to find inferred subsumptions, and (b) understand the “intended
meaning” of the concepts (e.g. by inspecting specifications and
relevant information attached to them), and use common sense
to locate any subsumption relations that cannot be inferred by
the existing equivalences. The format of the gold standard is
the same with the one used in the benchmark series of the
OAEI competition (more information is provided at http://people.
kmi.open.ac.uk/marta/oaei09/orientedMatching.html).

5.2. Experiments and results

Results show the F-measure, Precision and Recall of the
proposed method as it is applied in the ontology pairs spec-
ified in Section 5.1. F-measure is the ratio 2 × Precision ×
Recall/(Precision+Recall), where Precision is the ratio #cor-
rect pairs computed/#pairs computed and Recall is the ratio
#correct pairs computed/#pairs in gold standard.

We have run experiments for each pair of ontologies, using each
of the classifiers: C4.5, knn, NaiveBayes (Nb) and Svm. For each of
the classifies we have run 51 experiments using the alternative
feature types defined in Section 4.1, in combination with a dataset
balancing method (over-sampling, under-sampling, and synthetic
pairs, denoted by “ov”, “un”, and “syn” respectively), and for dif-
ferent values for the parameter � (for features of type 3, 4 and 7)
ranging in {0.1, 0.2, 0.3, 0.4}. Subsequently, we denote the CSR con-
figuration used in an experiment by CT+FT+DB+� , where CT is the
classifier, FT is the feature type number, DB is the type of the dataset
balancing method used, and � is the value of the parameter � for
the feature types that use this parameter.

Furthermore, the results of our method are compared to the
results of a baseline classifier, which is based on the Boolean
Existential Model. This classifier does not perform any kind of gen-
eralization: In order to classify a testing concept pair, it consults
the vectors of the training examples of the class “�,”, and selects
the first exact match. The comparison with this classifier has been
performed for showing how CSR classifiers generalize over the
training examples, learning subsumption cases not present in the
training examples. Here we have to point out that CSR and the base-
line classifier exploit the same information. Two different types of
experiments are presented concerning the baseline classifier: The
one using features of type 1 (denoted by Baseline+Props) and the
other features of type 2 (denoted by Baseline+Words). The other
experimentation settings (exploiting other feature types) achieved
too low results (<8% in terms of average F-measure), something
which was rather expected.

To investigate whether, given a set of equivalence mappings, a
reasoning mechanism suffices for the purpose of computing sub-
sumption mappings among the elements of distinct ontologies we
also compared the effectiveness of CSR with that of a Description
Logic reasoning engine.4 In order for the reasoner to be able to infer
subsumption mappings between concepts of the source and target
ontologies we specify axioms concerning only equivalence map-
ubsumption relations for the alignment of ontologies, Web Semantics:
001

ment methods that are able to locate subsumption mappings

4 We have used Pellet in our experiments (http://pellet.owldl.com).

dx.doi.org/10.1016/j.websem.2010.01.001
http://www.icsd.aegean.gr/incosys/csr
http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching.html
http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching.html
http://pellet.owldl.com/
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Table 1
Statistics for the second dataset.

Course catalog #Concepts Depth #Instances #Max. siblings
of concept

#Min. siblings
of concept

#max instances
of concept

#min instances
of concept
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Washington 166 4 6950 49
Washington Mini 39 4 1912 11
Cornell 170 4 4360 27
Cornell Mini 33 4 1526 10

already presented in Section 2.2), their main target is the com-
utation of equivalent mappings. For this reason, the evaluation
f these methods focuses on their efficacy on computating equiva-
ence mappings. Moreover, in contrast to CSR which computes strict
ubsumption relations, these methods compute subsumption rela-
ions in general: A fact that makes the results of CSR not directly
omparable to the ones produced by these methods.

Furthermore, as far as we know, until recently, there were no
orpora (datasets) for evaluating the computation of subsumption
appings. This is true, despite the known usefulness of subsump-

ion (and generally, ordered) relations in the ontology alignment
ommunity. The first published evaluation concerning subsump-
ion mappings is presented in Ontology Alignment Evaluation
nitiative 2009,5 in a specialized track named Oriented Matching.6

he corpora used for the evaluation of the participating meth-
ds are the ones we created in the course of this work (and thus,
eing biased from our point of view7) and have been used in the
valuation of CSR, which is presented in the next Sections. The sys-
ems that participated in this track gave results only for the first
ataset, derived from the benchmarking series of the OAEI contest,
s described in the previous paragraph. More details concerning
he results of the track are available in Section 5.6.

Concerning the implementation and the parameters of the
achine learning classifiers we used in the conducted experiments,

he following apply: (a) We employ the Naïve Bayes classifier from
he Weka toolkit, as implemented in [21]. (b) We have used the
Bk class from the Weka toolkit, which implements a knn classifier
s presented in [22] with value of k equal to 2. (c) Concerning the
vm classifier we have used the libSVM [23] implementation with
ts default values and radial basis function as kernel. (d) Finally, we
mploy the j48 [24] implementation of the C4.5 [35] decision tree
earning algorithm, configured with Weka’s default values.

At this point we must recall that when CSR exploits words for
omputing the features of concept pairs (i.e. in all feature types,
xcept type 1), then no equivalence mappings are required. How-
ver, if any experiment has been performed by exploiting computed
quivalence mappings among the elements of the input ontologies,
his is clearly stated: Specifically, this is indeed the case only in the
hird and more challenging dataset (Section 5.5).

.3. Results in OAEI benchmark series

In this section we present the results of the proposed method,
pplied to the OAEI benchmark series dataset. We provide a com-
arative analysis of the different configurations of CSR, for different
ypes of classifiers, and we focus on the results of the configura-
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

ion with the best performing classifier. Furthermore, we present
he results of the SEMA mapping tool (for computing equivalence

appings between ontology elements) so as to thoroughly discuss
he results of the reasoner, which exploits equivalence mappings

5 http://oaei.ontologymatching.org/2009/.
6 http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching Results.html.
7 We constructed this set of corpora assuming that no equivalence mappings

etween concepts shall be exploited: Subsumptions can be easily inferred by
xploiting equivalence mappings.
2 212 5
2 214 2
1 161 5
2 155 2

between properties and concepts. Concerning the representation
of pairs of concepts, in this dataset equivalence mapping of proper-
ties are exploited for the generation of classification features only
in the case of feature type 1 (classification features are based on
properties of concepts), as explained in Section 4.1. However, in
this dataset no equivalence mappings are exploited by CSR for the
generation of training examples of class “�,”.

Fig. 12 depicts the F-measure achieved by the “best” configu-
rations of CSR, for each one of the classifiers, and for all different
categories of the dataset. The average F-measures over all the cat-
egories are depicted in the right-most part of the diagram. We
observe that the configuration with C4.5 outperforms, or performs
equally well to, all other configurations, in all test categories and
on average, for each dataset category.

This behavior can be explained by the specific inherent fea-
tures of decision tree classifiers [24]: (i) disjunctive descriptions
of cases fits naturally to the subsumption computation problem.
This is true since more than one feature may indicate whether a
specific concept pair belongs in the class “�,”. (ii) Decision trees
are tolerant to errors in the training set. This is true as far as the
training examples, as well as the values of vector components for
the representation of examples are concerned. In our case, the val-
ues of vector components may not be correct, as the task for the
discovery of equivalence mappings among properties is imprecise,
or more generally, the representation of the example pairs (i.e.
the feature vectors) may not be accurate enough. For example, the
words extracted from the constituent concepts of a pair may not
be enough, or they may not be representative for this pair, for the
subsumption computation problem.

Finally, as already stated, all classifiers are used with their
default parameters and as proven by the results, C4.5 adapts suc-
cessfully into the dataset without the need of modifications in its
settings: A fact very important for real-world application scenar-
ios, where the need for tuning the methods to specific pairs of
ontologies or domains would be a major obstacle to their successful
application.

Fig. 13 depicts how each best performing configuration is influ-
enced (in terms of the F-measure achieved) by the dataset sampling
method used (“?” indicates each of the sampling methods shown
in columns). As explained in Section 4.3, when properties of con-
cepts are exploited as classification features, the synthetic sampling
method cannot be applied. According to the literature [25,26], there
is no perfect sampling method and the effectiveness of these meth-
ods varies for different classifiers and different datasets. Moreover,
as it is also shown, random over- or under-sampling achieves
competitive or better results than more sophisticated methods.
As Fig. 13 shows, this is also the case for CSR: We observe that
C4.5 is heavily influenced by the sampling method, with over-
sampling achieving by far the best performance. On the other hand,
we observe that knn and Svm classifiers perform better with the
synthetic sampling method.

The best results are achieved by CSR with the C4.5 classifier. As
ubsumption relations for the alignment of ontologies, Web Semantics:
001

a result, we focus on configurations with this classifier, for a more
in depth analysis of the CSR method.

In Fig. 14 we present the number of pairs classified by each one
of the three best performing configurations, which in contrast to
what CSR assesses, belong to the equivalence rather than to the

dx.doi.org/10.1016/j.websem.2010.01.001
http://oaei.ontologymatching.org/2009/
http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching_Results.html
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Fig. 12. Best experiment of each classifier.
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Fig. 13. Sensitivity of clas

ubsumption relation (i.e. the misclassified cases). As it is shown,
he best performing configuration (C4.5, exploiting words’ frequen-
ies, with over-sampling and � = 0.3), has less than one errors in
ll categories. This is a really important feature of CSR as it can
e used for “filtering” the results of systems that compute equiva-

ence mappings effectively: This is important, since, as it has already
een stated, state of the art systems tend to confuse subsumption
elations with equivalence ones [2].

Fig. 15 and Fig. 16 present the Precision and Recall of the best
erforming configurations of CSR, in all test categories, in compari-
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

on with the best performing configuration of the baseline classifier
nd the two configurations of the DL reasoner-based classifier.

A first observation is that the best performing CSR configuration
C4.5+3+ov+0.3) achieves for all the categories, on average, the best
recision, compared to all the other experimentation settings. In

Fig. 14. Confused Equivalen
to the sampling method.

terms of recall, the three CSR configurations perform almost equally
well, but the Reasoner+props+con configuration outperforms them.
Here we have to point out that the three CSR configurations do not
exploit equivalence mappings among concepts or properties, while
the Reasoner+props+con exploits equivalence mappings for both,
properties and concepts. Last but not least, we have to point out that
there are concept pairs for which the subsumption relation holds
among them and only CSR manages to locate them. In category A2,
for example, we observe that CSR configurations have a higher recall
than the two reasoner-based classifiers, and still perform better or
ubsumption relations for the alignment of ontologies, Web Semantics:
001

equally good in terms of precision.
Furthermore, as Fig. 15 and Fig. 16 depict, the experiments con-

tacted with the different configurations of the CSR method achieve
on average a better recall and a better precision than the best
performing base line classifier (Baseline+Props). This means that

ces of CSR using C4.5.

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 15. Precision fo

lassifiers do generalize, as they manage to locate subsumptions
hat are not in their training dataset.

Another important point is that the three best performing CSR
onfigurations (Fig. 15 and Fig. 16) use features generated from the
ords extracted from concepts (feature types 2, 3, and 6). There-

ore, although they do not require equivalence mappings among
ntology elements, their performance is influenced by the words
xtracted. Generally, the pattern in the experiments contacted is
hat as more words are extracted, better results are achieved by
he classification task. This happens since more words lead to more
rich”/“representative” feature vectors of pairs of concepts. Let
s for instance consider the category A5 in Fig. 16, where labels
f concepts are replaced by random strings and in some cases
lso comments and instances have been removed from concepts:
e observe that the recall (66%) is much less than this in cate-

ories (A1–A4) where more words are available. This is further
videnced by the experiments performed in the second dataset,
here the ontologies have many defined instances and as a result

he extracted words are abundant. We further comment on this in
he next subsection.

On the other hand, the Reasoner+Props+Con classifier performs
ell, provided that it exploits correct equivalence mappings and

he structures of the two input ontologies are similar or the same
similar conceptualizations). However, in the real world cases
R1–R3), we observe low precision values (in Fig. 15: 51%, 52% and
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

1%, respectively). In these cases, the input ontologies model the
omain quite differently (concerning the hierarchy of concepts),
nd also the precision of SEMA is quite low (shown in Fig. 17).

Another interesting case is category A7, where some unit
oncepts have been removed from the target ontology and the

Fig. 16. Recall for the di
ifferent categories.

remaining concepts have more properties. Actually, the proper-
ties in many ontologies of this category have been replaced by
more detailed specifications (e.g. the property “date” has been
replaced by the properties “day”, “month” and “year”). In this
case we observe that SEMA scores 78% in Precision and 100% in
Recall (concerning both concepts and properties in Fig. 17, and
only properties in Fig. 18), but Reasoner+Props+Con (respectively
Reasoner+Props) achieves 69% (respectively 58%) Precision and
100% (respectively 66%) Recall. This shows that even when the
hierarchies of the aligned ontologies are almost the same, a few
erroneously assessed equivalence mappings can deteriorate the
performance of the reasoner. Moreover, in category A7 the best
performing CSR configuration (Fig. 15 and Fig. 16) achieves 97%
Precision and 100% Recall.

The above stated conclusions are further evidenced by the ROC
analysis [36] of our experimental results, shown in Fig. 19. In our
case, ROC analysis indicates the effectiveness of the best perform-
ing CSR configuration in classifying testing examples in the distinct
classes “�,” and “�”. It is generally accepted that values ranging in
[0.5, 0,6] indicate a failure in the classification task, values ranging
in [0.6, 0.7] indicate a poor classifier, values ranging in [0.7, 0.8]
indicate a fair classifier, values ranging in [0.8, 0.9] indicate a good
classifier and finally values in [0.9, 1.0] indicate an excellent clas-
sifier. In our case, the average values are above 0.8, indicating that
on average the classifiers can be characterized as “good”, in terms
ubsumption relations for the alignment of ontologies, Web Semantics:
001

of the generalization they achieve.
In the following paragraphs we present results from experi-

ments of all CSR configurations with the C4.5 classifier (Fig. 20),
focusing on the three sampling methods: under-sampling, over-
sampling, and synthetic.

fferent categories.

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 17. Precision and recall of SEMA (concepts and properties).

Fig. 18. Precision and recall of SEMA (properties only).

Fig. 19. ROC areas under line in all categories, of best performing.

Fig. 20. C4.5 experiments.

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 21. Latent features analysis—under-sampling.

In Fig. 20 we observe that in contrast to the cases where latent
eature are used (presented later in Fig. 21 and Fig. 22), the param-
ter � or the usage of double vectors, does not influence the
erformance of the method (in terms of the F-measure achieved)
or the same type of classification features. Similarly, we observe
hat for the same balancing method, the type of features used does
ot have a major impact on the F-measure achieved by the corre-
ponding CSR configuration. What seems to have a major impact
n the F-measure is the dataset balancing method. Specifically, as
lready shown above, C4.5 is more effective when it generates
est cases using over-sampling, rather than synthetic, or under-
ampling techniques.

Fig. 21 and Fig. 22 depict the performance of CSR when it exploits
atent features (features of type 7 and 8). Specifically, Fig. 21 and
ig. 22 depict how the F-measure achieved is influenced by the
arameters involved, namely: (a) the number of topics (T), (b) the
alue of the parameter � for the combination of features of con-
epts, and (c) the use of double-size vectors (shown as “dv”).

The major observation is that again, over-sampling outperforms
nder-sampling, a fact that is true for C4.5 for any type of features
e have experimented with. As already stated in Section 3, C4.5

and generally, decision tree-based learning methods) tends to per-
orm well with over-sampling techniques, a behavior that it is also
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

videnced by our experiments for the subsumption computation
roblem.

In the cases where CSR uses feature vectors constructed by
eans of the computed latent features, the method performs

Fig. 22. Latent features analysis—over-sampling.
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less effectively than in cases where features represent word fre-
quencies and TF/IDF values. This behavior can be explained as
follows: (a) Gibbs sampling computes an approximation of the
latent features (presented in Section 3) that best fit the pseudo-
documents corresponding to concepts. (b) The number of topics T
affects the approximation achieved. We have experimented with
various numbers of topics: Fig. 21 and Fig. 22 present a repre-
sentative fragment of the experimental results, depicting the best
achieved performance. (c) The small number of words appearing
in the documents lead the Gibb sampling method to be effec-
tive for a small number of topics. However, a small number of
topics generate a small number of features, which may not be
discriminative enough for the classification task. This is also evi-
denced by the fact that in the case where double vectors have
been used (“dv”), where the number of features in vectors is
twice the number of latent features (as explained in Section 4.1),
the method performs well in the majority of cases (Fig. 21 and
Fig. 22). Finally, (d) the approximation of Gibbs sampling is nega-
tively influenced by the small numbers of words that are available.
As we will present in the next dataset where documents contain
many words, CSR performs quite well when it exploits latent fea-
tures.

Another interesting observation is that the CSR performance in
this case (Fig. 21 and Fig. 22) is heavily influenced by the value of
parameter � . More specifically, we observe that when � equals 0.1
CSR tends to perform less efficiently as in the cases where � is set to
higher values. On the other hand, the value of T (number of latent
features) slightly influence the performance of CSR (i.e. for the same
� , the color and incline of the surface is not heavily altered).

5.4. Results in the course catalogs of universities

In this section we present the results of CSR when it applies to
the Course Catalogs dataset. Specifically, we present a comparative
analysis of the performance of different CSR configurations.

Fig. 23 depicts the performance of the best performing exper-
iments, in terms of F-measure, for each one of the classifiers. As
in the previous dataset, we observe that configurations with the
C4.5 classifier achieve the best results, on average. Furthermore,
configurations with the C4.5 classifier outperforms configurations
with the other classifiers in all catalog pairs, except in the ontolo-
gies (cornell, washington) where C4.5 is less effective than the
Naïve Bayes (78–75%). The quite good performance (in terms of
F-measure) of C4.5 classifier can be explained using the same argu-
ments as in the Benchmark Series dataset, in addition to the fact
that the ontologies belonging to the Course Catalog dataset have
many defined instances (see Table 1). For this reason, the number
of available words exploited for the generation of feature vectors
by the CSR method is high, leading to more rich and representa-
tive feature vectors for the training example and testing pairs of
concepts.

On the other hand, we observe that, on average, the worst per-
formance is achieved by the Naïve Bayes classifier. This can be
explained by the fact that the features’ independence assumption
does not hold for the subsumption computation problem, leading
to poor estimation of posteriori probabilities.

Another interesting observation is that when a mini version of a
catalog is aligned to the full version of a different catalog (i.e. ontol-
ogy pairs (mini cornell, washington) and (mini washington,
cornell)), C4.5 achieves more than 81% of F-measure. This is a quite
important fact, as in these cases ontologies model domain aspects
ubsumption relations for the alignment of ontologies, Web Semantics:
001

at different granularity levels and there are a lot of subsumption
relations between the elements of ontologies.

To further analyze the effectiveness of the classifiers, we present
the results of the ROC Area analysis in Fig. 24. In all experiments
presented (see Fig. 24), the classifiers perform above 80%, and some

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 23. Best experimentation setting of each classifier.

ne of b

a
C

u
(
–

Fig. 24. ROC areas under li

bove 90%: A fact that is very encouraging for the effectiveness of
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

SR.
Fig. 25 depicts the F-measure achieved by the CSR configurations

sing the latent features computed by the LDA method: C4.5+7+ov
� ∈ {0.1, 0.2, 0.3, 0.4} in Fig. 25) and C4.5+8+ov (double size vectors
indicated as “dv” in Fig. 25 – are used instead of parameter �). As

Fig. 25. Latent feature analysis of best performing experiment.
est performing classifiers.

already observed in the benchmark series dataset, we also observe
that the performance of CSR is heavily influenced by the variations
in the value of � . More specifically, we observe that when � equals
0.1 CSR is less effective than in cases where � is set to higher val-
ues. On the other hand, the value of T (number of latent features
used) slightly affects the achieved F-measure (i.e. for the same � ,
the color and incline of the surface is not heavily altered). The best
results are achieved for � = 0.4 and T = 70 (F-measure = 76%). Sim-
ilar behavior is observed also in the majority of the experiments
conducted concerning latent features.

As stated in Section 2.2 oPLMap method locates “similar-
ity” mappings between web directories. These mappings may
be interpreted as subsumption mappings. Although CSR locates
strict subsumption mappings and the results are not directly
comparable, we can provide a quantitative comparison between
the two methods, as oPLMap is evaluated using the course
catalog pair (cornell, washington). Specifically, the best con-
figuration of oPLMap achieves 68.09% in terms of F-measure
compared to 77% achieved by CSR (Fig. 23) for this particular
pair.

5.5. Results in the consensus workshop ontologies

In this section we present the results of CSR when it is applied
ubsumption relations for the alignment of ontologies, Web Semantics:
001

to the Consensus Workshop ontologies. This is a more challenging
dataset: The data set includes real-world ontologies with different
conceptualizations of their domain, while the words available for
the generation of features vectors by the CSR method are few (e.g.
ontology elements do not have comments or instances).

dx.doi.org/10.1016/j.websem.2010.01.001
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Similarly to the previous datasets, CSR with the C4.5 classifier
chieves the best results compared to configurations with other
lassifiers. Therefore, we focus on configurations with this classifier
o provide a more in-depth presentation of the results.

Fig. 26 and Fig. 27 depict the Precision and Recall achieved by
he best performing CSR configuration: C4.5+5+ov (classifier C4.5
xploiting frequencies of words, in conjunction with the usage of
ouble vectors, using the over-sampling dataset balancing method
nd also exploiting SEMA’s equivalences for the generation of extra
raining examples). As already stated in Section 4, CSR may option-
lly create extra training examples for the class “�”, by exploiting
quivalence mappings between concepts in different ontologies
category “Equivalent concepts of different ontologies”). This is
one because of the challenging nature of the dataset.

Firstly, we observe that there are pairs of ontologies in which
his configuration of CSR performs well in terms of both measures,
recision and Recall. For example, such pairs are: (Cmt, Iasted) (Pre-
ision: 58%, Recall: 69%), (ConfToot, Cmt) (Precision: 78%, Recall:
1%), (SoftSem, Pcs) (Precision: 64%, Recall: 77%), (Pcs, OpenConf)
Precision: 54%, Recall: 77%) and (SoftSem, Confious) (Precision:
2%, Recall: 67%). On the other hand, in the majority of the ontol-
gy pairs, CSR performs in a less effective way, leading to an average
recision 29.5% and to an average Recall 42%. This performance is
ue to the following phenomena: (a) the lack of words for the
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

eneration of feature vectors, in conjunction to the different con-
eptualizations specified in the source and target ontologies. The
atter leads to the need of very representative feature vectors from
he classifier to perform efficiently, but the former prohibits such

Fig. 26. Precision of CSR experiment C4.5+5+ov exp

Fig. 27. Recall of CSR experiment C4.5+5+ov explo
 PRESS
Agents on the World Wide Web xxx (2010) xxx–xxx

a behaviour, as already discussed in other experiments. (b) SEMA
may return erroneous equivalence mappings, leading to wrong
training examples for the classifier, which prevent the classifier
from properly generalizing. Here we must recall that C4.5 is more
tolerant to mistakes than other classifiers: this is evidenced here by
its performance in comparison to configurations with other classi-
fiers. However, as it will be explained in the next paragraph, CSR
performs better when it exploits SEMA’s equivalence mappings
(both correct and erroneous ones), than in cases where it does not
use them.

Furthermore, we must point out that the exploitation of equiv-
alence mappings between the elements of the input ontologies, in
combination with the transitive nature of the subsumption rela-
tion for the generation of training examples for the class “�,” leads
in some cases to increased Recall, however sacrificing precision,
given also that the equivalences computed may contain many false-
positives (e.g. in the (Cmt, Iasted) pair of ontologies). We do not
provide the Precision and Recall of SEMA as there is no gold standard
for the equivalence mappings for this dataset. We must also point
out that CSR exploits the located equivalence mappings for gener-
ating training examples. However, wrong training examples (due
to the exploitation of a wrong equivalence mapping between ontol-
ogy elements), do not necessarily drive CSR to infer false-positive
subsumption mappings (misclassify concept pairs in the class “�”).
ubsumption relations for the alignment of ontologies, Web Semantics:
001

For this reason, we observe that when equivalences are exploited
for the generation of training examples, the average Precision and
Recall increase. This is observed in the majority of ontology pairs
(in Figs. 26–29).

loiting equivalences, in all pairs of ontologies.

iting equivalences, in all pairs of ontologies.

dx.doi.org/10.1016/j.websem.2010.01.001
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Fig. 28. Precision of CSR experiment C4.5+5+ov without exploiting equivalences, in all pairs of ontologies.
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Fig. 29. Recall of CSR experiment C4.5+5+ov with

Indeed, when no equivalence mappings are exploited for the
eneration of extra training examples, CSR is less effective in terms
f Precision (Fig. 28) and Recall (Fig. 29) in the majority of the ontol-
gy pairs, and as a result in the average values (last column). But still
here are cases where CSR performs quite well in terms of Precision
nd Recall: (Cmt, iasted) (Precision: 69%, Recall: 65%), (ConfTool,
mt) (Precision: 73%, Recall: 71%) and (Pcs, OpenConf) (Precision:
9%, Recall: 63%).

The reason that CSR performs well in the above cases (the same
pplies when equivalence mappings are exploited) is linked to
he fact that there are quite many words available in the vicin-
ty of concepts defined in these ontologies. Specifically, factors
hat influence the amount of words extracted in these cases are:
a) Defined comments in concepts and properties, (b) number of
efined properties, (c) number of sub/super-concepts (words for a
oncept also include words of its sub/super-concepts), or (d) very
epresentative labels that are concatenations of many words (e.g.
amera ready manuscript deadline). These are split to words,
sing the character “ ” as a delimiter.

.6. Results in the Oriented Matching track at the OAEI 2009

The Oriented Matching track comprised two datasets: The first
ataset (dataset 1) has been derived from the benchmark series of
he OAEI 2006 campaign. As a configuration of CSR exploits the
roperties of concepts (for the cases where properties are used
Please cite this article in press as: V. Spiliopoulos, et al., On the discovery of s
Sci. Serv. Agents World Wide Web (2010), doi:10.1016/j.websem.2010.01.

s features), we do not include the OAEI 2006 ontologies whose
oncepts have no properties. Furthermore, we have excluded from
he dataset the OAEI ontologies with no defined subsumption rela-
ions among their concepts. This is done because CSR exploits the
ubsumption relations in the input ontologies to generate training
xploiting equivalences, in all pairs of ontologies.

examples. The second dataset (dataset 2) is composed of 45 pairs of
real-world ontologies coming from the Consensus Workshop track
of the OAEI 2006 campaign (all pairwaise combinations).

The participating methods in the Oriented Matching track
that took place in the Ontology Alignment Evaluation Initiative
2009 were: CSR, ASMOV, RiMoM and TaxoMap. These systems
gave results for the first data set only. We observe that in
terms of F-measure ASMOV achieves the best results (0.93%), fol-
lowed by CSR (80%), RiMoM (71%) and then by TaxoMap (0.23%).
More details on results are available at http://people.kmi.open.
ac.uk/marta/oaei09/orientedMatching Results.html.

Participating systems exploit equivalence mappings or similar-
ities among elements in order to locate subsumption ones (since
they are using the methods for the benchmark track). In contrast to
that, CSR does not exploit equivalence mappings or direct similari-
ties, computing subsumption relations, directly. This is something
very important as explained in Section 1.

6. Conclusions and future work

In this paper we propose the “Classification-Based Learning of
Subsumption Relations” method for the alignment of ontologies.
CSR aims to the computation of subsumption mappings between
concepts of two distinct ontologies. This is achieved by alterna-
tively exploiting a variety of different classification features, based
on properties or words extracted from the vicinity of concepts in
ubsumption relations for the alignment of ontologies, Web Semantics:
001

the source and target ontologies. Specifically, CSR assesses whether
concept pairs of the source and target ontologies belong to the sub-
sumption relation by means of a classification task using state of the
art supervised machine learning methods. Given a pair of concepts
from two ontologies, the objective of CSR is to identify patterns of

dx.doi.org/10.1016/j.websem.2010.01.001
http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching_Results.html
http://people.kmi.open.ac.uk/marta/oaei09/orientedMatching_Results.html
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lassification features that provide evidence for the subsumption
elation among these concepts. For the training of the classifiers, the
roposed method generates examples from the source and target
ntologies specifications, tackling also the problem of imbalanced
raining datasets.

The conclusions that have been drawn by the experimental
esults can be summarized as follows: (a) CSR generalizes effec-
ively over the training examples, locating subsumption mappings
hat cannot be located by a reasoning mechanism. In these cases
SR does not exploit equivalence mappings among the elements of
he input ontologies. (b) CSR effectively discriminates among sub-
umption and equivalence mappings. This is important as CSR can
e used to filter the results of any tool that locates equivalence map-
ings. (c) The most deciding aspects for the performance of CSR are
he classifier and the dataset balancing method. Specifically, C4.5
utperforms all other tested classifiers in all datasets. Concerning
he balancing method, over-sampling outperforms under-sampling
nd synthetic sampling when it is applied in combination with
4.5. In this case CSR achieves the best performance: A fact quite
onvenient due to the computational complexity of the synthetic
ampling. (d) The synthetic sampling outperforms the other sam-
ling methods when it is applied in combination with the knn and
vm classifiers. In these cases this method has a considerable pos-
tive impact and knn and Svm achieve their best performance. (e)
he performance of CSR is also influenced by the availability of
ords in the vicinity of concepts in the source and target ontolo-

ies. Specifically, when few words (no comments, no instances or
o defined properties) are available, then its discriminating power,
nd thus its performance, drops. This is especially the case when the
ethod exploits latent features, where many words are necessary

or effective inference.
Our future work mainly includes (a) the synthesis of CSR with

ther methods in order to refine and improve the achieved per-
ormance of synthesized methods, (b) the investigation of other
inds of classification features and dataset balancing methods, (c)
he investigation of incremental machine learning algorithms in
rder to store and refine the learned patterns in the form of back-
round knowledge, and (d) the adaption of the CSR method to locate
ore types of non-equivalence relations (e.g. disjointness).
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