
Generic Schema Merging

Christoph Quix, David Kensche, and Xiang Li

RWTH Aachen University, Informatik V (Information Systems), 52056 Aachen, Germany
{quix,kensche,lixiang}@i5.informatik.rwth-aachen.de

Abstract. Schema merging is the process of integrating several schemas into a
common, unified schema. There have been various approaches to schema merg-
ing, focusing on particular modeling languages, or using a lightweight, abstract
metamodel. Having a semantically rich representation of models and mappings is
particularly important for merging as semantic information is required to resolve
the conflicts encountered. Therefore, our approach to schema merging is based
on the generic role-based metamodel GeRoMe and intensional mappings based
on the real world states of model elements. We give a formal definition of the
merged schema and present an algorithm implementing these formalizations.

1 Introduction

Management of models is an important activity in the design of complex information
systems. The availability of data sources and the need to analyze the existing data in
an integrated way, has led to applications which are able to integrate and present data
from various sources in a uniform way. The integration of the models of data sources
into a unified schema of the integrated information system is a prerequisite to build
such applications. Schema integration (or schema merging) is the process of integrating
several schemas into a common, unified schema. This problem is also addressed in
Model Management [3], which aims at defining an algebra for models and mappings.
Merge is one of the proposed operators in this algebra and addresses the problem of
generating a merged model given two input models and a mapping between them. The
merged model should contain all the information contained in the input models and the
mapping; it should dominate the inputs in terms of information capacity [8,15].

A mapping is not just a simple set of 1:1 correspondences between model elements;
it might have itself a complex structure and is therefore often regarded also as a mapping
model. A mapping model is necessary because the models to be merged also have com-
plex structures, which usually do not correspond to each other [16] (e.g. the address of
a person is represented in one ER model as a complex attribute, in another model as a
separate entity type with a relationship type to person). These structural heterogeneities
are one class of conflicts which occur in Merge. Other types of conflicts are seman-
tic conflicts (model elements describe overlapping sets of objects), descriptive conflicts
(the same elements are described by different sets of properties; this includes also name
conflicts), and heterogeneity conflicts (models are described in different modeling lan-
guages) [19]. The resolution of these conflicts is the main problem in Merge.

Schema integration has been addressed for various metamodels, such as variants of
the ER metamodel [19], relational and conceptual models in the context of data ware-
houses [5], graph-based models [18], or a simple generic metamodel [16]. In these

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 127–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 C. Quix, D. Kensche, and X. Li

works, it has also been argued, that a semantically rich representation of the models and
mappings simplifies schema integration, as semantic information is required to resolve
the conflicts. Our work is therefore based on the semantically rich generic metamodel
GeRoMe [10]. It provides a generic, but yet detailed representation of models originally
represented in different metamodels. Therefore, an implementation of the Merge opera-
tor based on GeRoMe can merge models from different metamodels (e.g. XML Schema
and Relational). It is not always possible to represent the result of Merge in one of the
input metamodels. For instance, merging a column with a table yields a model with
a composite attribute that is not allowed in the relational model. Therefore, GeRoMe
enables the representation of such results. The transformation of the merge result into a
specific metamodel is the task of other model management operators: ModelGen trans-
forms the modeling constructs which are not allowed in the target model, and Export
translates the GeRoMe representation into the representation in a native metamodel.

Another important aspect is the representation of mappings between models. As ar-
gued before, the mapping is itself a model and contains information required for Merge.
In contrast to recent approaches to mapping composition and executable mappings
[7,13], which focus on the extensional relationships between models for data trans-
lation, the mappings here represent the intensional relationships of model elements.
These mapping definitions often overlap, but are not necessarily identical. This distinc-
tion between intensional and extensional relationships has also been made in [5].

In this work, we present a merge algorithm which is based on the intensional re-
lationships between models. The contributions of this paper are (1) a definition of the
intensional semantics of models, (2) a mapping model representing intensional relation-
ships, (3) a formal characterization of the desired merged model, and (4) an algorithm
implementing these formalizations using GeRoMe, thereby enabling the integration of
models represented in different modeling languages.

The paper is structured as follows. The next section discusses existing work on model
and mapping representation. Section 3 introduces a real world semantics, that we use
to define the semantics of merging, and the mapping representation. In section 4 we
describe our algorithm for merging GeRoMe models given a mapping between them.
Section 5 compares our approach to some existing works on schema merging. The last
section concludes the paper and gives an outlook.

2 Background

Considerable research has already been done in the fields of model management and
data integration. The Merge operator in model management receives two models and
a mapping as inputs. Hence, besides existing algorithms, the representation of models
and mappings are particularly important prerequisites in the context of schema merging.

Mapping Representations. Depending on the application area, such as data transla-
tion, query translation or model merging, schema mappings come in different flavors.
The first step in specifying a mapping between two schemas is usually the automatic
derivation of informal correspondences between elements of the two respective
schemas, called schema matching [17]. These simple binary correspondences, often

Generic Schema Merging 129

called morphisms [14], state only informally that the respective model elements are sim-
ilar. Thus, relationships between model elements must be represented more accurately,
but morphisms are usually the starting point for specifying more formal mappings.

Formalization of mappings is done in form of view definitions or as correspondence
assertions. These will be called in the following extensional and intensional mappings,
respectively. Extensional mappings are defined as local-as-view (LAV), global-as-view
(GAV), source-to-target tuple generating dependencies (tgds) [12,13], second order tu-
ple generating dependencies (SO tgds) [7], or similar formalisms. These are pairs of
queries with an implication or equivalence operator in between. Each of these classes
has certain advantages and disadvantages when it comes to properties such as compos-
ability, invertibility or execution of the mappings.

Extensional mappings are used for tasks such as data translation or query rewriting
but they are inappropriate for ontology alignment and schema merging. Schema merg-
ing is about integrating models according to their intensional semantics. It has the goal
to construct a duplicate free union of two input models and a mapping in between. The
union is “duplicate free” with respect to the real world concepts described by the model
elements. So, the mappings interrelate the intensions of model elements. The integrated
model describes each real world concept only once. On the other hand, if mappings are
to be executed by using them for query rewriting or data translation, intensional map-
pings are not useful. Thus, these are two options of mapping representation, each of
which has certain advantages with respect to the goal of the mapping.

Model Representations. Any system that allows the usage of different native meta-
models should employ some generic schema representation. Most model management
systems either refrain from providing a generic representation and instead require some
operators to be implemented for different combinations of native metamodels or employ
very lightweight metamodels [14,16]. However, some model manipulation operations
require much more information about the schemas than is expressable in such light-
weight languages. Resolving conflicts in model integration is eased by additional infor-
mation about the schemas to be merged [16,19]. This particular challenge of providing
a generic model representation [3] has been adressed in particular in [1,2,10].

The metamodel that we use for our implementation of Merge is the generic role based
metamodel GeRoMe [10,9]. In GeRoMe each model element of a native model (e.g. an
XML Schema or a relational schema) is represented as an object that plays a set of roles
which decorate it with features and act as interfaces to the model element.

Figure 1 shows in the left part a simple EER model for a “Customers ordering
Products” scenario. It contains a relationship type with two attributes and two entity
types, the attributes of which we omitted from the example. The right part of the fig-
ure presents the equivalent representation in our generic metamodel (we omitted some
details of the model for clarity of the presentation). Each entity type, attribute, and rela-
tionship type is represented by an individual model element (shown as grey rectangles).
Every GeRoMe model element plays a number of roles depending on the features of
the source element that it represents. The date element plays an Attribute role (Att) as
it represents an EER attribute, the entity types play ObjectSet roles (OS) since their
instances have object identity (as opposed to the instances of a relational table) and
Aggregate roles (Ag) as they are aggregates of attributes (not shown here). The orders

130 C. Quix, D. Kensche, and X. Li

Ag
Att

orders

As

orderedBy OE OE OSOS

AgAg

ordered
ProductCustomer

Att

date

qty

Product

Customer

Product

orders
ordered
Product

ordered
By

date

qty

0,n

0,n

min,max: 0,n min,max: 0,n

Fig. 1. A small EER model and its representation in GeRoMe

element is represented similarly. It plays the role of an Association which connects to
two ObjectAssociationEnds (OE) (orderedBy and orderedProduct). The ObjectAssoci-
ationEnds specify also the cardinality constraints. Other features of native models can
be represented in a similar fashion in GeRoMe. The same role classes are used to de-
scribe models in different metamodels, thereby providing a common datastructure for
the polymorphic implementation of model management operators.

It is important to emphasize that this representation is not to be used by end users.
Instead, it is a representation employed internally by model management applications,
with the goal to generically provide more information to model management operators
than the usual graph based model.

3 Semantics of Models and Mappings

Mappings between the models to be merged are an important source of information for
Merge. In order to define the semantics of the mappings in a clear and formal way, we
first need to specify the semantics of the models and their elements which are going to
be related. As discussed in the previous section, mappings in the form of view defini-
tions are not useful for schema integration, as they usually specify many-to-many (or at
least many-to-one) relationships between model elements. Such relationships cannot be
used to detect elements in two models which have the same semantics. Relationships
must be based on the intended semantics of the model elements rather than extensional
relationships. For example, consider the schemas of two universities, each represent-
ing the students of that university. The extensions of the databases are disjoint, but the
concept “student” should be merged if the schemas are going to be integrated.

Therefore, we need relationships between model elements which are based on their
real world semantics, i.e. the set of real world objects a model element represents. Only
with respect to this semantics, we can decide whether two elements should be merged.
Such an approach based on real world semantics has also been taken in [11,19]. In con-
trast to these previous approaches, our definition of real world objects is more detailed,
i.e. it aims at making this abstract concept more concrete so that it is possible to use it
in an implementation of the Merge operator.

In the following, we will first define model elements with respect to their real world
semantics, then explain how this representation is related to our generic metamodel
GeRoMe, and finally define the mapping model which we will use to express intensional
relationships between models.

Generic Schema Merging 131

Model Elements. To define the semantics of a model element, we first define the real
world objects it should represent.

Definition 1 (Real World Object). A real world object (RWO) is defined as a vector
in the feature space with some arity. Each dimension is called an axis. The universe U
is defined as the set of all RWOs. A projection of a real world object o wrt. one axis α,
πα(o), is ε, a literal or RWO, a set of literals or RWOs, or a tuple of literals or RWOs.
A projection wrt. a tuple of axes is a tuple of which each component is the projection
wrt. the corresponding axis: πα1,...,αn(o) =< πα1(o), . . . , παn(o) >.

When a projection wrt. one axis is ε, this means that the RWO is not defined over this
axis. The empty set denotes that the RWO is defined for that axis, but it has no value.
For each axis α, we denote all the RWOs over which the axis α is defined as Uα.

Definition 2 (Model Element and Real World Set). A model element m consists of
a tuple of axes, denoted by axes(m) = {α1, . . . , αn}. The real world set (RWS) of
a model element m is a subset of the RWOs for which all the axes of m are defined:
RWS(m) ⊆ Uα1 ∩ . . . ∩ Uαn , if axes(m) = {α1, . . . , αn}.

Relationship to GeRoMe. These definitions characterize the real world semantics of a
model element. In [10], we defined also a formal semantics for GeRoMe models which
characterizes the structure of their instances. In GeRoMe, there are four different roles
for which the corresponding model elements can have instances. These roles are Do-
main, ObjectSet, Aggregate, and Association. Elements playing a Domain role are a
special case; these model elements cannot play any of the other roles. Their instances
are just sets of literal values. However, ObjectSet, Aggregate, and Association roles can
be combined. The instances of model elements playing at least one of these roles are
specified by a triple which has the following components: (i) an object identifier, if it
plays an ObjectSet role, (ii) a tuple of object identifiers, denoting the participating ob-
jects in an association (one for each association end), if it plays an Association role, and
(iii) a tuple of literal value sets (one for each attribute), if it plays an Aggregate role.

Thus, a RWO can be easily mapped to a GeRoMe instance. The axes having a literal
value or a set of literal values correspond to the third component of a GeRoMe instance
which specifies the attribute values. The axes referring to RWOs are mapped to the
second component which expresses associations to other objects.

Based on this relationship between the real world semantics and GeRoMe, we can
later use the mapping model defined in the following to specify mappings between
GeRoMe models. The transition from the real world semantics to GeRoMe makes this
definition useful for the implementation of a model management system.

Mappings. A mapping specifies how the two models will be merged. In [16], the
mapping model is a nested structure consisting of mapping elements; each mapping
element is related to at least one model element. The mapping elements can specify, that
the related model elements are either equivalent or similar. A similarity mapping states
that the elements are related by a complex expression which is not further specified.

132 C. Quix, D. Kensche, and X. Li

A richer set of relationships between model elements is defined in [19], which is also
based on the real world semantics of model elements. Possible relationships are equiv-
alence, inclusion, intersection and exclusion. However, only equivalence relationships
are used in the integration rules. A simple form of nesting of elements can be specified
using the “with corresponding attributes” clause for two related model elements.

Our approach is a combination of the ideas of both approaches: a nested mapping
model with rich semantic relationships based on the RWS of model elements. In addi-
tion, all this information will be used in the Merge algorithm as we will see in section
4. We will first define how model elements can be related at the top-level.

Definition 3 (Element Mapping). An element mapping φ between two model elements
m and m′ is an expression mθm′ with θ ∈ {=, ⊆, ∩, �=}. The semantics of the mapping
is defined by the RWS of the model elements:

1. mθm′ with θ ∈ {=, ⊆} implies that RWS(m)θRWS(m′).
2. m ∩ m′ states that RWS(m) and RWS(m′) have a non-empty intersection.
3. m �= m′ specifies that RWS(m) and RWS(m′) are disjoint, but there is some m′′

with RWS(m) ⊆ RWS(m′′) and RWS(m′) ⊆ RWS(m′′).

The disjointness of elements is useful for a case where two model elements have a
common super-type (cf. the example of fig. 4 in sec. 4). In GeRoMe, element mappings
are only allowed between model elements playing either the ObjectSet or the Aggregate
role, as they have instances. Associations may also have instances, but this information
is already covered by the axes representing AssociationEnds. In addition to this simple
type of mapping, a complex mapping represents 1:N relationships between elements.

Definition 4 (Complex Mapping). A complex mapping φ between a set of model ele-
ments is an expression mθf(m1, . . . , mn) with θ ∈ {=, ⊆} for some function f . The
semantics of this mapping is defined by applying the corresponding operations to the
RWS of the model elements.

This enables us to represent that a model element in one model is represented by a
combination of model elements in the other model, e.g. Parent = Mother ∪ Father.
This also subsumes the definition of paths as defined in [19] as functions can specify
arbitrary relationships between model elements.

A nested mapping is a mapping between axes of model elements. It must be nested
into an element or complex mapping, so that a context for this mapping is given, i.e. we
need to know the model elements of which the axes are mapped.

Definition 5 (Nested Mapping). A nested mapping under a mapping φ between model
elements m and m′ is an expression (i) αθβ with θ ∈ {=, ⊆} and RWS(m) ∪
RWS(m′) ⊆ Uα ∩Uβ . The semantics is ∀o ∈ RWS(m)∪RWS(m′) : πα(o)θπβ(o);
(ii) α = f(α1, . . . , αn) with RWS(m) ∪ RWS(m′) ⊆ Uα ∩ Uα1 ∩ · · · ∩ Uαn . The
semantics is ∀o ∈ RWS(m) ∪ RWS(m′) : πα(o) = f(πα1(o), . . . , παn(o)).

The functional relationships between axes are necessary to represent complex relation-
ships between axes (as before between model elements). Examples are amounts repre-
sented in different currencies or aggregations (e.g. salary=base salary+bonus).

Generic Schema Merging 133

Ag
Att

orders

As

orderedByOE OE

OSOS

AgAg

ordered
Product

Customer
Att

Product

AgAtt places

As

OE OE OSOS AgAg

lineItemCustomer Product

hasLine

As

AttAg

Order

OS

orderedBy

=

=

OE

placed
Order

=

OE

order

=
M1

M2

date

qty

qtydate

Fig. 2. Mapping including complex and nested mappings

In GeRoMe, nested mappings can be applied to model elements playing the Attribute
or AssociationEnd roles. Fig. 2 shows an example of a mapping including a nested map-
ping. The upper model M1 is as in section 2, the lower model M2 reifies the orders rela-
tionship as entity type and has therefore two relationship types places and hasLine. The
mapping relates the corresponding Customer and Product entity types. The mappings
of the ObjectAssociationEnds are nested within these mappings. The example contains
also a complex mapping (not shown in the figure), as the attributes of the orders rela-
tionship are distributed over two relationships in M2. Therefore, the complex mapping
orders ⊆ f(places, Order, hasLine) needs to be defined in which f performs a join over
these elements. In addition, mappings for the attributes date and qty will be nested into
this mapping.

As a consequence of this mapping, the Merge algorithm will produce M2 as result, as
it contains “more detailed” information than M1: the entity types are represented by the
corresponding entity types in M2; the same holds for the ObjectAssociationEnds; the
orders association is represented by a combination of elements in M2 and its attributes
are also present in M2. The difficult question in the definition of Merge is, what does
it exactly mean when we say that a model contains “more detailed” information than
another model, and how can we verify that M2 is a correct result of the Merge operator
in this example. These issues will be addressed in the following section.

4 Model Merging

In this section we first provide a definition of the concept of a merged model using our
previously defined real world semantics. Then, we explain our solution to the problem
of merging of schemas represented in GeRoMe.

Definition of Merged Model. Our definition of schema merging is closest related to
that of [19] as it also defines the problem of schema integration with respect to the real
world sets described by the input schemas. The difference is that we use our real world
sets to define the notion of a merged model. In addition, we relate the real world sets to
information capacity [15] and, in doing so, enrich this notion with meaning.

The following definition introduces successively more general concepts of subsump-
tion ending with a definition of when a model element is subsumed by a set of other
elements. This means that all the information represented by the model element is also
represented by combinations of the properties of the other model elements.

134 C. Quix, D. Kensche, and X. Li

Definition 6 (Subsumption (�)).

a. Given two axes α and β, we say α is subsumed by β wrt. a RWO o (α �o β) if
these two axes are defined over o and πα(o) ⊆ πβ(o).

b. an axis α is subsumed by a set of axes A = {β1, . . . , βn} wrt. a RWO o (α �o A)
if the axes A ∪ α are defined over o and πα(o) ⊆ πβ1(o) ∪ . . . ∪ πβn(o) or more
general ∃f : πα(o) ⊆ f(πβ1(o), . . . , πβn(o)).

c. an axis α is subsumed by a set of axes A wrt. a set of RWOs R (α �R A) if
∀o ∈ R : α �o A.

d. an axis α of model element m is subsumed by a set of model elements
M (α �RWS(m) M) if ∀o ∈ RWS(m), ∃m1, . . . , mn ∈ M : o ∈ RWS(m1) ∩
. . . ∩ RWS(mn) ∧ α �o axes(m1) ∪ . . . ∪ axes(mn).

e. a model element m is subsumed by a set of model elements M (m � M) if ∀α ∈
axes(m) : α �RWS(m) M.

By defining RWS(M) =
⋃

m∈M RWS(m), the definition is extended to a definition
for subsumption of models, which is used to define the upper bound of two models.

Definition 7 (Subsumption and Upper Bound Models). Let M and M′ be two mod-
els. We say M � M′ if RWS(M) ⊆ RWS(M′) ∧ ∀m ∈ M : m �RWS(M) M′. A
model MUB is an upper bound model of two models M1 and M2 if M1 � MUB ∧
M2 � MUB .

An upper bound model is a model that represents the same (or a larger) set of real world
objects and that does not lose any properties of the two models. However, this definition
allows that subclasses that add no axes are removed from the models. Therefore, we
need the following definition of granularity.

Definition 8. A model element m is retained in granularity by a model M if (i) ∃m′ ∈
M such that RWS(m) = RWS(m′), and (ii) ∀α ∈ axes(m) ∃m1, . . . , mn ∈ M :
α �RWS(m) {m′, m1, . . . , mn}.

The first condition requires that M must include a model element m′ that represents
exactly that same set of real world objects that m represents. The second condition states
that each axis of each object in the set represented by m, is either explicitly represented
in M or can be computed from some of its axes. This also includes any notion of
inheritance between the model elements in M. This is because it is not required that
the axes representing α are axes of m′ but they may be inherited as well, whereas the
object itself must be in m′ and all the other model elements.

A model M′ subsumes a model M while retaining all its model elements in granu-
larity, if it represents the same (or a larger) set of RWOs and of all objects represented
by M it represents the same (or more) information either explicitly or by means of some
functional relationship. Also, we do not want a model to be redundant. The last defini-
tion before we can define the notion of a merged model is that of duplicate-freeness:

Definition 9 (duplicate-free). A model M is duplicate-free if (i) for each model ele-
ment m ∈ M there is no other model element m′ ∈ M that represents the same set of
real world objects, and (ii) for each axis α of any model element in M there exists no
other axis β that represents the same property of the model element.

Generic Schema Merging 135

Definition 10 (Merged Model). Let M1 and M2 be two input models and let M be a
mapping between M1 and M2. A model G is the result of Merge < M1, M2, M >
(a merged model), if it satisfies the following properties:

– G is an upper bound model of M1 and M2.
– G is duplicate-free.
– G retains granularity of all model elements in M1 and M2.
– G contains all constraints of the input models and the mapping, and in case of

conflicting constraints, the least restrictive constraint.
– There is no other model G′ with G′ � G, which fulfills these conditions.

Informally, given two models and a mapping, merging these models means to create a
model that contains no duplicate model elements or axes and only structural elements
from any of the two input models. However, derivations or constraints may be added to
the integrated model in order to relate these model elements to each other. The infor-
mation necessary for adding such elements stems from the mapping model.

Constraints of the input models and the mapping should be retained in G. If there
is a conflict between constraints, the least restrictive constraint is represented in G. For
instance, given two cardinality constraints (0, 1) and (1, n), G contains (0, n).

This definition may be relaxed such that the resulting model is allowed to represent
axes that can be derived from other represented axes. These are, for instance, derived
attributes in an EER model or methods in an object oriented model that compute values
from member variables. Such an extension would necessitate to partition the axes of the
models into two kinds of axes and define subsumption only with respect to one of these
classes. This extension is straightforward and adds only little information.

The definitions of subsumption and merged models can also be related to the notion
of relative information capacity of schemas [15].

Definition 11. An information capacity preserving mapping between the instances of
two schemas S1 and S2 is a total, injective function f : I(S1) → I(S2). If such a
mapping exists S2 dominates S1 via f , denoted S1 � S2.

A common criticism about this definition is that it allows the models and the function
to be arbitrary, given only that such a function can be constructed. By using our rela-
tionship to real world sets, we add some meaning to this definition.

Theorem 1. If M � M′ then M � M′ and the domain of discourse of M′ encom-
passes the domain of discourse of M (RWS(M) ⊆ RWS(M′)).

Proof. The last part of the theorem (RWS(M) ⊆ RWS(M′)) follows directly from
the definition of subsumption between models. To show that M′ dominates M, we
have to construct an information capacity preserving mapping. Instances of the models
in our context are sets of RWOs. According to the definition of subsumption, the axes
of M are represented in M′, either directly or they can be computed by some function
f . Thus, each RWO in RWS(M′) is represented in more detail than in RWS(M).
This means that there are no RWOs o1, o2 ∈ RWS(M), such that both correspond to
the same RWO in RWS(M′). As the RWS of M′ is a superset of the RWS of M, the
information capacity preserving mapping is the identity function on the RWOs.

136 C. Quix, D. Kensche, and X. Li

Input: Two models M1, M2, and a mapping M
Output: Merged model G according definition 10

1. Group equivalent model elements transitively. For each group, introduce a corresponding
model element in G. Each of the new model element is created as follows:
(a) Singletons are copied with no linking axes to other model elements.
(b) Collapse groups into one model element with a union of all properties and roles.
(c) Conflicts are resolved according to the strategy described below.

2. Introduce all the classification relationships (IsA) and constraints (Disjoint) from both the
input models and the mapping. Remove redundant or cyclic IsA links.

3. Insert in G a most specific supertype for model elements connected by ∩ or �=.
4. The singleton side of complex mappings are removed from the merged model if all of its

axes are related in the nesting mappings.
5. For all axes nested under model elements connected by element mappings

(a) Equally related axes are collapsed and pulled up to their most specific supertype.
(b) ⊆ related axes will lead to a partition of the subsumer axes.
(c) Axes related by functions are handled depending on configuration: leaving only the

inputs, the output or both.
(d) The remaining axes are retained at the corresponding element in G.

6. All links between model elements are handled as follows:
(a) duplicate links are only introduced once;
(b) conflicting links such as multiple types for one attribute are resolved according to the

strategy described below.
7. Check “local” constraints and resolve possible conflicts as described below.
8. Check “global” conflicts that can not detected locally, e.g. recursion of complex attribute.

Fig. 3. Merge Algorithm

Our definition of a merged model has the following consequences with respect to infor-
mation capacity preserving mappings: (i) G
 M1 and G
 M2 because it retains each
element m ∈ M1∪M2 in granularity, and (ii) RWS(G) = RWS(M1)∪RWS(M2).
This adds some meaning to the notion of information capacity as now outright ab-
surd functions are not possible. Please note that it is not necessarily the case that
M1 ∪ M2
 G because the mapping may add relationships to the models.

Merge Algorithm. Most previous algorithms are rule-like [11,19] operational proce-
dures or semi-automatic procedures [16]. The first type usually goes through a con-
tinuous pattern-transformation procedure. The latter type first collapses all equivalent
elements and then introduce links between the grouped elements.

Our merging algorithm consists of several steps described in fig. 3. In the first step,
all model elements equally related in the mapping are grouped transitively. Groups of
equivalent model elements are collapsed into one element. This might cause conflicts
which must be resolved as described below. The second and third steps deal with IsA,
Overlapping, and Disjoint relationships and introduce helper elements as necessary.

Step 4 deals with complex mappings. For the orders-example in section 3 the orders
element M1 is removed as it can be represented by combination of other elements. The
next step addresses the axes of elements. If we state that α ⊆ β, then we will keep α and
introduce a new element “β − α” for the remaining part of β (e.g. father ⊆ parent
is replaced by father and mother). The handling of axes connected by functions

Generic Schema Merging 137

depends on the setting; it may be useful to keep the inputs, the output, or both. In step
6, redundant and conflicting links introduced by Merge are removed.

The remaining steps deal with conflicts and constraints; these must be handled by
specific procedures as described below. Due to space constraints, we can only sketch
them briefly. The general rule is, first to check whether it is solvable by an existing au-
tomatic resolution strategy depending on the given configuration. Please note that our
merge algorithm can be configured with several parameters which allow to fine tune the
algorithm for a given situation. The general context can be specified (database vs. view
integration), or the handling of the inputs and outputs of functions. For instance, given
two equivalent attributes with a simple type and a complex type, respectively, this is a
structural conflict which can be resolved by chosing the more detailed representation
(e.g. the complex type). Then, try to resolve the conflict using the mapping or preferred
model. If the conflict cannot be resolved with the given information, the user has to be
involved. The handling of conflicts is often done on a case-by-case basis; for each spe-
cific problem an individual conflict resolution strategy must be found. Often, different
strategies have to be applied to different scenarios (e.g. view integration vs. database
integration). However, as we based our implementation on GeRoMe, these resolution
strategies have to be implemented only once for GeRoMe and can then be applied to
several merge scenarios involving different modeling languages.

Constraints Integration. Several types of constraints are represented in GeRoMe ex-
plicitly (such as keys, references, derivation, and type constraints) and can therefore be
addressed in Merge. Each type of constraint requires individual methods for merging
and conflict resolution. Even worse, conflict resolution might depend on the scenario.
A non-null constraint on an axis not represented in one input model might be removed
if we insist that the integrated schema should host all data instances of the input models
for database integration, while in view integration we would better retain it.

Key constraints are handled in Merge in the following way. A key is a set of axes
of an element. Assume there are two elements with different keys. As the key of one
model element might not be unique within the other model element, we can only in-
troduce a uniqueness constraint over the union of the keys by default. If a new key
is required, different strategies are possible: using the union as a new key (if it is the
smallest key), introducing an artificial key or asking the user for a key. All foreign keys
are rechecked after integration of keys, and the key components are updated to match
the new keys. Other constraints such as default values for attributes and sequences (or-
dered attributes/associations) cannot be handled by a reasonable integration strategy.
They can only be merged by preferring one input model, or asking the user.

Conflicts in Merging. In general, the types of conflicts caused by merging schemas
are determined by the nature of the target metamodel. For example, we have several
options of names for one model element in the merged model. In the relational model,
this leads to a name conflict, while in OWL multiple labels for one model element are
allowed and thus there is no conflict at all. As we represent our models in GeRoMe, such
metamodel conflicts have to be addressed by the ModelGen operator, as this operator
translates constructs not supported by a target metamodel. Please note that in general
the task of the ModelGen operator is to translate a model from one metamodel to another

138 C. Quix, D. Kensche, and X. Li

metamodel (e.g. EER to Relational). The use of a generic metamodel allows us to reuse
the functionality of this operator in the context of schema merging.

However, there are still conflicts which might also occur in GeRoMe, e.g. multiple
roles of the same type for one model element, an attribute with more than one type, or
recursion in the types of complex attributes. Resolution of conflicts is ad-hoc, there is
usually no universal way to solve all of them [16].

We handle conflicts in a multi-level procedure. Firstly, we take an automatic resolu-
tion strategy if possible. The information to resolve the conflicts might be given by the
parameters of the merge algorithm (e.g. view vs. database integration), the input mod-
els and mapping, or the metamodel. For example, if we have two conflicting roles for
one model element, we keep the more general one (e.g. if a key reference is in conflict
with an association, we keep the association). Secondly, metamodel heterogeneity con-
flicts are resolved by taking the most flexible construct. For example, conflicts among
foreign keys, complex attributes and associations lead to a representation as an asso-
ciation. Thirdly, explicitly encoded choices (e.g. prefer one input model) are taken for
mutually excluded properties such as name of the element or default values.

The final fallback is to ask the user for a resolution. It has to be noted that the prob-
lem of schema merging will remain an activity which requires human intervention as
schema merging is a design activity. Some of the conflicts addressed in [16] are solved
by having a complex mapping model as input. However, this input needs to be defined
by some user. Our current on-going implementation of the mapping editor and merge
algorithm integrates the process of mapping definition and merging in an interactive
way, i.e. while defining the mapping, the user will be notified about conflicts during
merging the schemas.

An Application of the Merge Algorithm. Fig. 4 depicts an example of two models
to be merged with our algorithm. The models are the partial GeRoMe representations
of two models showing courses with the students assisting in these courses. Schema
M1 is the representation of an XML Schema. It shows a Course complex type with a
nested element hasAssistant of type CSStudent. The XML Schema element is repre-
sented in GeRoMe as an Association with an anonymous ObjectAssociationEnd (OE)
and a CompositionEnd (CE) due to the fact that in an XML document students must be
nested into courses. For the same reason, the association end linking to the CSStudent
type has a cardinality constraint of min = max = 1; whenever a CSStudent occurs
in a document it must be nested into a Course via this element link. Schema M2 is
the representation of an object oriented model, e.g. a UML object model. Again, we
have two classes Course and GradStudent with the same relationship in between. The
CourseStud element represents an association class which has an attribute hours. Also,
the association ends in this relationship are both named and do have more relaxed car-
dinality constraints as the used metamodel is not constrained to define tree structures.
Students’ names are represented as an attribute with a composite type instead of two
simple attributes and the class adds an attribute program.

The mapping between the models equates the Course types, the associations, their
association ends, and the the firstname and lastname attributes (not shown in the figure).
The GradStudent and CSStudent are declared overlapping, as each graduate student that
studies computer science is also a computer science student.

Generic Schema Merging 139

Att OE CE OSOS AgAg

CSStudent
Att

Course

Ag

Att

OSOS AgAg

GradStudent CourseCourseStud

As

=

OE

assistant

=

OE

assistsIn

=

M1

M2

FName

LName

hours

Att

Att

fName

lName

hasAssistant

As

Ag Att

name

=∩∩

min,max: 1,n

OS

OS

min,max: 0,n

min,max: 1,1 min,max: 1,n

Attprogram

Fig. 4. Merging GeRoMe representations of an XML Schema and an OO model

The merging procedure first copies all elements that are not mapped to the merged
model. This includes the hours, program, and name attributes and the anonymous type.
Then, equally related model elements that are not attributes are collapsed. This involves
collapsing the Course types, the associations and the association ends. When collapsing
the association ends, conflicts between constraints will be resolved by using the least
restrictive constraints. That is, G will contain two association ends with cardinality con-
straints (0, n) and (1, n) respectively. The corresponding element in G to assistsIn will
play an ObjectAssociationEnd as in M2 which is less restrictive than the Compositio-
nEnd in the XML Schema. During collapsing these elements, unmapped axes of the
elements will be linked to their types in G. The hours attribute will be an attribute of
the merged association. The same applies to the program attribute and GradStudent. As
CSStudent and GradStudent are overlapping, a most specific supertype of the two types
will be introduced. According to step 5 of the merge algorithm the new type will have
a composite attribute name that results from merging the original attributes.

It must be emphasized that, although one of the input schemas was an XML Schema,
the merge result is not an XML Schema. This is because merging has destroyed the
nesting structure of the XML element hasAssistant and the result contains an attribute
with composite type, which is not allowed in XML Schema. The only requirement in
our approach is that the result is a valid model in the generic metamodel GeRoMe.

5 Comparison with Other Approaches

Most existing work on schema merging deals with integration of models in one partic-
ular metamodel and rarely considers integration across various metamodels. In Rondo,
the Merge operator is implemented using morphisms and simple graph representations
of models [14]. In [16] a nested mapping model is utilized for merging of simple ob-
ject oriented models. However, as the generic metamodel is relatively simple, some
constraints cannot be described and hence cannot be used by the merging algorithm.

One result of [16] is a list of generic merge requirements. Our Merge solution satis-
fies all but two of these requirements which can be adapted to our mapping representa-
tion: extraneous item prohibition and property preservation demand that no new model
elements are added and that a model element in the merged model has a property if
and only if one of the corresponding source elements had that property. In [16] there
are only two types of mappings allowed, namely similarity and equality. Therefore,
the main operations are collapsing of elements declared equal and nesting of similar

140 C. Quix, D. Kensche, and X. Li

elements under a helper element that is given in the mapping model. Our mapping
model allows more kinds of assertions such as disjointness, overlap, and subset rela-
tionships. In the example in the last section a new element Student has been added as
a common superclass of the original elements GradStudent and CSStudent, due to the
overlap of these elements. In the same example the common properties of these over-
lapping, (but unequal) elements have also been “pulled up” to the new supertype (repre-
senting their union). Because the two requirements demand all elements and properties
in the merged model to be given in either of the input models or the mapping model,
an element such as the superclass and its relationship to the original elements must be
defined in the mapping. This amounts to giving the result of merging in the input of
merging. In our case it suffices to declare the elements as overlapping to achieve the
same result.

Another approach to merging is that of [19] which also presents a comprehensive
taxonomy of schema integration conflicts. Like ours, their work is based on the real
world sets of model elements. We have used our extended notion of real world sets to
define mappings and the merged model formally. Our solution does not only allow a
metamodel independent specification of mappings but also the merging algorithm itself
is independent of native modeling languages. We provide just one solution for merging
models represented in our generic metamodel [10]. The Merge algorithm can therefore
be applied polymorphically. Other approaches [4,19] use also generic metamodels, but
these are not as detailed as our generic metamodel GeRoMe.

While a variety of integration approaches exist in database practices [6,16,19], theo-
retical aspects of merging are first covered in Buneman et al [4]. The authors introduce
the notion of a least upper bound for merging. We extend their work to accommodate
more complex mappings using real world semantics and allow configuration options for
different scenarios or requirements instead of one single solution.

6 Conclusion and Outlook

By giving formal definitions of models, mappings, and merging based on their inten-
sional semantics and relating this to the notion of information capacity we formal-
ized the term “duplicate-free union” that is usually used informally to describe the
merge result. We also gave a Merge algorithm that uses accurate intensional mappings.
Strategies for solving conflicts in schema merging are highly case based. This prob-
lem is aggravated by the number of metamodels. Our merge solution contributes to
solving such heterogeneity conflicts [19] as it is based on the rich generic metamodel
GeRoMe which makes it possible to apply resolutions polymorphically for different
metamodels.

In the future we will develop generic conflict resolution strategies for a representative
set of structural conflicts, and we will investigate the question how intensional mappings
can be derived from extensional mappings (cf. section 2) and vice versa.

Acknowledgements. The work is supported by the Research Cluster on Ultra High-
Speed Mobile Information and Communcation UMIC (www.umic.rwth-aachen.de).

www.umic.rwth-aachen.de

Generic Schema Merging 141

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: A Multilevel Dictionary for Model Management.
In: Proc. Conf. Conceptual Modeling(ER 2005), LNCS, vol. 3716, pp. 160–175. Springer,
Heidelberg (2005)

2. Atzeni, P., Torlone, R.: Management of Multiple Models in an Extensible Database Design
Tool. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057,
pp. 79–95. Springer, Heidelberg (1996)

3. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A Vision for Management of Complex Models.
SIGMOD Record 29(4), 55–63 (2000)

4. Buneman, P., Davidson, S., Kosky, A.: Theoretical Aspects of Schema Merging. In: Pirotte,
A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 152–167. Springer,
Heidelberg (1992)

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Description Logic
Framework for Information Integration. Proc. KR, pp. 2–13 (1998)

6. Euzenat, J.: State of the art on ontology alignment. Deliv. D2.2.3, KnowledgeWeb (2004)
7. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second-order

dependencies to the rescue. ACM Trans. Database Syst. 30(4), 994–1055 (2005)
8. Hull, R.: Relative Information Capacity of Simple Relational Database Schemata. SIAM

Journal of Computing 15(3), 856–886 (August 1986)
9. Kensche, D., Quix, C.: Transformation of Models in(to) a Generic Metamodel. Proc. BTW

Workshop on Model and Metadata Management, pp. 4–15 (2007)
10. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe: A Generic Role Based Metamodel

for Model Management. Journal on Data Semantics VIII, 82–117 (2007)
11. Larson, J.A., Navathe, S.B., Elmasri, R.: A Theory of Attribute Equivalence in Databases

with Application to Schema Integration. IEEE Trans. Software Eng. 15(4), 449–463 (1989)
12. Lenzerini, M.: Data Integration: A Theoretical Perspective. Proc. PODS, pp. 233–246 (2002)
13. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting Executable Mappings in

Model Management. In: Proc. SIGMOD Conf, pp. 167–178. ACM Press, New York (2005)
14. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Generic Model

Management. In: Proc. SIGMOD, pp. 193–204. ACM, New York (2003)
15. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The Use of Information Capacity in Schema

Integration and Translation. In: Proc. VLDB, pp. 120–133. Morgan Kaufmann, Washington
(1993)

16. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: Proc.
VLDB, pp. 826–873. Morgan Kaufmann, Washington (2003)

17. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4), 334–350 (2001)

18. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness and in-
consistency. Requirements Engineering 11(3), 174–193 (2006)

19. Spaccapietra, S., Parent, C., Dupont, Y.: Model Independent Assertions for Integration of
Heterogeneous Schemas. VLDB Journal 1(1), 81–126 (1992)

	Introduction
	Background
	Semantics of Models and Mappings
	Model Merging
	Comparison with Other Approaches
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

