
Detecting Similarities in Ontologies with the

SOQA-SimPack Toolkit

Patrick Ziegler, Christoph Kiefer, Christoph Sturm,
Klaus R. Dittrich, and Abraham Bernstein

DBTG and DDIS, Department of Informatics, University of Zurich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(pziegler,kiefer,sturm,dittrich,bernstein)@ifi.unizh.ch

Abstract. Ontologies are increasingly used to represent the intended
real-world semantics of data and services in information systems. Unfor-
tunately, different databases often do not relate to the same ontologies
when describing their semantics. Consequently, it is desirable to have
information about the similarity between ontology concepts for ontol-
ogy alignment and integration. This paper presents the SOQA-SimPack
Toolkit (SST), an ontology language independent Java API that enables
generic similarity detection and visualization in ontologies. We demon-
strate SST’s usefulness with the SOQA-SimPack Toolkit Browser, which
allows users to graphically perform similarity calculations in ontologies.

1 Introduction

In current information systems, ontologies are increasingly used to explicitly rep-
resent the intended real-world semantics of data and services. Ontologies provide
a means to overcome heterogeneity by providing explicit, formal descriptions of
concepts and their relationships that exist in a certain universe of discourse,
together with a shared vocabulary to refer to these concepts. Based on agreed
ontological domain semantics, the danger of semantic heterogeneity can be re-
duced. Ontologies can, for instance, be applied in the area of data integration
for data content explication to ensure semantic interoperability between data
sources.

Unfortunately, different databases often do not relate to the same ontolo-
gies when describing their semantics. That is, schema elements can be linked
to concepts of different ontologies in order to explicitly express their intended
meaning. This complicates the task of finding semantically equivalent schema
elements since at first, semantic relationships between the concepts have to be
detected to which the schema elements are linked to. Consequently, it is desirable
to have information about the similarity between ontological concepts. In addi-
tion to schema integration, such similarity information can be useful for many
applications, such as ontology alignment and integration, Semantic Web (ser-
vice) discovery, data clustering and mining, semantic interoperability in virtual
organizations, and semantics-aware universal data management.

The task of detecting similarities in ontologies is aggravated by the fact that
a large number of ontology languages is available to specify ontologies. Besides
traditional ontology languages, such as Ontolingua [5] or PowerLoom1, there is
a notable number of ontology languages for the Semantic Web, such as SHOE2,
DAML3, or OWL4. That is, data semantics can often be described with respect to
ontologies that are represented in various ontology languages. In consequence,
mechanisms for effective similarity detection in ontologies must be capable of
coping with heterogeneity caused by the use of different ontology languages.
Additionally, it is desirable that different similarity measures can be employed
so that different approaches to identify similarities among concepts in ontologies
can be reflected.

For instance, assume that in an example scenario, a developer of an integrated
university information system is looking for semantically similar elements from
database schemas that relate to the following ontologies to describe their se-
mantics: (1) the Lehigh University Benchmark Ontology5 that is represented in
OWL, (2) the PowerLoom Course Ontology6 developed in the SIRUP project
[21], (3) the DAML University Ontology7 from the University of Maryland, (4)
the Semantic Web for Research Communities (SWRC) Ontology8 modeled in
OWL, and (5) the Suggested Upper Merged Ontology (SUMO)9, which is also
an OWL ontology. Assume further that there are schema elements linked to all
of the 943 concepts which these five ontologies are comprised of. Unless suitable
tools are available, identifying semantically related schema elements in this set
of concepts and visualizing the similarities appropriately definitely turns out to
be time-consuming and labor-intensive.

In this paper, we present the SOQA-SimPack Toolkit (SST), an ontology
language independent Java API that enables generic similarity detection and
visualization in ontologies. Our main goal is to define a Java API suitable for
calculating and visualizing similarities in ontologies for a broad range of ontology
languages. Considering the fact that different databases often do not relate to
the same ontologies, we aim at calculating similarities not only within a given on-
tology, but also between concepts of different ontologies. For these calculations,
we intend to provide a generic and extensible library of ontological similarity
measures capable of capturing a variety of notions of “similarity”. Note that we
do not focus on immediate ontology integration. Instead, we strive for similarity
detection among different pre-existing ontologies, which are separately used to
explicitly state real-world semantics as intended in a particular setting.

1 http://www.isi.edu/isd/LOOM/PowerLoom/
2 http://www.cs.umd.edu/projects/plus/SHOE/
3 http://www.daml.org
4 http://www.w3.org/2004/OWL/
5 http://www.lehigh.edu/~zhp2/univ-bench.owl
6 http://www.ifi.unizh.ch/dbtg/Projects/SIRUP/ontologies/course.ploom
7 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml
8 http://www.ontoware.org/projects/swrc/
9 http://reliant.teknowledge.com/DAML/SUMO.owl

This paper is structured as follows: Section 2 gives an overview of the founda-
tions of the SOQA-SimPack Toolkit and Section 3 presents SST’s functionality
and architecture in detail. In Section 4, the SOQA-SimPack Toolkit Browser is
illustrated, which allows users to graphically perform similarity calculations in
ontologies. Section 5 discusses related work and Section 6 concludes the paper.

2 Foundations of the SOQA-SimPack Toolkit

In this section, the SIRUP Ontology Query API [22] and SimPack [2] are pre-
sented, which form the basis for the SOQA-SimPack Toolkit.

2.1 The SIRUP Ontology Query API

To overcome the problems caused by the fact that ontologies can be specified in
a manifold of ontology languages, the SIRUP Ontology Query API (SOQA) [22]
was developed for the SIRUP approach to semantic data integration [21]. SOQA
is an ontology language independent Java API for query access to ontological
metadata and data that can be represented in a variety of ontology languages.
Besides, data of concept instances can be retrieved through SOQA. Thus, SOQA
facilitates accessing and reusing general foundational ontologies as well as spe-
cialized domain-specific ontologies through a uniform API that is independent
of the underlying ontology language.

In general, ontology languages are designed for a particular purpose and,
therefore, they vary in their syntax and semantics. To overcome these differences,
the SOQA Ontology Meta Model [22] was defined. It represents modeling capa-
bilities that are typically supported by ontology languages to describe ontologies
and their components; that is, concepts, attributes, methods, relationships, in-
stances, and ontological metadata. Based on the SOQA Ontology Meta Model,
the functionality of the SOQA API was designed. Hence, SOQA provides users
and applications with unified access to metadata and data of ontologies accord-
ing to the SOQA Ontology Meta Model. In the sense of the SOQA Ontology
Meta Model, an ontology consists of the following components:

– Metadata to describe the ontology itself. This includes name, author, date
of last modification, (header) documentation, version, copyright, and URI
(Uniform Resource Identifier) of the ontology as well as the name of the on-
tology language the ontology is specified in. Additionally, each ontology has
extensions of all concepts, attributes, methods, relationships, and instances
that appear in it.

– Concepts which are entity types that occur in the particular ontology’s uni-
verse of discourse — that is, concepts are descriptions of a group of individu-
als that share common characteristics. In the SOQA Ontology Meta Model,
each concept is characterized by a name, documentation, and a definition
that includes constraints;10 additionally, it can be described by attributes,

10 In SOQA, axioms/constraints are subsumed by the definitions of the particular meta
model elements.

methods, and relationships. Further, each concept can have direct and indi-
rect super- and subconcepts, equivalent and antonym concepts, and coordi-
nate concepts (that are situated on the same hierarchy level as the concept
itself). For example, ontology language constructs like <owl:Class...> from
OWL and (defconcept...) from PowerLoom are represented as concepts
in the SOQA Ontology Meta Model.

– Attributes that represent properties of concepts. Each attribute has a name,
documentation, data type, definition, and the name of the concept it is spec-
ified in.

– Methods which are functions that transform zero or more input parameters
into an output value. Each method is described by a name, documentation,
definition, its parameters, return type, and the name of the concept the
method is declared for.

– Relationships that can be established between concepts, for instance, to build
taxonomies or compositions. Similar to the other ontology components, a
name, documentation, and definition can be accessed for each relationship.
In addition, the arity of relationship, i.e., the number of concepts it relates,
as well as the names of these related concepts are available.

– Instances of the available concepts that together form the extension of the
particular concept. Each instance has a name and provides concrete incar-
nations for the attribute values and relationships that are specified in its
concept definition. Furthermore, the name of the concept the instance be-
longs to is available.

Ontology
ontology

Attribute Instance

Method Relationship

concept

concept concept

MetaModelElement

Concept

concept

Fig. 1. Overview of the SOQA Ontology Meta Model as a UML Class Diagram

A UML class diagram of the SOQA Ontology Meta Model is shown in Fig-
ure 1. Note that the SOQA Ontology Meta Model is deliberately designed not
only to represent the least common denominator of modeling capabilities of
widely-used ontology languages. In deciding whether or not to incorporate addi-
tional functionality that is not supported by some ontology languages, we opted
for including these additional modeling capabilities (e.g., information on meth-

ods, antonym concepts, ontology authors, etc.), provided that they are useful for
users of the SOQA API and available in important ontology languages.

Architecturally, the SOQA API reflects the Facade [6] design pattern. That
is, SOQA provides a unified interface to a subsystem that retrieves information
from ontologies, which are specified in different ontology languages. Through
the SOQA Facade, the internal SOQA components are concealed from external
clients; instead, a single point for unified ontology access is given (see Figure 2).
For example, the query language SOQA-QL [22] uses the API provided by the
SOQA Facade to offer declarative queries over data and metadata of ontologies
that are accessed through SOQA. A second example for an external SOQA client
is the SOQA Browser [22] that enables users to graphically inspect the contents
of ontologies independent of the ontology language they are specified in. Last,
but not least, (third-party) Java applications can be based on SOQA for unified
access to information that is specified in different ontology languages. Possible
application areas are virtual organizations, enterprise information and process
integration, the Semantic Web, and semantics-aware universal data management.

User

SOQA

OWL W1

PowerLoom W2

DAML W3

... Wn
SOQA

Browser

Other

Applications

SOQA-QL

Ontologies Wrappers

R1

R2

R3

Rn

Reasoners User

User

Fig. 2. Overview of the SOQA Software Architecture

Internally, ontology wrappers are used as an interface to existing reasoners
that are specific to a particular ontology language (see Figure 2). Up to now,
we have implemented SOQA ontology wrappers for OWL, PowerLoom, DAML,
and the lexical ontology WordNet [11].

2.2 SimPack

SimPack is a generic Java library of similarity measures for the use in ontologies.
Most of the similarity measures were taken from the literature and adapted for
the use in ontologies. The library is generic, that is, the measures can be applied
to different ontologies and ontology formats using wrappers. The question of
similarity is an intensively researched subject in the computer science, artificial
intelligence, psychology, and linguistics literature. Typically, those studies focus

on the similarity between vectors [1, 17], strings [14], trees or graphs [18], and
objects [7]. In our case we are interested in the similarity between resources in
ontologies. Resources may be concepts (classes in OWL) of some type or indi-
viduals (instances) of these concepts. The remainder of this section will discuss
different types of similarity measures, thereby explaining a subset of the mea-
sures implemented in SimPack.11

Vector-based Measures One group of similarity measures operates on vectors
of equal length. To simplify their discussion, we will discuss all measures as the
similarity between the (binary) vectors x and y, which are generated from the
resources Rx and Ry of some ontology O. The procedure to generate these vectors
depends on how one looks at the resources. If the resources are considered as
sets of features (or properties in OWL terminology), finding all the features for
both resources results in two feature sets which are mapped to binary vectors
and compared by one of the measures presented in Equation 1 through 3. For
instance, if resource Rx has the properties type and name and resource Ry type
and age, the following vectors x and y result using a trivial mapping M1 from
sets to vectors:

Rx = {type, name} ⇒ x′ =

⎛
⎝

0
name
type

⎞
⎠ ⇒ x =

⎛
⎝

0
1
1

⎞
⎠

Ry = {type, age} ⇒ y′ =

⎛
⎝

age
0

type

⎞
⎠ ⇒ y =

⎛
⎝

1
0
1

⎞
⎠

Typically, the cosine measure, the extended Jaccard measure, and the overlap
measure are used for calculating the similarity between such vectors [1]:

simcosine(x,y) =
x · y

||x||2 · ||y||2 (1)

simjaccard(x,y) =
x · y

||x||22 + ||y||22 − x · y (2)

simoverlap(x,y) =
x · y

min(||x||22, ||y||22)
(3)

In these equations, ||x|| denotes the L1-norm of x, i.e. ||x|| =
∑n

i=1 |xi|, whereas
||x||2 is the L2-norm, thus ||x||2 =

√∑n
i=1 |xi|2. The cosine measure quantifies

the similarity between two vectors as the cosine of the angle between the two
vectors whereas the extended Jaccard measure computes the ratio of the number
of shared attributes to the number of common attributes [19].

11 We have also introduced a formal framework of concepts and individuals in ontologies
but omit it here due to space limitations. Please refer to [2] for further details about
the formal framework.

String-based Measures A different mapping M2 from the feature set of a
resource makes use of the underlying graph representation of ontologies. In this
mapping, a resource R is considered as starting node to traverse the graph along
its edges where edges are properties of R connecting other resources. These re-
sources in turn may be concepts or, eventually, data values. Here, these sets are
considered as vectors of strings, x and y respectively. The similarity between
strings is often described as the edit distance (also called the Levenshtein edit
distance [9]), that is, the minimum number of changes necessary to turn one
string into another string. Here, a change is typically either defined as the in-
sertion of a symbol, the removal of a symbol, or the replacement of one symbol
with another. Obviously, this approach can be adapted to strings of concepts
(i.e., vectors of strings as the result of mapping M2) rather than strings of char-
acters by calculating the number of insert, remove, and replacement operations
to convert vector x into vector y, which is defined as xform(x,y). But should
each type of transformation have the same weight? Is not the replacement trans-
formation, for example, comparable with a deleting procedure followed by an
insertion procedure? Hence, it can be argued that the cost function c should
have the behavior c(delete) + c(insert) ≥ c(replace). We can then calculate the
worst case (i.e., the maximum) transformation cost xformwc(x,y) of x to y by
replacing all concept parts of x with parts of y, then deleting the remaining
parts of x, and inserting additional parts of y. The worst case cost is then used
to normalize the edit distance resulting in

simlevenshtein(Rx, Ry) =
xform(x,y)

xformwc(x,y)
(4)

Full-text Similarity Measure We decided to add a standard full-text sim-
ilarity measure simtfidf to our framework. Essentially, we exported a full-text
description of all concepts in an ontology to their textual representation and
built an index over the descriptions using Apache Lucene12. For this, we used a
Porter Stemmer [13] to reduce all words to their stems and applied a standard,
full-text TFIDF algorithm as described in [1] to compute the similarity between
concepts.

TFIDF counts the frequency of occurrence of a term in a document in relation
to the word’s occurrence frequency in a whole corpus of documents. The resulting
word counts are then used to compose a weighted term vector describing the
document. In such a TFIDF scheme, the vectors of term weights can be compared
using one of the vector-based similarity measures presented before.

Distance-based Measures The most intuitive similarity measure of concepts
in an ontology is their distance within the ontology [15], defined as the number of
sub-/super-concept (or is-a) relationships between them. These measures make
use of the hierarchical ontology structure for determining the semantic similar-
ity between concepts. As ontologies can be represented by rooted, labeled and
12 http://lucene.apache.org/java/docs/

unordered trees where edges between concepts represent relationships, distances
between concepts can be computed by counting the number of edges on the path
connecting two concepts. Sparrows, for example, are more similar to blackbirds
than to whales since they reside closer in typical biological taxonomies. The cal-
culation of the ontology distance is based on the specialization graph of concepts
in an ontology. The graph representing a multiple inheritance framework is not
a tree but a directed acyclic graph. In such a graph, the ontology distance is
usually defined as the shortest path going through a common ancestor or as the
shortest path in general, potentially connecting two concepts through common
descendants/specializations.

One possibility to determine the semantic similarity between concepts is
simedge as given in [16] (but normalized), which is a variant of the edge counting
method converting from a distance (dissimilarity) into a similarity measure:

simedge(Rx, Ry) =
2 ∗ MAX − len(Rx, Ry)

2 ∗ MAX
(5)

where MAX is the length of the longest path from the root of the ontology to
any of its leaf concepts and len(Rx, Ry) is the length of the shortest path from
Rx to Ry.

A variation of the edge counting method is the conceptual similarity measure
introduced by Wu & Palmer [20]:

simcon =
2 ∗ N3

N1 + N2 + 2 ∗ N3
(6)

where N1, N2 are the distances from concepts Rx and Ry, respectively, to their
Most Recent Common Ancestor MRCA(Rx, Ry) and N3 is the distance from
MRCA(Rx, Ry) to the root of the ontology.

Information-Theory-based Measures The problem of ontology distance-
based measures is that they are highly dependent on the (frequently) subjec-
tive construction of ontologies. To address this problem, researchers have pro-
posed measuring the similarity between two concepts in an ontology in terms of
information-theoretic entropy measures [16, 10]. Specifically, Lin [10] argues that
a class (in his case a word) is defined by its use. The information of a class is
specified as the probability of encountering a class’s (or one of its descendants’)
use. In cases where many instances are available, the probability p of encounter-
ing a class’s use can be computed over the instance corpus. Alternatively, when
the instance space is sparsely populated (as currently in most Semantic Web on-
tologies) or when instances are also added as subclasses with is-a relationships
(as with some taxonomies), then we propose to use the probability of encoun-
tering a subclass of a class. The entropy of a class is the negative logarithm of
that probability. Resnik [16] defined the similarity as

simresnik(Rx, Ry) = max
Rz∈S(Rx,Ry)

[− log2 p(Rz)] (7)

where S(Rx, Ry) is the set of concepts that subsume both Rx and Ry, and
p(Rz) is the probability of encountering a concept of type z (i.e., the frequency
of concept type z) in the corresponding ontology.

Lin defined the similarity between two concepts slightly differently:

simlin(Rx, Ry) =
2 log2 p(MRCA(Rx, Ry))
log2 p(Rx) + log2 P (Ry)

(8)

Intuitively, this measure specifies similarity as the probabilistic degree of overlap
of descendants between two concepts.

3 The SOQA-SimPack Toolkit

The SOQA-SimPack Toolkit (SST) is an ontology language independent Java
API that enables generic similarity detection and visualization in ontologies.
Simply stated, SST accesses data concerning concepts to be compared through
SOQA; this data is then taken as an input for the similarity measures provided
by SimPack. That is, SST offers ontology language independent similarity cal-
culation services based on the uniform view on ontological content as provided
by the SOQA Ontology Meta Model. SST services that have already been im-
plemented include:

– Similarity calculation between two concepts according to a single similarity
measure or a list of them.

– Similarity calculation between a concept and a set of concepts according to
a single or a list of similarity measures. This set of concepts can either be a
freely composed list of concepts or all concepts from an ontology taxonomy
(sub)tree.

– Retrieval of the k most similar concepts of a set of concepts for a given
concept according to a single or a list of similarity measures. Again, this set
of concepts can either be a freely composed list of concepts or all concepts
from an ontology taxonomy (sub)tree.

– Retrieval of the k most dissimilar concepts of a set of concepts for a given
concept according to a single or a list of similarity measures. As before, a
freely composed list of concepts or all concepts from an ontology taxonomy
(sub)tree can be used to specify the set of concepts.

Note that for all calculations provided by SST, the concepts involved can be
from any ontology that is connected through SOQA.13 That is, not only is it
possible to calculate similarities between concepts from a single ontology (for ex-
ample, Student and Employee from the DAML University Ontology) with a given
set of SimPack measures, but also can concepts from different ontologies be used

13 Generally, this is every ontology that can be represented in an ontology language.
In fact, it is every ontology that is represented in a language for which a SOQA
wrapper is available.

in the very same similarity calculation (for example, Student from the Power-
Loom Course Ontology can be compared with Researcher from WordNet). For
all SST computations, the results can be output textually (floating point values
or sets of concept names, depending on the service). Alternatively, calculation
results can automatically be visualized and returned by SST as a chart.

Using concepts from different ontologies in the same similarity calculation
is enabled by the fact that in SST, all ontologies are incorporated into a sin-
gle ontology tree. That is, the root concepts of the available ontologies (e.g.,
owl:Thing) are direct subconcepts of a so-called Super Thing root concept. This
makes it possible that, for instance, not only vector- and text-based similarity
measures, but also distance-based measures that need a contiguous, traversable
path between the concepts can be applied to concepts in SST. Alternatively,
we could have replaced all root concepts of all ontologies with one general Thing
concept. This, however, is a first step into the direction of ontology integration by
mapping semantically equivalent concepts from different ontologies and not our
goal in this research (consequentially, the ontologies should then completely be
merged). Moreover, replacing the roots with Thing means, for example for OWL
ontologies, that all direct subconcepts of owl:Thing from arbitrary domains are
put directly under Thing and, thus, become immediate neighbors, blurring which
ontology and domain a particular concept originates from. This is illustrated in
Figure 3: Whereas the university domain of ontology1 and the ornithology do-
main of ontology2 remain separated in the first case, they are jumbled in the
second. However, not mixing arbitrary domains is essential for distance-based
similarity measures which found their judgments on distances in graphs (in Fig-
ure 3(b), Student is as similar to Professor as to Blackbird, due to the equality of
the graph distances between Student, Professor, and Blackbird). Hence, we opted
for introducing the Super Thing concept as the root of the tree of ontologies in
the SOQA-SimPack Toolkit.

daml:Thing

Sparrow Blackbird

owl:Thing

Student Professor

Super_Thing

Ontology1 Ontology2

(a) Classifying All Ontologies Below

Super Thing

Sparrow BlackbirdStudent Professor

Thing

Ontology1 Ontology2

(b) Replacing the Root Concepts of

All Ontologies with Thing

Fig. 3. Comparison of Approaches to Building a Single Tree for a Set of Ontologies

Like SOQA, the SOQA-SimPack Toolkit architecturally reflects the Facade
design pattern: SST provides a unified interface to a subsystem which is in charge
of generic similarity calculations based on data from ontologies that are specified

in different ontology languages. The SST Facade shields external clients from its
internal components and represents a single access point for unified ontological
similarity services (see Figure 4). External users of the services provided by the
SST Facade include:

– The SOQA-SimPack Toolkit Browser that is a tool to graphically perform
similarity calculations in ontologies independent of the ontology language
they are specified in;

– (Third-party) Java applications that use SST as a single point of access to
generic similarity detection and visualization services as provided by the SST
Facade. Possible application areas are ontology alignment and integration,
Semantic Web (service) discovery, data clustering and mining, semantic in-
teroperability in virtual organizations, and semantics-aware universal data
management.

SOQA-

SimPack

Toolkit

Facade

SOQA-SimPack

Toolkit Browser

Other

Applications

User

User

SimPack

SOQA

Ontologies

MeasureRunner

Implementations

SOQAWrapper

for SimPack

Fig. 4. Overview of the SOQA-SimPack Toolkit Software Architecture

Behind the SOQA-SimPack Toolkit Facade, MeasureRunner implementations
are used as an interface to the different SimPack similarity measures available.
Each MeasureRunner is a coupling module that is capable of retrieving all neces-
sary input data from the SOQAWrapper for SimPack and initiating a similarity
calculation between two single concepts for a particular similarity measure. For
example, there is a TFIDFMeasureRunner that returns a floating point value
expressing the similarity between two given concepts according to the TFIDF
measure. More advanced similarity calculations, such as finding the k most sim-
ilar concepts for a given one, are performed by tailored methods in the SOQA-
SimPack Toolkit Facade itself based on the basic services supplied by underly-
ing MeasureRunner implementations. By providing an additional MeasureRunner,
SST can easily be extended to support supplementary measures (e.g., new mea-
sures or combinations of existing measures). Hence, the SOQA-SimPack Toolkit
provides not only means for generic similarity detection, but can also be a fruit-
ful playground for development and experimental evaluation of new similarity
measures.

The SOQAWrapper for SimPack as another internal component of SST is in
charge of retrieving ontological data as required by the SimPack similarity mea-
sure classes. This includes, for example, retrieval of (root, super, sub) concepts,
provision of string sequences from concepts as well as depth and distance cal-
culations in ontologies. Basically, all of this is done by accessing the necessary
ontological data according to the SOQA Ontology Meta Model through SOQA
and by providing the requested information as expected by SimPack. Summing
up, the MeasureRunner implementations together with the SOQAWrapper for Sim-
Pack integrate both SOQA and SimPack on a technical level on behalf of the
SST Facade.

Based on its Facade architecture, the SOQA-SimPack Toolkit provides a set
of methods for ontology language independent similarity detection and visualiza-
tion in ontologies. The following three method signatures (S1) to (S3) illustrate
how similarities can be calculated with SST:

public double getSimilarity(String firstConceptName, (S1)
String firstOntologyName, String secondConceptName,
String secondOntologyName, int measure)

public Vector<ConceptAndSimilarity> getMostSimilarConcepts((S2)
String conceptName, String conceptOntologyName,
String subtreeRootConceptName, String subtreeOntologyName,
int k, int measure)

public Image getSimilarityPlot(String firstConceptName, (S3)
String firstOntologyName, String secondConceptName,
String secondOntologyName, int[] measures)

In the examples given before, method signature (S1) provides access to the
calculation of the similarity between the two given concepts — the similarity
measure to be used is specified by an integer constant (e.g., SOQASimPackToolkit-
Facade.LIN MEASURE for the measure by Lin). Note that in SST, for each con-
cept we have to specify which ontology it originates from (parameters first-
OntologyName and secondOntologyName, respectively). This is necessary since
in SST’s single ontology tree (into which all ontologies are incorporated), concept
names are generally not unique anymore. For example, in case that more than
one OWL ontology is used for similarity calculations, we have more than one
owl:Thing concept as a direct subconcept of Super Thing. Distinguishing which
ontology the particular owl:Thing is the root of is essential (e.g., for graph-based
measures) since the (direct) subconcepts for each owl:Thing concept differ. (S2)
enables SST clients to retrieve the k most similar concepts for the given one
compared with all subconcepts of the specified ontology taxonomy (sub)tree. In
the result set, ConceptAndSimilarity instances contain for each of the k concepts
the concept name, the name of its ontology, and the respective similarity value.
Finally, (S3) computes the similarity between two concepts according to a set of
measures and sets up a chart to visualize the computations.

Beyond access to similarity calculations, the SOQA-SimPack Toolkit Facade
provides a variety of helper methods — for example, for getting information
about a particular SimPack similarity measure, for displaying a SOQA Ontology
Browser [22] to inspect a single ontology, or for opening a SOQA Query Shell to
declaratively query an ontology using SOQA-QL [22].

Recall that in our running example from Section 1, a developer is looking for
similarities among the concepts of five ontologies. In this scenario, the SOQA-
SimPack Toolkit can be used, for instance, to calculate the similarity between
the concept base1 0 daml:Professor from the DAML University Ontology and
concepts from the other ontologies according to different SimPack similarity
measures as shown in Table 1. Behind the scenes, SST initializes the necessary
MeasureRunner instances which in turn manage the calculation of the desired
similarity values by SimPack based on ontological information retrieved through
SOQA. Note that for the plausibility of the calculated results, the SimPack
measures as taken from the literature are responsible in general; in case that the
available measures do not seem to be suitable for a particular domain, the set of
available similarity measures can easily be extended by providing supplementary
MeasureRunner implementations for further similarity measures.

Concept Conceptual Leven- Lin Resnik Shortest TFIDF
Similarity shtein Path

base1 0 daml:Professor 0.7778 1.0 0.8792 2.7006 1.0 1.0
univ-bench owl:AssistantProfessor 0.1111 0.1029 0.0 0.0 0.0588 0.3224
COURSES:EMPLOYEE 0.1176 0.0294 0.0 0.0 0.0625 0.0475
SUMO owl txt:Human 0.1 0.0028 0.0 0.0 0.0526 0.0151
SUMO owl txt:Mammal 0.0909 0.0032 0.0 0.0 0.0476 0.0184

Table 1. Comparisons of base1 0 daml:Professor with Concepts from Other Ontologies

In addition to numeric results, the SOQA-SimPack Toolkit is able to visualize
the results of similarity calculations. For instance, our developer can retrieve the
k most similar concepts for base1 0 daml:Professor compared with all concepts
from all five ontologies in our scenario. In response to this, SST can produce a
bar chart as depicted in Figure 5. To generate the visualizations, SST creates
data files and scripts that are automatically given as an input to Gnuplot14,
which then produces the desired graphics. Thus, the SOQA-SimPack Toolkit
can effectively be employed to generically detect and visualize similarities in on-
tologies according to an extensible set of similarity measures and independently
of the particular ontology languages in use.

14 http://www.gnuplot.info

 0

 0.2

 0.4

 0.6

 0.8

 1

base1_0_dam
l:FullP

rofessor

base1_0_dam
l:V

isitingP
rofessor

base1_0_dam
l:C

hair

base1_0_dam
l:A

ssistantP
rofessor

base1_0_dam
l:U

ndergraduateS
tudent

base1_0_dam
l:G

raduateS
tudent

base1_0_dam
l:P

ostD
oc

base1_0_dam
l:D

ean

base1_0_dam
l:Lecturer

base1_0_dam
l:P

rofessor

S
im

ila
ri
ty

Levenshtein

Fig. 5. SST Visualization of the Ten Most Similar Concepts for base1 0 daml:Professor

4 The SOQA-SimPack Toolkit Browser

The SOQA-SimPack Toolkit Browser is a tool that allows users to graphically
perform similarity calculations and visualizations in ontologies based on the
SOQA-SimPack Toolkit Facade. In general, it is an extension of the SOQA
Browser [22] enabling users to inspect the contents of ontologies independently
of the particular ontology language (i.e., according to the SOQA Ontology Meta
Model). Based on the unified view of ontologies it provides, the SOQA-SimPack
Toolkit Browser can be used to quickly survey concepts and their attributes,
methods, relationships, and instances that are defined in ontologies as well as
metadata (author, version, ontology language name, etc.) concerning the ontol-
ogy itself.

In addition, the SOQA-SimPack Toolkit Browser provides an interface to all
the methods of SST through its Similarity Tab (see Figure 6). That is, it is a tool
for performing language independent similarity calculations in ontologies and for
result visualization. In the Similarity Tab, users can select the similarity service
to be run — for example, producing a graphical representation of the similarity
calculation between two concepts according to the Resnik measure. Then, input
fields are inserted into the Similarity Tab so that all necessary input values
can be entered; here, concept names can directly be mouse-dragged from the
Concept Hierarchy view and dropped into the respective input field. In the end,
the calculated results are shown in tabular or graphical form, depending on the
selected service.

In our running example, the SOQA-SimPack Toolkit Browser can first be
employed by the developer to quickly get a unified overview of the five ontologies
represented in PowerLoom, OWL, and DAML respectively. Subsequently, he or
she can use the Similarity Tab and calculate, for instance, the k most similar
concepts for univ-bench owl:Person according to the TFIDF measure. The result

Fig. 6. The SOQA-SimPack Toolkit Browser and its Similarity Calculation Tab

is then presented in a table as shown in Figure 6. Thus, contrasting a conventional
scenario where several ontology-language specific tools have to be employed for
ontology access, the developer who takes advantage of SST does not have to cope
with different ontology representation languages in use. Based on the unified view
of ontologies as provided by the SOQA Ontology Meta Model, our developer can
generically apply a rich and extensible set of SimPack similarity measures for
similarity detection through the services offered by the SOQA-SimPack Toolkit.
The results of these calculations can be presented as numerical values, textual
lists (of concept names), or visualized in graphics. Hence, similarity detection in
ontologies is facilitated and leveraged through the SOQA-SimPack Toolkit and
its browser for the benefit of human users and applications.

5 Related Work

Closest to our work is the ontology alignment tool OLA presented by Euzénat
et al. [4]. OLA is implemented in Java and relies on a universal measure for
comparing entities of ontologies. Basically, it implements a set of core similarity

functions which exploit different aspects of entities, such as textual descriptions,
inter-entity relationships, entity class membership, and property restrictions.
OLA relies on WordNet to compare string identifiers of entities. The main dif-
ference to our approach is OLA’s restriction and dedication to the alignment
of ontologies expressed in OWL-Lite. Using our generic approach, however, it is
possible to compare and align entities of ontologies represented in a variety of
ontology languages with the same set of similarity measures.

Noy and Musen’s approach [12] follows similar goals: the comparison, align-
ment, and merging of ontologies to improve their reuse in the Semantic Web.
The authors implemented a suite of tools called PROMPT that interactively
supports ontology merging and the finding of correlations between entities to
simplify the overall integration task. Compared to the SOQA-SimPack Toolkit,
PROMPT is restricted to the comparison and merging of ontologies expressed
in a few common ontology languages, such as RDF, DAML, and OWL. SST, on
the other hand, offers the possibility to incorporate ontologies represented in a
much broader range of languages. This includes not only ontologies described
with recent Semantic Web languages, but also ones represented in traditional
ontology languages, like PowerLoom. Furthermore, the SOQA-SimPack Toolkit
supports ontologies supplied by knowledge bases, such as CYC [8], and by lexical
ontology systems, such as WordNet.

Ehrig et al. [3] propose an approach that measures similarity between en-
tities on three different layers (data layer, ontology layer, and context layer).
Finally, an amalgamation function is used to combine the partial similarities
of each layer and to compute the overall similarity between two entities. This
approach differs from ours in its strong focus on entity layers and its amalga-
mation of individual layer-based similarity measures. Whilst it is easily possible
to introduce such combined similarity measures through additional MeasureRun-
ner implementations into the SOQA-SimPack Toolkit, we have left experiments
with such measures for future work. In addition to this, we intend to extend the
set of provided similarity measures in future, e.g., by incorporating measures
from the SecondString project15 which focuses on implementing approximate
string-matching algorithms, and from SimMetrics16 which presents similarity
and distance metrics for data integration tasks.

6 Conclusions and Future Work

In this paper, we presented the SOQA-SimPack Toolkit, an ontology language
independent Java API that enables generic similarity detection and visualization
in ontologies. This task is central for application areas like ontology alignment
and integration, Semantic Web (service) discovery, data clustering and mining,
semantic interoperability in virtual organizations, and semantics-aware universal
data management. SST is founded on (1) the SIRUP Ontology Query API, an

15 http://secondstring.sourceforge.net
16 http://www.dcs.shef.ac.uk/~sam/simmetrics.html

ontology language independent Java API for query access to ontological meta-
data and data, and (2) SimPack, a generic Java library of similarity measures
adapted for the use in ontologies.

The SOQA-SimPack Toolkit is extensible in two senses: First, further ontol-
ogy languages can easily be integrated into SOQA by providing supplementary
SOQA wrappers, and second, our generic framework is open to employ a multi-
tude of additional similarity measures by supplying further MeasureRunner im-
plementations. Hence, the extensible SOQA-SimPack Toolkit provides not only
means for generic similarity detection, but can also be a fruitful playground for
development and experimental evaluation of new similarity measures.

Contrasting a conventional scenario where several ontology-language spe-
cific tools have to be adopted for ontology access, users and applications taking
advantage of the SOQA-SimPack Toolkit do not have to cope with different on-
tology representation languages in use. SST supports a broad range of ontology
languages, including not only ontologies described with recent Semantic Web
languages, but also ones represented in traditional ontology languages, like Pow-
erLoom. Furthermore, ontologies supplied by knowledge bases, such as CYC,
and by lexical ontology systems, such as WordNet, can be used in the SOQA-
SimPack Toolkit.

Based on the unified view on ontologies as provided by the SOQA Ontology
Meta Model, users and applications can generically apply a rich set of SimPack
similarity measures for similarity detection in SST services. By taking advantage
of an extensible library of ontological similarity measures, a variety of notions of
“similarity” can be captured. Additionally, for all calculations provided by SST,
concepts can be used from any ontology that is connectible through SOQA. This
is accomplished by incorporating all ontologies into a single ontology tree. The
results of these calculations can be presented as numerical values, textual lists
(of concept names), or visualized in graphics. As an application that is based on
SST, we provide the SOQA-SimPack Toolkit Browser, a tool to graphically per-
form similarity calculations in ontologies independent of the ontology language
they are specified in. Thus, similarity detection in ontologies is facilitated and
leveraged through the SOQA-SimPack Toolkit and its browser for the benefit of
human users and applications.

Future work includes the implementation of additional similarity measures
(especially for trees) and the provision of more advanced result visualizations.
Besides, we intend to do a thorough evaluation to find the best performing simi-
larity measures in different task domains and to experiment with more advanced,
combined similarity measures. In the end, a comprehensive assessment of SST
in the context of data and schema integration is planned.

References

1. R. Baeza-Yates and B. d. A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press, 1999.

2. A. Bernstein, E. Kaufmann, C. Kiefer, and C. Bürki. SimPack: A Generic Java Li-
brary for Similarity Measures in Ontologies. Technical report, University of Zurich,

Department of Informatics. http://www.ifi.unizh.ch/ddis/staff/goehring/

btw/files/ddis-2005.01.pdf, 2005.
3. M. Ehrig, P. Haase, N. Stojanovic, and M. Hefke. Similarity for Ontologies -

A Comprehensive Framework. In Workshop Enterprise Modelling and Ontology:
Ingredients for Interoperability, PAKM 2004, December 2004.

4. J. Euzénat, D. Loup, M. Touzani, and P. Valtchev. Ontology Alignment with OLA.
In 3rd EON Workshop, 3rd Int. Semantic Web Conference, pages 333–337, 2004.

5. A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. IJHCS, 46(6):707–727, 1997.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

7. D. Gentner and J. Medina. Similarity and the Development of Rules. Cognition,
65:263–297, 1998.

8. D. B. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure. Com-
munications of the ACM, 38(11):32–38, 1995.

9. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707–710, 1966.

10. D. Lin. An Information-Theoretic Definition of Similarity. In 15th International
Conference on Machine Learning, pages 296–304. Morgan Kaufmann, 1998.

11. G. A. Miller. WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41, 1995.

12. N. F. Noy and M. A. Musen. The PROMPT Suite: Interactive Tools for Ontology
Merging and Mapping. IJHCS, 59(6):983–1024, 2003.

13. M. F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.
14. P.W.Lord, R. Stevens, A. Brass, and C.A.Goble. Investigating Semantic Similarity

Measures Across the Gene Ontology: The Relationship Between Sequence and
Annotation. Bioinformatics, 19(10):1275–83, 2003.

15. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and Application of a
Metric on Semantic Nets. In IEEE Transactions on Systems, Man and Cybernetics,
pages 17–30, 1989.

16. P. Resnik. Using Information Content to Evaluate Semantic Similarity in a Tax-
onomy. In IJCAI, pages 448–453, 1995.

17. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

18. D. Shasha and K. Zhang. Approximate Tree Pattern Matching. In Pattern Match-
ing Algorithms, pages 341–371. Oxford University Press, 1997.

19. A. Strehl, J. Ghosh, and R. Mooney. Impact of Similarity Measures on Web-page
Clustering. In 17th National Conference on Artificial Intelligence: Workshop of
Artificial Intelligence for Web Search, pages 58–64. AAAI, July 2000.

20. Z. Wu and M. Palmer. Verb Semantics and Lexical Selection. In 32nd. Annual
Meeting of the Association for Computational Linguistics, pages 133–138, New
Mexico State University, Las Cruces, New Mexico, 1994.

21. P. Ziegler and K. R. Dittrich. User-Specific Semantic Integration of Heterogeneous
Data: The SIRUP Approach. In First International IFIP Conference on Semantics
of a Networked World (ICSNW 2004), volume 3226 of Lecture Notes in Computer
Science, pages 44–64, Paris, France, June 17-19, 2004. Springer.

22. P. Ziegler, C. Sturm, and K. R. Dittrich. Unified Querying of Ontology Languages
with the SIRUP Ontology Query API. In Datenbanksysteme in Business, Tech-
nologie und Web (BTW 2005), volume P-65 of Lecture Notes in Informatics, pages
325–344, Karlsruhe, Germany, March 2-4, 2005. Gesellschaft für Informatik (GI).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

