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Abstract. This paper introduces a method and a tool for automatically
aligning OWL ontologies, a crucial step for achieving the interoperability
of heterogeneous systems in the Semantic Web. Different components are
combined for finding suitable mapping candidates (together with their
weights), and the set of rules with maximum matching probability is
selected. Machine learning-based classifiers and a new classifier using the
structure and the semantics of the OWL ontologies are proposed. Our
method has been implemented and evaluated on an independent test set
provided by an international ontology alignment contest. We provide the
results of this evaluation with respect to the other competitors.

1 Introduction

The Resource Description Framework (RDF) [24] and the Web Ontology Lan-
guage (OWL) [21] languages is a new step towards the realization of the Semantic
Web [4]. RDF aims to represent information and to exchange knowledge in the
web, while OWL should be used to publish and share sets of terms called on-
tologies, supporting advanced web search, software agents and knowledge man-
agement. These languages are grounded on formal set-theoretic semantics, and
specify meaning of concepts so that computers can process and understand them.
They allow to infer new data from the knowledge already represented.

Ontologies are usually seen as a solution to data heterogeneity on the web
[10]. An ontology is a way of describing the world: it allows to determine what
kinds of things there are in the world, their characteristics, the relationships
between them and more complex axioms [2]. Since a lot of efforts are deployed
to provide hands-on support for developers of Semantic Web applications, with
the online publishing of “best practices”, it is expected now that more and
more ontologies covering partially the same subjects will be available on the
web. Indeed, this is already true for numerous complex domains such that the
medical [12] or the multimedia domain [15]. In such a case, some entities can
be given different names or simply be defined in different ways or in different
languages. The semantic interoperability has then to be grounded in ontology
? This work was carried out during the tenure of an ERCIM fellowship



reconciliation. The underlying problem is often called the “ontology alignment”
problem [10], that we address in this paper.

Comparing ontologies is useful for various tasks. During the building phase of
the taxonomies, it is likely that the designer has to reuse some pieces of existing
ontologies, internally developed or found on the web. Alignment methods are also
necessary for dealing with the evolution and versioning issue of the ontologies
(track changes, detect inconsistencies, merge, etc.). These methods can then be
used for reformulating queries: documents annotated with respect to a source
ontology can be retrieved even if the query uses terms from a target ontology.
In the same way, documents classified under different web directories can be
retrieved by comparing the heterogeneous web classes they belong to.

In this paper, we focus on ontologies described in the same knowledge rep-
resentation language (OWL) and we propose a general framework combining
several specific classifiers for aligning them automatically. We introduce a new
classifier that uses the semantics of the OWL axioms for establishing equivalence
and subsumption relationships between the classes and the properties defined in
the ontologies.

The paper is organized as follows. We briefly present in the next section
the OWL language as well as its syntax. Readers who are already familiar with
this language can skip this section. Then, we introduce in section 3 oMAP, a
framework whose goal is to find automatically the best mappings (together with
their weights) between the entities defined in the OWL ontologies. The final
mappings are obtained by combining the prediction of different classifiers. We
describe the set of classifiers used: terminological, machine learning-based and
we present a new one, based on the structure and the semantics of the OWL
axioms. We sketch in section 4 the implementation of our framework. We have
evaluated our method on an independent test set provided by an international
ontology alignment contest and we show our results with respect to the other
competitors in section 5. We present an overview of other alignment methods in
section 6. Finally, we give our conclusions and outline future work in section 7.

2 Preliminaries: OWL Overview

OWL is a new formal language, recommended by the W3C, for representing on-
tologies in the Semantic Web [21]. In the Semantic Web vision [4], ontologies are
used to provide structured vocabularies that explicate the relationships between
different terms, allowing automated processes (and humans) to interpret their
meaning flexibly yet unambiguously. OWL has features from several families of
representation languages, including primarily Description Logics [1] and frames.
OWL can declare classes, and organize them in a subsumption (“subclass”)
hierarchy. OWL classes can be specified as logical combinations (intersections,
unions, complements) of other classes, or as enumerations of specified objects. In
the same way, OWL can declare properties, organize them into a “subproperty”
hierarchy, and provide domains and ranges for these properties. The domains of
OWL properties are OWL classes while their ranges can be either OWL classes



or externally-defined datatypes such as string or integer. OWL can state that a
property is transitive, symmetric, functional or is the inverse of another prop-
erty. OWL can express which objects (also called “individuals”) belong to which
classes, and what the property values are of specific individuals. Some axioms,
such that the equivalence or disjointness between classes or the (in)equality be-
tween individuals, can be asserted. Finally, OWL is able to provide restrictions
on how properties that are local to a class, behave. These restrictions may con-
cern the type of all (or at least one) values of the property instances, or constrain
their cardinality (i.e. they must be at least or at most a certain number of distinct
values for this property) [13].

To illustrate this language, Table 1 summarizes the different constructs of
the OWL language giving some examples within this domain. The first column
gives the abstract syntax of OWL, the second, its equivalent in the Description
Logics syntax, and the third some examples.

3 oMAP: A Framework for Automatically Aligning OWL
Ontologies

This section introduces the oMAP framework for aligning automatically ontolo-
gies. Our approach is inspired by the data exchange problem [11] and borrows
from others, like GLUE [6], the idea of combining several specialized compo-
nents for finding the best set of mappings. The framework resumes partially the
formalization proposed in [19] and extends the sPLMAP (Schema Probabilistic
Learning Mappings) system to cope with the ontology alignment problem.

We draw in section 3.1 the general picture of our approach. Then, we detail
several classifiers used to predict the weight of a possible mapping between two
entities. These classifiers are terminological (section 3.2) or machine learning-
based (section 3.3). Finally, we propose a classifier working on the structure and
the formal semantics of the OWL constructs, thus using fully the meaning of the
entities defined in the ontology (section 3.4).

3.1 Overall Strategy

Our goal is to automatically determine “similarity” relationships between classes
and properties of two ontologies. For instance, given the ontologies in Figure 1,
we would like to determine that an instance of the class Conference is likely an
instance of the class Congress, that the property creator should subsume the
property author, or that the class Journal is disjoint from the class Directions.

Theoretically, an ontology mapping is a tupleM = (S,T, Σ), where S and T
are respectively the source and target ontologies, and Σ is a finite set of mapping
constraints of the form αi,j Tj ← Si, where Si and Tj are respectively the source
and target entities. The intended meaning of this rule is that the entity Si of
the source ontology is mapped onto the entity Tj of the target ontology, and
the confident measure associated with this mapping is αi,j . Note that a source



Abstract Syntax DL Syntax Example

Descriptions (C)

A (URI reference) A Conference

owl:Thing >
owl:Nothing ⊥
intersectionOf(C1 C2 . . .) C1 u C2 Reference u Journal

unionOf(C1 C2 . . .) C1 t C2 Organization t Institution

complementOf(C) ¬C ¬ MasterThesis

oneOf(o1 . . .) {o1, . . .} {"WISE","ISWC",...}
restriction(R someValuesFrom(C)) ∃R.C ∃ parts.InCollection

restriction(R allValuesFrom(C)) ∀R.C ∀ date.Date

restriction(R hasValue(o)) R : o date : 2005

restriction(R minCardinality(n)) > n R > 1 location

restriction(R maxCardinality(n)) 6 n R 6 1 publisher

restriction(U someValuesFrom(D)) ∃U.D ∃ issue.integer

restriction(U allValuesFrom(D)) ∀U.D ∀ name.string

restriction(U hasValue(v)) U : v series : "LNCS"

restriction(U minCardinality(n)) > n U > 1 title

restriction(U maxCardinality(n)) 6 n U 6 1 author

Data Ranges (D)

D (URI reference) D string

oneOf(v1 . . .) {v1, . . .} {"2004","2005",...}
Object Properties (R)

R (URI reference) R location

Datatype Properties (U)

U (URI reference) U title

Individuals (o)

o (URI reference) o WISE

Data Values (v)

v (RDF literal) v "Int. Conf. SW"

Table 1. OWL Descriptions, Data Ranges, Properties, Individuals, and Data Values
with examples (adapted from [13])

Reference 

Thing 

Journal 

Conference 

Address 

Entry 

Congress 

Directions 

Periodical 

creator 

author 

frequency 
periodicity 

location 

place 

Ontology 2 Ontology 1 

equivalence 

equivalence 

subsumption 

Fig. 1. Excerpt of two bibliographic ontologies and their mappings



entity may be mapped onto several target entities and conversely. But, we do
not require that we have a mapping for every target entity.

Aligning two ontologies in oMap consists of three steps:

1. We form a possible set of mappings Σ, and estimate its quality based on the
quality measures for its mapping rules;

2. For each mapping rule Tj ← Si, we estimate its confidence αi,j , which also
depends on the Σ it belongs to, that is, αi,j = w(Si, Tj , Σ);

3. As we cannot compute all possible sets Σ (there are exponentially many)
and then choose the best one, we rather build iteratively our final set of
mappings Σ using heuristics.

Similar to GLUE [6], we estimate the weight w(Si, Tj , Σ) of a mapping Tj ←
Si by using different classifiers CL1, . . . , CLn. Each classifier CLk computes a
weight w(Si, Tj , CLk), which is the classifier’s approximation of the rule Tj ← Si.
For each target entity Tj , CLk provides a rank of the plausible source entities Sik

.
Then we rely on a priority list on the classifiers, CL1 ≺ CL2 ≺ . . . ≺ CLn and
proceed as follows: for a given target entity Tj , select the top-ranked mapping of
CL1 if the weight is non-zero. Otherwise, select the top-ranked mapping provided
by CL2 if non-zero, and so on.

We present in the following several classifiers that have been used in our tests.
It is worth noting that some of the classifiers consider the terminological part of
the ontologies only, while others are based on their instances (i.e. the values of
the individuals). Finally, we end this section by introducing a new classifier that
fully uses the structure and the semantics of ontology definitions and axioms.

3.2 Terminological Classifiers

The terminological classifiers work on the name of the entities (class or prop-
erty) defined in the ontologies. In OWL, each resource is identified by a URI, and
can have some annotation properties attached. Among others, the rdfs:label
property may be used to provide a human-readable version of a resource’s name.
Furthermore, multilingual labels are supported using the language tagging facil-
ity of RDF literals. In the following, we consider that the name of an entity is
given by the value of the rdfs:label property or by the URI fragment if this
property is not specified.
Same entity names. This binary classifier CLN returns a weight of 1 if and
only if the two classes (or properties) have the same name, and 0 otherwise:

w(Si, Tj , CLN ) =

{
1 if Si, Tj have same name,
0 otherwise

Same entity name stems. This binary classifier CLS returns a weight of 1
if and only if the two classes (or properties) have the same stem3 (we use the
Porter stemming algorithm [22]), and 0 otherwise:

w(Si, Tj , CLS) =

{
1 if Si, Tj have same stem,
0 otherwise

3 The root of the terms without its prefixes and suffixes.



3.3 Machine Learning-Based Classifier

As we have seen in section 2, an ontology often contains some individuals. It
is then possible to use machine learning-based classifiers to predict the weight
of a mapping between two entities. The instances of an OWL ontology can
be gathered using the following rules: we consider (i) the label for the named
individuals, (ii) the data value for the datatype properties and (iii) the type for
the anonymous individuals and the range of the object properties.

For example, using the abstract syntax of [13], let us consider the following
individuals :

Individual (x1 type (Conference)

value (label "Int. Conf. on Web Information Systems Engineering")

value (location x2))
Individual (x2 type (Address)

value (city "New York city") value (country "USA"))

Then, the text gathered u1 for the named individual x1 will be ("Int. Conf. on

Web Information Systems Engineering", "Address") and u2 for the anonymous
individual x2 ("Address", "New York city", "USA").

We describe in the following the typical and well-known classifier that we
used in oMAP: the Naive Bayes [25].
Naive Bayes text classifier. The classifier CLNB uses a Naive Bayes text
classifier [25] for text content. Like the previous one, each class (or property)
acts as a category, and the instances are considered as bags of words (with
normalized word frequencies as probability estimations). For each (y, v) ∈ Tj ,
the probability Pr(Si|v) that the value v should be mapped onto Si is computed.
In a second step, these probabilities are combined by:

w(Si, Tj , CLNB) =
∑

(y,v)∈Tj

Pr(Si|v) · Pr(v)

Again, we consider the values as bags of words. With Pr(Si) we denote the
probability that a randomly chosen value in

⋃
k Sk is a value in Si. If we assume

independence of the words in a value, then we obtain:

Pr(Si|v) = Pr(v|Si) ·
Pr(Si)

Pr(v)
=

Pr(Si)

Pr(v)
·

∏
m∈v

Pr(m|Si)

Together, the final formula is:

w(Si, Tj , CLNB) = Pr(Si) ·
∑

(y,v)∈Tj

∏
m∈v

Pr(m|Si)

If a word does not appear in the content for any individual in Si (Pr(m|Si) = 0),
we assume a small value to avoid a product of zero.



3.4 A Structural and Semantics-Based Classifier

Besides these well-known algorithms in information retrieval and text classifica-
tion, we introduce a new classifier, CLSem, which is able to use the semantics
of the OWL definitions while being guided by their syntax. It is used in the
framework a posteriori, in so far as the weighted average of the predictions of
all the other classifiers will serve as its input. In the following, we note with
w′(Si, Tj , Σ) the average weight of the mapping Tj ← Si estimated by the clas-
sifiers of the previous sections, where Si (resp. Tj) is a concept or property name
of the source (resp. target) ontology. Note that in case the structural classifier is
used alone, we set: w′(Si, Tj , Σ) = 1. The formal recursive definition of CLSem

is then given by:

1. If Si and Tj are property names:

w(Si, Tj , Σ) =

{
0 if Tj ← Si 6∈ Σ
w′(Si, Tj , Σ) otherwise

2. If Si and Tj are concept names: let assume that their definitions are Si v
C1 . . . Cm and Tj v D1 . . . Dn, and we note D = D(Si)×D(Tj)4, then:

w(Si, Tj , Σ) =


0 if Tj ← Si 6∈ Σ
w′(Si, Tj , Σ) if |D| = 0 and Tj ← Si ∈ Σ

1
(|Set|+1)

·

w′(Si, Tj , Σ) + max
Set

 ∑
(Ci,Dj)∈Set

w(Ci, Dj , Σ)

 otherwise

3. Let CS = (QR.C) and DT = (Q′R′.D), where Q,Q′ are quantifiers ∀ or ∃
or cardinality restrictions, R,R′ are property names and C,D are concept
expressions, then:

w(CS , DT , Σ) = wQ(Q, Q′) · w(R, R′, Σ) · w(C, D, Σ)

4. Let CS = (op C1 . . . Cm) and DT = (op′ D1 . . . Dm), where the concept
constructors op, op′ in the concepts CS , DT are in prefix notation, op, op′ are
the concept constructors among u,t,¬ and n, m ≥ 1, then:

w(CS , DT , Σ) = wop(op, op′) ·

max
Set

 ∑
(Ci,Dj)∈Set

w(Ci, Dj , Σ)


min(m, n)

where:

– Set ⊆ {C1 . . . Cm} × {D1 . . . Dn} and |Set| = min(m,n),
– (C,D) ∈ Set, (C ′, D′) ∈ Set⇒ C 6= C ′, D 6= D′.

We give in the Table 2 the values for wQ and wop we used.

4 D(Si) represents the set of concepts directly parents of Si.



wop is given by: wQ is given by:

u t ¬
u 1 1/4 0

t 1 0

¬ 1

∃ ∀
∃ 1 1/4

∀ 1

≤ n ≥ n

≤ m 1 1/3

≥ m 1

Table 2. Possible values for wop and wQ weights

4 Implementation

Like we have seen in the section 3.1, our approach begins to form some possible Σ
sets, for evaluating the weight of each mapping rules they contain. The generation
of all possible Σ sets becomes quickly a critical issue since this number can be
huge. We address this problem in the section 4.1. The oMAP framework allows
to align any OWL ontologies, represented in the RDF/XML syntax. Hence, it
uses extensively the OWL API [3] and the Alignment API available in JAVA
(section 4.2).

4.1 Reduction of the Space

Lets assume that the two ontologies to be aligned have the following characteris-
tics: a source ontology S containing CS classes, OPS object properties and DPS

datatype properties; and a target ontology T containing CT classes, OPT object
properties and DPT datatype properties. Theoretically, the number of all possi-
ble mapping rules is given by: Nb rules = (CS ·CT )+(OPS ·OPT )+(DPS ·DPT ).
Then, the number of all possible Σ sets containing these mapping rules is given
by: NbΣ = 2Nb rules. To reduce the number of Σ sets to generate and then
to evaluate, we make a first approximation: we consider only the Σ sets that
contain exactly one mapping rule for each definition of classes, object properties
and datatype properties of the source or the target ontology (see section 3.4 for
the formal definition of these sets). The number of all possible Σ sets is then
given by:

NbΣ =
Max(CS , CT )!

|CS − CT |!
· Max(OPS , OPT )!

|OPS −OPT |!
· Max(DPS , DPT )!

|DPS −DPT |!

We reduce also the number of Σ sets to generate by taking account the range of
the datatype properties. A reasonable approximation is that a datatype property
from the source ontology that has for range the datatype Ui cannot be align
to another datatype property from the target ontology that has for range the
datatype Uj if Ui ∩ Uj = ∅ (for instance string and integer). We remind that
the possible datatypes considered by OWL are the hierarchy provided by XML
Schema.

Finally, we operate a third approximation which turns out to be, unsurpris-
ingly, the more efficient for reducing the space search: a local maximum heuristic.
When forming a Σ set, we consider firstly a class from the first ontology, and



gather all the entities (classes and properties) involved in its closure definition.
We do the same for each classes of the second ontology and we evaluate all these
small Σ sets for retaining the best one. We iterate this process over all the classes.
Additional criteria allow us to guarantee the convergence of our approach (i.e.
the order of the classes considered has no significance).

4.2 The Alignment API

In order to exchange and evaluate results of alignment algorithms, [9] has pro-
posed a simple yet extensible alignment format. In first approximation, an align-
ment is a set of pairs of elements from each ontology. More deeply, a relation
between entities of the source ontology and entities of the target ontology can
be characterized. This relation is not restricted to the equivalence relation, but
can be more sophisticated operators (e.g. subsumption, incompatibility, or even
some fuzzy relation). A strength denotes the confidence held in this correspon-
dence. Finally, an arity allows to note if the mapping is injective, surjective and
total or partial on both side.

An API5 has been developed for this format, with a default implementation,
which eases the integration and the composition of new alignment algorithms, the
generation of transformations and axioms, and the alignment comparison. All the
classifiers detailed in the section 3 have been implemented to be compatible with
this API, thus easing their chaining. Therefore, our oMAP framework benefits
from all the evaluation facilities for comparing our approach with other methods
as we will see in the next section.

5 Evaluation

The problem of aligning ontologies has already produced some interesting works.
However, it is difficult to compare theoretically the various approaches proposed
since they base on different techniques. Hence, it is necessary to compare them
on common tests. This was the goal of an International Ontology Alignment
Contest (EON) [26] who has set up benchmark tests for assessing the strengths
and weakness of the available tools (section 5.1). We present the metrics used
(section 5.2), and evaluate thoroughly our new approach with respect to the
other competitors of this contest (section 5.3).

5.1 The EON Ontology Alignment Contest

The EON “Ontology Alignment Contest”6 has been designed for providing some
evaluation of ontology alignments algorithms. The evaluation methodology con-
sisted in publishing a set of ontologies to be compared with another ontology.
The participants were asked to provide the results in a particular format (see
section 4.2). Along with the ontologies, a reference alignment was provided [26].
5 http://co4.inrialpes.fr/align/.
6 http://oaei.inrialpes.fr/2004/Contest/.



The set of tests consisted in one medium OWL ontology (33 named classes, 39
object properties, 20 data properties, 56 named individuals, and 20 anonymous
individuals) to be compared to other ontologies. This initial ontology was about
a very narrow domain (bibliographic references). There were three series of tests
[26]:

– simple tests: compare the reference ontology with itself, with another irrel-
evant ontology or the same ontology in its restriction to OWL-Lite;

– systematic tests: obtained by discarding some features of the initial ontol-
ogy leaving the remainder untouched. The considered features were (names,
comments, hierarchy, instances, relations, restrictions, etc.).

– complex tests: four real-life ontologies of bibliographic references that were
found on the web and left untouched.

5.2 Metrics

Standard information retrieval metrics are used to assess the different approaches.
Let R the set of reference alignments (|R| its cardinality), and A the set of
alignments obtained by a certain method (|A| its cardinality). The definitions of
precision and recall are then given by: Precision = |R ∩ A|/|A| and Recall =
|R ∩ A|/|R|. Precision measures then the ratio between the number of correct
alignments and the number of all mappings found, while recall measures the
ratio between the number of correct alignments and the total number of cor-
rect mappings that should be found. Traditional precision and recall are defined
in a analogous way, but with equality as similarity measure. In addition, we
also combine precision and recall in the F-measure and the overall-measure:
F = 2 · precision · recall/(precision + recall) and O = recall · (2− 1/precision).

5.3 Results and Discussion

There were four teams entering the EON initiative (Stanford/SMI, Fujitsu, IN-
RIA & UoMontréal and Karlsruhe) [26]. Among the three test sets, the most
difficult one was the last one with real world (but above all various heterogene-
ity). The first one was quite easy. The second set of test was indeed able to help
identifying where the algorithms were more handicapped (especially when they
were unable to match strings). Table 3 gives the precision/recall, and the Table
4, the F-measure/O-measure of oMAP with respect to the other competitors.
Clearly, during the presentation of the results at the EON workshop, there were
two groups of competitors and clear winners, since it seems that the results pro-
vided by Stanford and Fujitsu/Tokyo outperform those provided by Karlsruhe
and Montréal/INRIA. We have developed our framework after this contest but
use the same benchmark tests in order to compare our approach with the current
best alignments. At first sight, we should be in the first group. In fact, it can be
considered that these constitute two groups of programs. The Stanford+Fujitsu
programs are very different but strongly based on the labels attached to entities.
For that reason they performed especially well when labels were preserved (i.e.,



algo karlsruhe2 umontreal fujitsu stanford oMAP

test Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

101 n/a n/a 0.59 0.97 0.99 1.00 0.99 1.00 1.00 0.96
102 NaN NaN 0.00 NaN NaN NaN NaN NaN NaN NaN
103 n/a n/a 0.55 0.90 0.99 1.00 0.99 1.00 1.00 0.96
104 n/a n/a 0.56 0.91 0.99 1.00 0.99 1.00 1.00 0.96

201 0.43 0.51 0.44 0.71 0.98 0.92 1.00 0.11 0.92 0.08
202 n/a n/a 0.38 0.63 0.95 0.42 1.00 0.11 0.92 0.08
204 0.62 1.00 0.55 0.90 0.95 0.91 0.99 1.00 0.96 0.82
205 0.47 0.60 0.49 0.80 0.79 0.63 0.95 0.43 0.82 0.64
206 0.48 0.60 0.46 0.75 0.85 0.64 1.00 0.46 0.92 0.16
221 n/a n/a 0.61 1.00 0.98 0.88 0.99 1.00 0.90 0.95
222 n/a n/a 0.55 0.90 0.99 0.92 0.98 0.95 0.88 0.95
223 0.59 0.96 0.59 0.97 0.95 0.87 0.95 0.96 0.91 0.97
224 0.97 0.97 0.97 1.00 0.99 1.00 0.99 1.00 0.92 0.98
225 n/a n/a 0.59 0.97 0.99 1.00 0.99 1.00 0.90 0.95
228 n/a n/a 0.38 1.00 0.91 0.97 1.00 1.00 0.81 0.97
230 0.60 0.95 0.46 0.92 0.97 0.95 0.99 0.93 0.95 0.91

301 0.85 0.36 0.49 0.61 0.89 0.66 0.93 0.44 0.67 0.41
302 1.00 0.23 0.23 0.50 0.39 0.60 0.94 0.65 0.70 0.63
303 0.85 0.73 0.31 0.50 0.51 0.50 0.85 0.81 0.47 0.42
304 0.91 0.92 0.44 0.62 0.85 0.92 0.97 0.97 0.81 0.72

Table 3. Precision and recall of oMAP with respect to the other competitors of EON

most of the time). The Karlsruhe+INRIA systems tend to rely on many different
features and thus to balance the influence of individual features, so they tend to
reduce the fact that labels were preserved. Our mixed approach tend to success
on both case even if we dispose yet of a large progression margin.

6 Related Work

The alignment problem for ontologies, as well as the matching problem for
schemas, has been addressed by many researchers so far and are strictly re-
lated. Some of the techniques applied in schema matching can be applied to
ontology alignment as well, taking additionally into account the formal seman-
tics carried out by the taxonomies of concepts and properties and the axioms of
the ontology.

Related to schema matching are, for instance, the works [5, 6, 11, 18] (see [23]
for a more extensive comparison). As pointed out above, closest to our approach
is [11] based on a logical framework for data exchange, but we incorporated
the classifier combinations (like GLUE) into our framework as well. GLUE [6,
5] employed a linear combination of the predictions of multiple base learners
(classifiers). The combination weights are learned via regression on manually
specified mappings between a small number of learning ontologies. The main
improvement of our approach with respect to this system is then the structural
classifier which is able to align two ontologies solely on their semantics, and
without the presence of individuals.



algo karlsruhe2 umontreal fujitsu stanford oMAP

test F O F O F O F O F O

101 n/a n/a 0.73 0.30 0.99 0.99 0.99 0.99 0.98 0.96
102 n/a n/a NaN NaN NaN NaN NaN NaN NaN NaN
103 n/a n/a 0.68 0.16 0.99 0.99 0.99 0.99 0.98 0.96
104 n/a n/a 0.69 0.19 0.99 0.99 0.99 0.99 0.98 0.96

201 0.46 0.0-16 0.54 0.0-20 0.95 0.90 0.20 0.11 0.15 0.07
202 n/a n/a 0.48 0.0-38 0.58 0.40 0.20 0.11 0.15 0.07
204 0.76 0.38 0.68 0.16 0.93 0.87 0.99 0.99 0.88 0.79
205 0.53 0.0-6 0.61 0.0-3 0.70 0.46 0.59 0.41 0.72 0.50
206 0.54 0.0-4 0.57 0.0-14 0.73 0.53 0.63 0.46 0.27 0.15
221 n/a n/a 0.76 0.36 0.92 0.86 0.99 0.99 0.92 0.84
222 n/a n/a 0.68 0.16 0.95 0.91 0.96 0.92 0.91 0.82
223 0.73 0.30 0.73 0.30 0.91 0.82 0.95 0.90 0.94 0.87
224 0.97 0.93 0.98 0.97 0.99 0.99 0.99 0.99 0.95 0.89
225 n/a n/a 0.73 0.30 0.99 0.99 0.99 0.99 0.92 0.84
228 n/a n/a 0.55 0.0-66 0.94 0.88 1.00 1.00 0.88 0.74
230 0.73 0.31 0.62 0.0-14 0.96 0.92 0.96 0.92 0.93 0.86

301 0.51 0.30 0.54 0.0-1 0.75 0.57 0.60 0.41 0.51 0.21
302 0.37 0.23 0.31 -1.0-20 0.47 0.0-35 0.77 0.60 0.66 0.36
303 0.79 0.60 0.38 0.0-60 0.51 0.02 0.83 0.67 0.44 -0.05
304 0.92 0.83 0.51 0.0-17 0.89 0.76 0.97 0.95 0.76 0.55

Table 4. F-Measure and overall-measure of oMAP with respect to the other competi-
tors of EON

Among the works related to ontology alignment, [8, 7] propose to combine
different similarity measures from pre-existing hand-established mapping rules.
Besides the validity of these rules could be generally put into question, this
method suffers from not being fully automatic. [20] has developed an interesting
approach: from anchor-pairs of concepts that seem to be close (discovered au-
tomatically or proposed manually), their hors-context similarity are computed
analyzing the paths in the taxonomy that link the pairs of concepts. This method
has been implemented into the Anchor-Prompt tool which has, until now, one
of the best performance (see section 5.3). [10] have adapted works on similarity
calculus for object-based knowledge representation languages to the Semantic
Web languages. A global similarity measure taking into account all the features
of the OWL-Lite language has been proposed, capable to treat both the circular
definitions and the collections. For a complete state of the art on the numerous
ontology alignment approaches proposed, see [16].

7 Conclusion and Future Work

As the number of Semantic Web applications is growing rapidly, many individual
ontologies are created. The development of automated tools for ontology align-
ment will be of crucial importance. In this paper, we have presented a formal
framework for ontology Matching, which for ease we call oMap. oMap uses differ-
ent classifiers to estimate the quality of a mapping. Novel is the classifier which
uses the structure of the OWL constructs and thus the semantics of the enti-



ties defined in the ontologies. We have implemented the whole framework and
evaluated it on independent benchmark tests provided by the EON “Ontology
Alignment Contest” [26] with respect to the other competitors.

As future work, we see some appealing points. The combination of a rule-
based language with an expressive ontology language like OWL has attracted
the attention of many researchers [14] and is considered now as an important re-
quirement. Taking into account this additional semantics of the ontologies appear
thus necessary. Additional classifiers using more terminological resources can be
included in the framework, while the effectiveness of the machine learning part
could be improved using other measures like the KL-distance. While to fit new
classifiers into our model is straightforward theoretically, practically finding out
the most appropriate one or a combination of them is quite more difficult. In the
future, more variants should be developed and evaluated to improve the overall
quality of oMAP. Furthermore, instead of averaging the classifier predictions,
the appropriateness of each classifier could be learned via regression. In a close
future, we plan to participate actively to the 2005 campaign of the Ontology
Alignment Evaluation Initiative7.
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