
 

 

  
Abstract—Schema matching plays a key role in many different 

applications, such as schema integration, data integration, data 
warehousing, data transformation, E-commerce, peer-to-peer data 
management, ontology matching and integration, semantic Web, 
semantic query processing, etc. Manual matching is expensive and 
error-prone, so it is therefore important to develop techniques to 
automate the schema matching process. In this paper, we present a 
solution for XML schema automated matching problem which 
produces semantic mappings between corresponding schema 
elements of given source and target schemas. This solution 
contributed in solving more comprehensively and efficiently XML 
schema automated matching problem. Our solution based on 
combining linguistic similarity, data type compatibility and structural 
similarity of XML schema elements. After describing our solution, 
we present experimental results that demonstrate the effectiveness of 
this approach. 
 

Keywords—XML Schema, Schema Matching, Semantic 
Matching, Automatic XML Schema Matching. 

I. INTRODUCTION 
CHEMA matching is a manipulation process on schemas 
that takes two heterogeneous schemas (possibly have 

auxiliary information) as input and produces as output a set of 
mappings that identify semantically relation between elements 
of the two schemas. Several applications relying on schema 
matching have arisen and have been widely studied in 
database and artificial intelligent domains, such as schema 
integration, data integration, data warehousing, data 
translation, peer-to-peer data management, ontology matching 
& integration, semantic Web, semantic query processing, etc. 
[1], [2], [3]. De factor there are great challenges on 
development solution for schema matching problem. First of 
all, semantic analysis of the schemas is been needed in this 
process.  In other words, we have to deduce the schema’s 
mining. However the schemas are designed by different 
creators with different minings and goals. Second,  exploitation 
of information of schema matching meets with seriuos difficulties 
because we have to exploit a huge amount chaotic informations for 
example schema description document, schema data source, etc. 
From that analysis, we can find out that schema matching is difficult 
to implement manually. The development solution for automatic 
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schema matching is very important and nessesary. Nowadays many 
approachs and solutions are proposed. Schema matching 
approaches generally use a combination of such methods to 
run the matching process. These approaches have been 
proposed many solutions that combine existing algorithms as 
well as new developed algorithms to achieve optimal matches. 

Nowadays the XML became popular standard for 
effectively and appropriately data presentation and 
interchange through Web. The demand of using the XML is 
increasing and a huge amount of XML data is created.  
Together with this increasing, a huge amount of XML 
schemas also is created [20], [21], [22].  Therefore the 
problem of XML schema matching has been became 
important and received increasing interest. Up to now, many 
approaches have been produced to solve automatic XML 
schema matching problem. The approaches in Database 
management and Artificial intelligence have given effectively 
XML schema matching solution. However almost all of them 
are based on idea to extend the solution applied on exits 
model into the XML schemas [20], [21], [22]. Only some of 
works focused directly attention of DTD and XML schemas 
[12], [19]. Besides, very few solutions considered proposing a 
solution in order to solve automatic XML schema matching 
problem comprehensively and efficiently. In this paper, we 
contributed in proposing such a solution. In this paper we also 
presented the problem of clustering XML schemas, which is a 
first important task in data integration systems - typical 
application of schema matching solution.   

In the rest of the paper, section II overviews current 
approaches for schema matching problem, describe existing 
matching algorithms as well as analyze strengths and 
weaknesses of these. Section III-IV describes the approach 
that we present; consist of data model represent XML schema 
and element similarity measurement (a combination of 
linguistic similarity measurement, data type compatibility and 
structural similarity measurement). Section V presents an 
evaluation study. Section VI describes briefly the problem of 
clustering the XML schema of XML data sources. Finally, 
section VII is the conclusion and future directions. 

II. TYPICAL APPROACHES FOR SCHEMA MATCHING 
PROBLEM 

 As we have described in section I, up to now there are 
many solutions to automatic schema matching and this 
approaches have focused on most of aspects in matching 
process, from data model, linguistic matching, and structural 
matching to structural matching. In this section we summarize 
this works and analyze strengths and weaknesses of these. 
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Based on such parsing, in section III and section IV we 
propose a solution for XML automated schema matching 
more comprehensively and efficiently. 

There are several approaches on development the schema 
matching solution. Several works have employed machine-
learning techniques to perform matching, such as learner-
based approach or neural network approach [2]. Schema 
matching tools that employ machine learning usually consist 
of a number of modules, called learners, and a specific 
module, the meta-learner to directs them. Neural network 
approaches employ advantage of neural networks to determine 
the similarity between data sources. Another approach also 
has been proposed for schema matching problem, object-
oriented approach [3]. This approach exploits object-oriented 
characteristics to discover relationships between attributes in 
data sources. Besides, several works have used metadata 
approach, however, this approach does not solve the problem 
but just shifts the problem to mapping data sources and 
schemas to mapping ontology [3]. One typical approach to 
schema matching problem is that rule-based approach. The 
majority of current schema matching tools employs rules to 
match heterogeneous schemas [3], [4], [5]. Rule based 
solutions exploit schema information such as element names, 
data types, element constraints, structure hierarchy, etc. 

Currently all of the methods of schema matching use 
schema information from the schema as the name of element, 
constraints of structures. Based on the studies and the surveys 
on the field of schema matching, we classify the most 
effective schema matching methods into three categories: 
linguistic matching, constraint-based matching and structural 
matching [1], [3].  In linguistic matching phase, existing 
algorithms generally combine several methods. A common 
solution is used to compute similarity between element names 
is that using strings matching [6]. To consider semantic 
relationships between element names, current linguistic 
matching solutions generally based on WordNet, a lexical 
database for English [7]. Authors in [8] have described and 
evaluated these algorithms completely. However, very few 
approaches show explicit how they exploit WordNet. A 
significant linguistic matching approach is proposed in [4] is 
that parsing element names proceeds in three steps: 
normalization, categorization and comparison. This approach 
produces a linguistic matching solution more comprehensively 
and efficiently. However, despite using any methods linguistic 
matching may produce high similarity scores even though the 
nodes do not semantically correspond to each other, thus we 
need techniques that can adjust such incorrectness. 

Current approaches generally consider further schema 
constraints as a first step to adjust incorrect results that are 
obtained from linguistic matching phase. One of the most 
common solutions is consider data type compatibility. XML 
schema recommendation provides many different built-in data 
types and regular expressions, therefore, it is probably use 
such information in order to construct a data type 
compatibility table that support to linguistic matching phase 
[4]. In addition, we can use research as in [11] to extend data 

type compatibility measurement. 
Structural matching is used to adjust incorrect matches from 

matching phases described in sections 3.2 and 3.3. However, 
up to now, very few studies on schema matching concerning 
XML’s structure, since most of these are studies in database 
domains and thus consider essentially with relational schemas 
[1], [3]. Structural matching phase is generally consider 
structural similarity, in other words, similarity of contexts in 
which elements appear. There are three kinds of contexts for 
schema elements: the ancestor-context, the children-context 
and the leaf-context. Such notion of context is defined based 
on notion of path in schema graphs [12]. Authors in [12] also 
have proposed context similarity measurements, but they 
concerning only DTDs without XML schemas, in addition, 
they consider only child-context and leaf-context similarity. 
Cupid [4] and Similarity Flooding (SF) [5] systems have 
produced notion of context similarity, however none of them 
consider the three kinds of contexts: Cupid used only leaf-
context similarity and SF used only child-context similarity. 
Authors in [15] have considered structural similarity based on 
ancestors and descendants relationships between schema 
elements, however they concerning only version change 
problems between XML documents, so this approach is not 
very significant in schema matching problem. 

A next natural development of schema matching process is 
that creating the mapping between similar elements. Such 
mappings play important role in many applications, such as 
data integration, data warehousing, especially data 
transformation. Data transformation. As we known, XML 
schema features concerning sub typing, abstract types and 
substitution group mechanisms generally represent designer 
point of view, so we could use them as a set of meta-data to 
help the matching process to discover both direct and complex 
mappings [11]. Several studies (essentially in data integration 
field) described operations for creating virtual views over 
schemas. For example, authors in [11] have specified a set of 
operations for performing queries reformulations in data 
integration systems. Besides, studies in the area of tree 
matching concerned with the change detection problem for 
labeled trees [16]. They propose essentially three edit 
operations for matching trees: delete, insert, relabel. However, 
in the XML context, relabel one node into another 
semantically unrelated node causes an undesirable matching. 

Generally, existing XML schema matching solutions still 
present several limitations, essentially for application domain 
reasons. For this reason, it is important to present a solution 
that solving more comprehensively and efficiently XML 
automatic schema matching problem. In the rest of the paper, 
we contributed in developing such a solution and hope that 
this solution is a step towards the optimal matching solution. 

III. MODELING XML SCHEMA 
Data model that represent XML schema is an important 

problem in XML schema matching. Data model is able to 
normalize schemas that are represented by different schema 
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languages, thus eliminating syntax differences between 
schemas. Several authors have suggested to modeling XML 
schemas on the basis of the Unified Model Language (UML) 
[13]. Another approach design XML schemas according to 
object-oriented models [14]. Another approach shifts XML 
schemas into trees [4]. In addition, there are some approaches 
as described in [1], [3]. The most significant approach is that 
represent schemas as labeled graphs [5]. Although such 
methods produce modeling foundations to design XML 
schemas but they do no show how the way properties and 
constraints are assigned to schema elements. 

A. Schema graph 
Based on ideas have produced in [4], [5], [19] in this 

approach, we produce a model for representing semantically 
XML schemas in term of directed labeled graphs with 
constraint sets that be defined over both nodes and edges, 
called schema graphs. Generally, such model allows to exploit 
all of features of XML schema, an aspect that be considered in 
very few existent schema matching solutions (Figure 1). The 
formal definition of the schema graph is given in [19]. Our 
interest is limited to method representation and method of 
installation of XML schemas applying for following 
calculation of schemas similarity. 

B. Nodes and edges in the schema graph 
As in [4], [5], [19] we classify schema graph nodes into two 

kinds: atomic nodes and complex nodes. Atomic nodes are the 
leaf nodes in the schema graph. Each of them has a simple 
content, which is atomic value (string, integer, date, etc.), list 
value or union value. Complex nodes are the internal nodes in 
the schema graph. Each of them has a complex content, which 
refers to some other nodes through directed labeled edges. In 
figure 1, nodes Name and Address are atomic nodes, while 
Nodes University and Library are complex nodes. We also 
distinguish three kinds of edges indicating containment, 
association and property relationships. A containment 
relationship, denoted c, is a composite relationship, in witch a 
composite node (“whole”) consists of some component nodes 
(“parts”). A property relationship, denoted p, specifies the 
subsidiary attribute of a node. Last, an association 
relationship, denoted a, is a structural relationship, specifying 

that both nodes are conceptually at the same level. Such 
relationships are generally bidirectional; they essentially 
model key/keref and substitution group mechanisms. Three 
above relationships are represented in figure 1, such as 
relationships between Nodes University and Name, University 
and Address, Journal-article and Journal respectively. 

C. Constrains in the schema graph 
Constraints in the schema graph including constraints over 

an edge, a set of edges and a node. Typical constraints over an 
edge are cardinality constraints. Cardinality constraints over a 
containment edge specify the cardinality of child with respect 
to its parents. Cardinality constraints over a property edge 
indicate that attribute of a given node is optional or 
mandatory. The default cardinality specification is [1..1]. 

Constraints over a set of edges include: (1) ordered 
composition, is defined for a set of containment relationship 
and used for modeling XML schema “sequences” and “all” 
mechanisms, (2) exclusive disjunction, is applied to 
containment edges and used for modeling XML schema 
“choice” mechanism, and (3) referential constraint, is applied 
to association edges and used for modeling XML schema 
referential constraint. Such constraints are generally modeled 
through a join predicate. 

The last ones are constraints over a node, including 
uniqueness and domain constraints. The uniqueness constraint 
requires each of appearances of a node to have unique content. 
Domain constraint essentially consider the content of atomic 
nodes, such constraints are very broad. For example, they can 
restrict the legal range of numerical values by giving the 
maximal/minimal values. 

IV. ELEMENT SIMILARITY MEASURE 

To computing element similarity, current schema matching 
approaches generally combine several matching methods. 
Based on such studies, especially the study in [12], [19], we 
present a process of element similarity measure as be 
illustrated in Figure 2. In the following sections, we further 
detail each phase of such process. 
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A. Linguistic similarity measure 
In this solution, to measure linguistic similarity, we 

essentially combine two basic solutions that have described in 
section 2. For schema element names that include 
abbreviations, acronyms, punctuations, etc., we perform 
analyzing element names proceeds in three steps: (1) parsing 
names into tokens; (2) identifying abbreviations, and 
acronyms; and (3) discarding prepositions, articles, etc.). 
Detailed description could be found in [4]. In Cupid, linguistic 
similarity is based on the name similarity of elements, which 
is computed as a weighted mean of the per-token-type name 
similarity. This solution presents some limitation because of 
relying only on string matching methods. In our solution, to 
identify relation between words, instead of using above 
methods, we exploit WordNet and construct a domain-specific 
dictionary. Almost schema matching algorithms use WordNet 
for text processing. Budanisky proposed a survey of these 
algorithms, including Hirst and St-Onge algorithm, the 
Leacock and Chodorow algorithm, Jiang and Conrath 
algorithm, Resnik algorithm and Lin algorithm [2]. Based on 
the survey and performed experiments, Budanisky concluded 
that the Jiang and Conrath algorithm provides highest 
accuracy. We developed the solution based on Hirst and St-
Onge algorithm [8], [9], [19]. We constructed domain-specific 
dictionaries for experimented schemas. Such method quite 
applies to other domain-specific schemas. For data type 
names, we can apply the same algorithm as above, but to 
simplify this problem, in this solution, we assume that nodes 
have the same names as their types. 

B. Datatype compatibility measure 
For datatype compatibility, we essentially use a datatype 

compatibility table that gives a similarity coefficient between 
two given XML schema built-in datatypes, such as the one 
used in [4] (Table I). After computing datatype compatibility 
coefficients, we can adjust linguistic similarity of atomic 
nodes that linguistic similarity between them exceeds a fixed 
threshold (Algorithm 1). Result of above process is an 

adjusted linguistic similarity matrix for elements in source and 
target schemas. To simplify the problem, in proposed solution 
we haven’t consider datatype, defined by user. To solving the 
global problem of datatype defined by user we can use 
expanding research on datatype compatibility and hierarchical 
designed datatype  [11], [19]. 

C. Structural similarity measure 
In our approach, structural matching is performed relies on 

node context matching with supposition that two nodes are 
structurally similar if they have similar contexts. The context 
of a node is defined as the union of its ancestor-context, its 
child-context and its leaf-context. In the following we 
describe the basic steps to compare the contexts of two 
schema elements. 

1) Path similarity measure 
In order to compare two contexts, we essentially need to 

compare two paths. Authors in [12] have introduced the 
concepts of Path Context Coefficient to capture the degree of 
similarity in the paths of two elements. However, this solution 
has not high matching accuracy. For this reason, here we 
represent each path as a set of string elements, each element 
represent a node name, and then use the ideas of path 
similarity measure have been described in [10], [19]. In [19] is 
described the combination of query answer and tree pattern to 
achieve optimal path similarity. To applying the path 
similarity measure to the schema matching solution we 
following improvements: 
• Relaxing the matching conditions by allow matching paths 

even if their source nodes do not match and their nodes 
appear in a different order. In addition, paths can also be 
matched even if there are additional nodes within the path, 
meaning that the child-parent edge constraint is relaxed 
into ancestor-child constraint. Such relaxations are 
inspired by ideas in query answering to approximate 
answering of queries (including path queries). 

• Allowing two elements within each path to be matched 
even if they are not identical but their linguistic similarity 
exceeds a fixed threshold. That is, ordinary string 
comparison is now relaxed into string comparison that 
based on similarity threshold. 

Based on criteria for matching the paths shown in [10], [19] 
we propose 4-step method for calculation of path similarity as 
follow: 
• Using a classical dynamic programming algorithm in order 

to compute the Longest Common Subsequence (LCS) with 
relaxations that have described above, denoted lcsE, and 
then normalizing it to obtain a coefficient in [0,1], denoted 

Algorithm 1: linguistic similarity and 
datatype compatibility measure 

for (s ∈ NS) 
for (t ∈ NT) 
 lsim(s,t) = linguistic_similarity(s,t); 

for (s ∈ NAS) //atomic nodes of source 
for (t ∈ NAT) //atomic nodes of target 
 if (lsim (s,t)> th) { 

dsim (s,t) = datatype_compatibility(s,t);

LS(s,t) = lω *lsim(s,t)+ tω *dsim(s,t); 

} 
for (s ∈ NS) 

for (t ∈ NT) 
 SimMatrix = SimMatrix ∪ (s,t,LS(s,t)); 

Parameters in above algorithm are given based on experimental  
results from [11]: lω  = 0.5, tω  = 0.5. 

 
Fig. 2 Element similarity measure process 

TABLE I 
DATATYPE COMPATIBILITY COEFFICIENT TABLE 

Type (s) Type (t) Compatibility coefficient (s, t) 
string string 1.0 
string date 0.2 
decimal float 0.8 
float float 1.0 
float integer 0.9 
integer short 0.8 
… … … 
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LCS. 

• Next, computing average positioning of the optimal 
matching, denoted AOP, and then using the LCS 
algorithm to compute the actual average positioning, 
denoted AP. Last, we compute coefficient indicating how 
far the actual positioning is from the optimal one, denoted 
POS. 

• Next, capture the LCS alignment with minimum gaps by 
using another version of the LCS algorithm as have 
described in [18], from there compute this score that we 
note gaps, and then normalizing it to obtain a coefficient in 
[0,1], denoted GAPS. 

• Last, computing the length difference between a source 
path and LCS between such source path and target path, 
denoted LD, and then normalizing it to obtain a coefficient 
in [0,1], denoted LD. 

Finally, path similarity measurement is obtained by 
combining all the above measures (Algorithm 2). 

2) Context similarity measure 
In the following we describe context similarity measure 

(including ancestor-context, child-context and leaf-context).  
Ancestor-context similarity between two nodes is obtained 

by comparing their respective ancestor-contexts and weighted 
by the terminological similarity between them. Concretely, to 
measure ancestor-context similarity between two nodes, we 
can use follow formula: 
AncestorContextSim(n1, n2)=PS((root, n1),(root, n2))*LS (n1, 
n2); 

where LS is gained from Algorithm 1 and PS is gained 
from Algorithm 2. 

Child-context similarity between two nodes is obtained by 

(1) computing the terminological similarity between each pair 
of children in the two children sets of them; (2) selecting the 
matching pairs with maximum similarity values and (3) taking 
the average of best similarity values. Algorithm 3 describes 
detailed process of calculation of child-context similarity 
between two nodes. 

Last, leaf-context similarity between two nodes is obtained 
by comparing their respective leaves sets. Here, the similarity 
between two leaves is obtained by combining context 
similarity (from current node to their leaf) and linguistic 
similarity between them. Concretely, to measure the leaf-
context similarity between two nodes, we can use follow 
formula: 

LeafSim(l1, l2) =  PS((n1, l1),(n2, l2)) * LS(l1, l2); 
where LS is gained from Algorithm 1 and PS is gained from 
Algorithm 2. 

Algorithm 2: path similarity measure 

//Longest Common Subsequence 
LCS(P1,P2) = |lcsE(P1, P2)|/|P1|; 

//Average position 
POS(P1,P2) = 1 - ((AP(P1,P2)–AOP(P1,P2))/(|P2|-
2*AOP(P1,P2)+1)); 

//LCS with minimum gaps 
GAPS(P1,P2) = gaps/(gaps + LCS(P1,P2)); 

//Length differences 
LD(P1,P2) = (|P2|- LCS(P1,P2))/|P2|; 

//Path similarity measure 
PS(P1,P2) = α*LCS(P1,P2)+β*POS(P1,P2)–
γ*GAPS(P1,P2)–δ*LD(P1,P2); 

where: 
• 0 ≤ α, β, γ, δ ≤ 1. 
• α + β = 1 so that  PS (P1,P2) = 1 in case of a perfect match. 
• γ and δ much be chosen small enough so that PS cannot take a 
negative value. 

Parameters in above algorithm are given based on experimental  
results from [10]: α = 0.75; β = 0.25; γ=0.25; δ=0.2 

Algorithm 3 : context similarity measure 

//Ancestor context similarity measure 
AncestorContextSim(n1,n2) = 
 PS((root,n1),(root,n2))*LS (n1,n2); 

//Child context similarity measure 
best_pairs = ∅; 
while (SimMatrix ≠ ∅) { 
   select (n1k,n2h,sim) where 
 sim = max i∈[1,n], j∈[1,m] 
{(n1i,n2j,lsim)∈SimMatrix}; 

best_pairs = best_pairs ∪ (n1k,n2h,sim); 
SimMatrix = SimMatrix \ {(n1k,n2j,sim)|j=1,…,m}\
          {(n1i,n2h,sim)|i=1,…,n}; 

} 

ChildContextSim = 1 2( , , ) _

max( , )

i jn n sim best pairs

m n

sim
∈

∑
; 

//Leaf context similarity measure 
for (l1i ∈ leaves(n1)) 

for (l2j ∈ leaves(n2) { 
LeafSim(l1i, l2j) = 

 PS((n1,l1i),(n2,l2j))*LS(l1i,l2j); 
 SimMatrix = SimMatrix ∪ 
 (l1i,l2j,LeafSim(l1i,l2j)); 
} 

best_pairs = ∅ ; 
while (SimMatrix ≠ ∅) { 
   select (n1k,n2h,sim) where 
   sim = max i∈[1,n], j∈[1,m]  
 {(n1i,n2j,LeafSim)∈SimMatrix }; 

best_pairs = best_pairs ∪ (n1k,n2h,sim); 
SimMatrix = SimMatrix \ {(n1k,n2j,sim)|j=1,…,m}\
          {(n1i,n2h,sim)|i=1,…,n}; 

} 

LeafContextSim = 1 2( , , ) _

max( , )

i jl l LeafSim best pairs
LeafSim

m n

∈
∑

; 
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The leaf context similarity between two nodes is obtained 
by (1) computing the leaf similarity between each pair of 
leaves in two leaves sets; (2) selecting the matching pairs with 
maximum similarity values and (3) taking the average of best 
similarity values. 

Algorithm 3 describes detailed process of calculation of   
leaf-context similarity between two nodes.   

D. Element similarity measurement 
Element similarity is computed by combining all the above 

measures (linguistic similarity, datatype compatibility and 

context similarity). The similarity between two nodes is 
computed by weighted sum of their ancestor context 
similarity, their child-context similarity and their leaf context 
similarity. The formula for calculation of element similarity is 
as follow: sim(n1, n2) = α*AncestorContextSim(n1, n2) + 
β*LeafContextSim(n1, n2) + γ*ChildContextSim(n1, n2); 

where α, β, γ are coefficients specifying role of the 
similarities (linguistic similarity, datatype compatibility and 
context similarity).  

Here α + β + γ = 1 and α ≥ 0, β ≥ 0, γ ≥ 0. 
Depending on the position of the nodes in schema, we can 

distinguish follow cases:  (1) both nodes are atomic nodes: the 
similarity between two nodes is computed by the similarity of 
their respective ancestor context weighted by their 
terminological similarity; (2) one of the two nodes is an atomic 

node: the similarity between the two nodes is computed by 
weighted similarity of their ancestor and leaf contexts 
(Algorithm 4). 

V. EVALUATION 
To implementing the solution we have installed above 

algorithms using Java and JWNL to exploit  the WordNet and 
package XSOM to analyse XML schemas. To evaluate 
proposed solution, we used 5 XML schemas for purchase 
orders taken from www.biztalk.org (also provided in [6]). 
Table II summarizes the characteristics about such schemas. 
Look at this table; we can see that except for schema 1, in 
other schemas, the number of paths is different from the 
number of nodes, indicating the use of shared fragments in the 
schemas (i.e., there are association edges in the schema 
graph). 

A. Matching quality measure 
In this section, we consider the matching quality of 

proposed solution based on criteria have described in [5], [6], 
including Precision, Recall, F-measure and Overall. We have 
implemented all schemas from the source and calculated these 
criterions. Before dictionary correction the experiment results 
show that the criterion Precision, Recall, F-measure and 
Overall are 91%, 83%, 84% and 79%. After correction of the 
dictionary conformable to the domain of schemas, the 
experiment results show that Precision, Recall, F-measure and 
Overall are 95%, 86%, 88% and 82% (Table III). 

B. Comparison with several systems 
We have implemented again Cupid algorithm and test with 

above source schemas. As we known, SF is one of algorithms 
that have equivalent effect with Cupid. In this comparative 
study, we do not consider such algorithm because it can be 
compared with Cupid based experimental results that have 
described in [5]. In general, all criterion received our solution 
are better than Cupid algorithm’s ones. Such comparative 
results are illustrated in Figure 3. As in [5], we can see SF 
consider essentially the similarity of child nodes, so, its 
matching quality even is lower than Cupid. Whereas, in our 
solution, we have considered all of ancestor-context, child-
context and leaf-context. 

VI. CLUSTERING XML SCHEMAS 
As shown in the section I, an XML schema clustering is 

very important problem in data integration system. Solving 
XML schemas clustering requires combination of techniques 
and methods. In [12] is described the algorithm for clustering 
DTD based on calculation element similarity in source DTD 

Algorithm 4 : element similarity measure 

if (both n1 and n2 are atomic nodes) 
sim(n1,n2) = AncestorContextSim(n1,n2); 

else if(n1 is a atomic node and n2 is not){ 

LeafContextSim (n1,n2) = 2 2

2 1
( )

2

( , )

| ( ) |
i

i
l leaves n

lsim

leaves

l n

n
∈
∑

; 

sim(n1,n2) =  α*AncestorContextSim(n1,n2) + 
        β*LeafContextSim (n1,n2); 
} 

else { 
sim(n1,n2) = α*AncestorContextSim(n1,n2)+ 

β*LeafContextSim(n1,n2)+ 
γ*ChildContextSim(n1,n2); 

} 

//Creating element similarity coefficient 
matrix 
for (s ∈ NS) 

for (t ∈ NT) 
SimMatrix = SimMatrix ∪ (s,t,sim(s,t)); 

Parameters in above algorithm are given based on experimental  
results from [12]: α=0.33; β=0.33; γ=0.33. 

TABLE II 
CHARACTERISTICS OF TESTED SCHEMAS [6] 

Schemas 1 2 3 4 5 
Max depth 4 4 4 6 5 
# Nodes / paths 40/40 35/54 46/65 74/80 80/145 
# Inner nodes / paths 7/7 9/12 8/11 11/12 23/29 
# Leaf nodes / paths 33/33 26/42 38/54 63/68 57/116 
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and target DTD. This idea can be applied in to XML schemas 
clustering.  

We propose the sequence for clustering the SML schemas. 
The sequence includes two phases: (1) Calculation of the 
XML schemas similarity and  (2) Clustering XML schemas. 

In the first phase, the similarity between two schemas from 
the XML source is realized as the sum of all the best element 
similarity from the elements from two schemas. In the second 
phase, the clustering XML schemas is realized based on 
received in phase 1 the matrix of similarities and using 
algorithm for clustering XML schemas. We have installed 
proposed 4 algorithms for calculation of similarities and 
compared the experiment results with [12]. Based on 
evaluation in [12], we can conclude that clustering the XML 
schemas based on our solution gives better results. 

VII. CONCLUSION AND FUTURE DIRECTIONS 
In this paper we have described a solution for automatic 

XML schema matching problem. In this solution, we have 
combined several matching methods as well as using several 
ideas from studies in other fields in order to produce best 
matching results as well as possible. We implemented the 
solution and compared our implementation to two others. In 
future we will improve more linguistic phase as well as 
improve the performance of matching algorithms, especially 
linguistic algorithms. Currently, we used Hirst & St-Onge 
algorithm to exploit WordNet, however, such algorithm 
requires rather long computing time. Moreover, we plan to 
test the proposed solution using a broader and more complex 
data sources as well as compare it with some other solutions 
except Cupid and SF. One of the remarkable applications in 
schema matching is that automating translation, such as 
translating technical documents form English to Vietnamese. 
Current studies in automating translation generally use tree 
transformation methods, so their performance is limited. 

Schema matching could be a suitable solution to solve such 
problems. This is also one of the future directions that we are 
performing. 
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TABLE III 
MATCHING QUALITY MEASURE 

Measure Average Result 
Precision 95% 
Recall 86% 
F-measure 88% 
Overall 82% 
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