

Abstract—Schema matching plays a key role in many different

applications, such as schema integration, data integration, data
warehousing, data transformation, E-commerce, peer-to-peer data
management, ontology matching and integration, semantic Web,
semantic query processing, etc. Manual matching is expensive and
error-prone, so it is therefore important to develop techniques to
automate the schema matching process. In this paper, we present a
solution for XML schema automated matching problem which
produces semantic mappings between corresponding schema
elements of given source and target schemas. This solution
contributed in solving more comprehensively and efficiently XML
schema automated matching problem. Our solution based on
combining linguistic similarity, data type compatibility and structural
similarity of XML schema elements. After describing our solution,
we present experimental results that demonstrate the effectiveness of
this approach.

Keywords—XML Schema, Schema Matching, Semantic
Matching, Automatic XML Schema Matching.

I. INTRODUCTION
CHEMA matching is a manipulation process on schemas
that takes two heterogeneous schemas (possibly have

auxiliary information) as input and produces as output a set of
mappings that identify semantically relation between elements
of the two schemas. Several applications relying on schema
matching have arisen and have been widely studied in
database and artificial intelligent domains, such as schema
integration, data integration, data warehousing, data
translation, peer-to-peer data management, ontology matching
& integration, semantic Web, semantic query processing, etc.
[1], [2], [3]. De factor there are great challenges on
development solution for schema matching problem. First of
all, semantic analysis of the schemas is been needed in this
process. In other words, we have to deduce the schema’s
mining. However the schemas are designed by different
creators with different minings and goals. Second, exploitation
of information of schema matching meets with seriuos difficulties
because we have to exploit a huge amount chaotic informations for
example schema description document, schema data source, etc.
From that analysis, we can find out that schema matching is difficult
to implement manually. The development solution for automatic

Manuscript received May 25, 2007. This work was supported in part by the

Vietnam's Ministry of Science and Technology under Grant KHCB2.034.06.
Huynh Quyet Thang is the Head of Software Engineering Department,

Hanoi University of Technology, Hanoi, Vietnam (phone: 844-8682595; fax:
844-8692906; e-mail: thanghq@it-hut.edu.vn).

Vo Sy Nam is with the Dept. of Network & System Engineering, Faculty
of Information Technology, Hanoi University of Civil Engineering, Hanoi,
Vietnam (phone: 844-6280158; namvs@uce.edu.vn).

schema matching is very important and nessesary. Nowadays many
approachs and solutions are proposed. Schema matching
approaches generally use a combination of such methods to
run the matching process. These approaches have been
proposed many solutions that combine existing algorithms as
well as new developed algorithms to achieve optimal matches.

Nowadays the XML became popular standard for
effectively and appropriately data presentation and
interchange through Web. The demand of using the XML is
increasing and a huge amount of XML data is created.
Together with this increasing, a huge amount of XML
schemas also is created [20], [21], [22]. Therefore the
problem of XML schema matching has been became
important and received increasing interest. Up to now, many
approaches have been produced to solve automatic XML
schema matching problem. The approaches in Database
management and Artificial intelligence have given effectively
XML schema matching solution. However almost all of them
are based on idea to extend the solution applied on exits
model into the XML schemas [20], [21], [22]. Only some of
works focused directly attention of DTD and XML schemas
[12], [19]. Besides, very few solutions considered proposing a
solution in order to solve automatic XML schema matching
problem comprehensively and efficiently. In this paper, we
contributed in proposing such a solution. In this paper we also
presented the problem of clustering XML schemas, which is a
first important task in data integration systems - typical
application of schema matching solution.

In the rest of the paper, section II overviews current
approaches for schema matching problem, describe existing
matching algorithms as well as analyze strengths and
weaknesses of these. Section III-IV describes the approach
that we present; consist of data model represent XML schema
and element similarity measurement (a combination of
linguistic similarity measurement, data type compatibility and
structural similarity measurement). Section V presents an
evaluation study. Section VI describes briefly the problem of
clustering the XML schema of XML data sources. Finally,
section VII is the conclusion and future directions.

II. TYPICAL APPROACHES FOR SCHEMA MATCHING
PROBLEM

 As we have described in section I, up to now there are
many solutions to automatic schema matching and this
approaches have focused on most of aspects in matching
process, from data model, linguistic matching, and structural
matching to structural matching. In this section we summarize
this works and analyze strengths and weaknesses of these.

XML Schema Automatic Matching Solution
Huynh Quyet Thang, Vo Sy Nam

S

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

68

Based on such parsing, in section III and section IV we
propose a solution for XML automated schema matching
more comprehensively and efficiently.

There are several approaches on development the schema
matching solution. Several works have employed machine-
learning techniques to perform matching, such as learner-
based approach or neural network approach [2]. Schema
matching tools that employ machine learning usually consist
of a number of modules, called learners, and a specific
module, the meta-learner to directs them. Neural network
approaches employ advantage of neural networks to determine
the similarity between data sources. Another approach also
has been proposed for schema matching problem, object-
oriented approach [3]. This approach exploits object-oriented
characteristics to discover relationships between attributes in
data sources. Besides, several works have used metadata
approach, however, this approach does not solve the problem
but just shifts the problem to mapping data sources and
schemas to mapping ontology [3]. One typical approach to
schema matching problem is that rule-based approach. The
majority of current schema matching tools employs rules to
match heterogeneous schemas [3], [4], [5]. Rule based
solutions exploit schema information such as element names,
data types, element constraints, structure hierarchy, etc.

Currently all of the methods of schema matching use
schema information from the schema as the name of element,
constraints of structures. Based on the studies and the surveys
on the field of schema matching, we classify the most
effective schema matching methods into three categories:
linguistic matching, constraint-based matching and structural
matching [1], [3]. In linguistic matching phase, existing
algorithms generally combine several methods. A common
solution is used to compute similarity between element names
is that using strings matching [6]. To consider semantic
relationships between element names, current linguistic
matching solutions generally based on WordNet, a lexical
database for English [7]. Authors in [8] have described and
evaluated these algorithms completely. However, very few
approaches show explicit how they exploit WordNet. A
significant linguistic matching approach is proposed in [4] is
that parsing element names proceeds in three steps:
normalization, categorization and comparison. This approach
produces a linguistic matching solution more comprehensively
and efficiently. However, despite using any methods linguistic
matching may produce high similarity scores even though the
nodes do not semantically correspond to each other, thus we
need techniques that can adjust such incorrectness.

Current approaches generally consider further schema
constraints as a first step to adjust incorrect results that are
obtained from linguistic matching phase. One of the most
common solutions is consider data type compatibility. XML
schema recommendation provides many different built-in data
types and regular expressions, therefore, it is probably use
such information in order to construct a data type
compatibility table that support to linguistic matching phase
[4]. In addition, we can use research as in [11] to extend data

type compatibility measurement.
Structural matching is used to adjust incorrect matches from

matching phases described in sections 3.2 and 3.3. However,
up to now, very few studies on schema matching concerning
XML’s structure, since most of these are studies in database
domains and thus consider essentially with relational schemas
[1], [3]. Structural matching phase is generally consider
structural similarity, in other words, similarity of contexts in
which elements appear. There are three kinds of contexts for
schema elements: the ancestor-context, the children-context
and the leaf-context. Such notion of context is defined based
on notion of path in schema graphs [12]. Authors in [12] also
have proposed context similarity measurements, but they
concerning only DTDs without XML schemas, in addition,
they consider only child-context and leaf-context similarity.
Cupid [4] and Similarity Flooding (SF) [5] systems have
produced notion of context similarity, however none of them
consider the three kinds of contexts: Cupid used only leaf-
context similarity and SF used only child-context similarity.
Authors in [15] have considered structural similarity based on
ancestors and descendants relationships between schema
elements, however they concerning only version change
problems between XML documents, so this approach is not
very significant in schema matching problem.

A next natural development of schema matching process is
that creating the mapping between similar elements. Such
mappings play important role in many applications, such as
data integration, data warehousing, especially data
transformation. Data transformation. As we known, XML
schema features concerning sub typing, abstract types and
substitution group mechanisms generally represent designer
point of view, so we could use them as a set of meta-data to
help the matching process to discover both direct and complex
mappings [11]. Several studies (essentially in data integration
field) described operations for creating virtual views over
schemas. For example, authors in [11] have specified a set of
operations for performing queries reformulations in data
integration systems. Besides, studies in the area of tree
matching concerned with the change detection problem for
labeled trees [16]. They propose essentially three edit
operations for matching trees: delete, insert, relabel. However,
in the XML context, relabel one node into another
semantically unrelated node causes an undesirable matching.

Generally, existing XML schema matching solutions still
present several limitations, essentially for application domain
reasons. For this reason, it is important to present a solution
that solving more comprehensively and efficiently XML
automatic schema matching problem. In the rest of the paper,
we contributed in developing such a solution and hope that
this solution is a step towards the optimal matching solution.

III. MODELING XML SCHEMA
Data model that represent XML schema is an important

problem in XML schema matching. Data model is able to
normalize schemas that are represented by different schema

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

69

languages, thus eliminating syntax differences between
schemas. Several authors have suggested to modeling XML
schemas on the basis of the Unified Model Language (UML)
[13]. Another approach design XML schemas according to
object-oriented models [14]. Another approach shifts XML
schemas into trees [4]. In addition, there are some approaches
as described in [1], [3]. The most significant approach is that
represent schemas as labeled graphs [5]. Although such
methods produce modeling foundations to design XML
schemas but they do no show how the way properties and
constraints are assigned to schema elements.

A. Schema graph
Based on ideas have produced in [4], [5], [19] in this

approach, we produce a model for representing semantically
XML schemas in term of directed labeled graphs with
constraint sets that be defined over both nodes and edges,
called schema graphs. Generally, such model allows to exploit
all of features of XML schema, an aspect that be considered in
very few existent schema matching solutions (Figure 1). The
formal definition of the schema graph is given in [19]. Our
interest is limited to method representation and method of
installation of XML schemas applying for following
calculation of schemas similarity.

B. Nodes and edges in the schema graph
As in [4], [5], [19] we classify schema graph nodes into two

kinds: atomic nodes and complex nodes. Atomic nodes are the
leaf nodes in the schema graph. Each of them has a simple
content, which is atomic value (string, integer, date, etc.), list
value or union value. Complex nodes are the internal nodes in
the schema graph. Each of them has a complex content, which
refers to some other nodes through directed labeled edges. In
figure 1, nodes Name and Address are atomic nodes, while
Nodes University and Library are complex nodes. We also
distinguish three kinds of edges indicating containment,
association and property relationships. A containment
relationship, denoted c, is a composite relationship, in witch a
composite node (“whole”) consists of some component nodes
(“parts”). A property relationship, denoted p, specifies the
subsidiary attribute of a node. Last, an association
relationship, denoted a, is a structural relationship, specifying

that both nodes are conceptually at the same level. Such
relationships are generally bidirectional; they essentially
model key/keref and substitution group mechanisms. Three
above relationships are represented in figure 1, such as
relationships between Nodes University and Name, University
and Address, Journal-article and Journal respectively.

C. Constrains in the schema graph
Constraints in the schema graph including constraints over

an edge, a set of edges and a node. Typical constraints over an
edge are cardinality constraints. Cardinality constraints over a
containment edge specify the cardinality of child with respect
to its parents. Cardinality constraints over a property edge
indicate that attribute of a given node is optional or
mandatory. The default cardinality specification is [1..1].

Constraints over a set of edges include: (1) ordered
composition, is defined for a set of containment relationship
and used for modeling XML schema “sequences” and “all”
mechanisms, (2) exclusive disjunction, is applied to
containment edges and used for modeling XML schema
“choice” mechanism, and (3) referential constraint, is applied
to association edges and used for modeling XML schema
referential constraint. Such constraints are generally modeled
through a join predicate.

The last ones are constraints over a node, including
uniqueness and domain constraints. The uniqueness constraint
requires each of appearances of a node to have unique content.
Domain constraint essentially consider the content of atomic
nodes, such constraints are very broad. For example, they can
restrict the legal range of numerical values by giving the
maximal/minimal values.

IV. ELEMENT SIMILARITY MEASURE

To computing element similarity, current schema matching
approaches generally combine several matching methods.
Based on such studies, especially the study in [12], [19], we
present a process of element similarity measure as be
illustrated in Figure 2. In the following sections, we further
detail each phase of such process.

Price

Title

University

Name Location Library

Article Journal

Title

Uri Abstract

Journal-ref

Name

Editor

Author

Name Address

City State Zip

Book

Monograph

Publisher

Author

Name Address

City State Zip

Fig. 1 A schema graph example [19]

Linguistic similarity
coefficient matrix

Linguistic
similarity measure

Datatype compatibility
measure

Context
similarity
measure

Schema graph

Ancestor Context

Leaf Context

Adjusted linguistic
similarity coefficient matrix

Element
similarity
measure

Child Context

Element similarity matrix

Fig. 2 Element similarity measure process

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

70

A. Linguistic similarity measure
In this solution, to measure linguistic similarity, we

essentially combine two basic solutions that have described in
section 2. For schema element names that include
abbreviations, acronyms, punctuations, etc., we perform
analyzing element names proceeds in three steps: (1) parsing
names into tokens; (2) identifying abbreviations, and
acronyms; and (3) discarding prepositions, articles, etc.).
Detailed description could be found in [4]. In Cupid, linguistic
similarity is based on the name similarity of elements, which
is computed as a weighted mean of the per-token-type name
similarity. This solution presents some limitation because of
relying only on string matching methods. In our solution, to
identify relation between words, instead of using above
methods, we exploit WordNet and construct a domain-specific
dictionary. Almost schema matching algorithms use WordNet
for text processing. Budanisky proposed a survey of these
algorithms, including Hirst and St-Onge algorithm, the
Leacock and Chodorow algorithm, Jiang and Conrath
algorithm, Resnik algorithm and Lin algorithm [2]. Based on
the survey and performed experiments, Budanisky concluded
that the Jiang and Conrath algorithm provides highest
accuracy. We developed the solution based on Hirst and St-
Onge algorithm [8], [9], [19]. We constructed domain-specific
dictionaries for experimented schemas. Such method quite
applies to other domain-specific schemas. For data type
names, we can apply the same algorithm as above, but to
simplify this problem, in this solution, we assume that nodes
have the same names as their types.

B. Datatype compatibility measure
For datatype compatibility, we essentially use a datatype

compatibility table that gives a similarity coefficient between
two given XML schema built-in datatypes, such as the one
used in [4] (Table I). After computing datatype compatibility
coefficients, we can adjust linguistic similarity of atomic
nodes that linguistic similarity between them exceeds a fixed
threshold (Algorithm 1). Result of above process is an

adjusted linguistic similarity matrix for elements in source and
target schemas. To simplify the problem, in proposed solution
we haven’t consider datatype, defined by user. To solving the
global problem of datatype defined by user we can use
expanding research on datatype compatibility and hierarchical
designed datatype [11], [19].

C. Structural similarity measure
In our approach, structural matching is performed relies on

node context matching with supposition that two nodes are
structurally similar if they have similar contexts. The context
of a node is defined as the union of its ancestor-context, its
child-context and its leaf-context. In the following we
describe the basic steps to compare the contexts of two
schema elements.

1) Path similarity measure
In order to compare two contexts, we essentially need to

compare two paths. Authors in [12] have introduced the
concepts of Path Context Coefficient to capture the degree of
similarity in the paths of two elements. However, this solution
has not high matching accuracy. For this reason, here we
represent each path as a set of string elements, each element
represent a node name, and then use the ideas of path
similarity measure have been described in [10], [19]. In [19] is
described the combination of query answer and tree pattern to
achieve optimal path similarity. To applying the path
similarity measure to the schema matching solution we
following improvements:
• Relaxing the matching conditions by allow matching paths

even if their source nodes do not match and their nodes
appear in a different order. In addition, paths can also be
matched even if there are additional nodes within the path,
meaning that the child-parent edge constraint is relaxed
into ancestor-child constraint. Such relaxations are
inspired by ideas in query answering to approximate
answering of queries (including path queries).

• Allowing two elements within each path to be matched
even if they are not identical but their linguistic similarity
exceeds a fixed threshold. That is, ordinary string
comparison is now relaxed into string comparison that
based on similarity threshold.

Based on criteria for matching the paths shown in [10], [19]
we propose 4-step method for calculation of path similarity as
follow:
• Using a classical dynamic programming algorithm in order

to compute the Longest Common Subsequence (LCS) with
relaxations that have described above, denoted lcsE, and
then normalizing it to obtain a coefficient in [0,1], denoted

Algorithm 1: linguistic similarity and
datatype compatibility measure

for (s ∈ NS)
for (t ∈ NT)
 lsim(s,t) = linguistic_similarity(s,t);

for (s ∈ NAS) //atomic nodes of source
for (t ∈ NAT) //atomic nodes of target
 if (lsim (s,t)> th) {

dsim (s,t) = datatype_compatibility(s,t);

LS(s,t) = lω *lsim(s,t)+ tω *dsim(s,t);

}
for (s ∈ NS)

for (t ∈ NT)
 SimMatrix = SimMatrix ∪ (s,t,LS(s,t));

Parameters in above algorithm are given based on experimental
results from [11]: lω = 0.5, tω = 0.5.

Fig. 2 Element similarity measure process

TABLE I
DATATYPE COMPATIBILITY COEFFICIENT TABLE

Type (s) Type (t) Compatibility coefficient (s, t)
string string 1.0
string date 0.2
decimal float 0.8
float float 1.0
float integer 0.9
integer short 0.8
… … …

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

71

LCS.

• Next, computing average positioning of the optimal
matching, denoted AOP, and then using the LCS
algorithm to compute the actual average positioning,
denoted AP. Last, we compute coefficient indicating how
far the actual positioning is from the optimal one, denoted
POS.

• Next, capture the LCS alignment with minimum gaps by
using another version of the LCS algorithm as have
described in [18], from there compute this score that we
note gaps, and then normalizing it to obtain a coefficient in
[0,1], denoted GAPS.

• Last, computing the length difference between a source
path and LCS between such source path and target path,
denoted LD, and then normalizing it to obtain a coefficient
in [0,1], denoted LD.

Finally, path similarity measurement is obtained by
combining all the above measures (Algorithm 2).

2) Context similarity measure
In the following we describe context similarity measure

(including ancestor-context, child-context and leaf-context).
Ancestor-context similarity between two nodes is obtained

by comparing their respective ancestor-contexts and weighted
by the terminological similarity between them. Concretely, to
measure ancestor-context similarity between two nodes, we
can use follow formula:
AncestorContextSim(n1, n2)=PS((root, n1),(root, n2))*LS (n1,
n2);

where LS is gained from Algorithm 1 and PS is gained
from Algorithm 2.

Child-context similarity between two nodes is obtained by

(1) computing the terminological similarity between each pair
of children in the two children sets of them; (2) selecting the
matching pairs with maximum similarity values and (3) taking
the average of best similarity values. Algorithm 3 describes
detailed process of calculation of child-context similarity
between two nodes.

Last, leaf-context similarity between two nodes is obtained
by comparing their respective leaves sets. Here, the similarity
between two leaves is obtained by combining context
similarity (from current node to their leaf) and linguistic
similarity between them. Concretely, to measure the leaf-
context similarity between two nodes, we can use follow
formula:

LeafSim(l1, l2) = PS((n1, l1),(n2, l2)) * LS(l1, l2);
where LS is gained from Algorithm 1 and PS is gained from
Algorithm 2.

Algorithm 2: path similarity measure

//Longest Common Subsequence
LCS(P1,P2) = |lcsE(P1, P2)|/|P1|;

//Average position
POS(P1,P2) = 1 - ((AP(P1,P2)–AOP(P1,P2))/(|P2|-
2*AOP(P1,P2)+1));

//LCS with minimum gaps
GAPS(P1,P2) = gaps/(gaps + LCS(P1,P2));

//Length differences
LD(P1,P2) = (|P2|- LCS(P1,P2))/|P2|;

//Path similarity measure
PS(P1,P2) = α*LCS(P1,P2)+β*POS(P1,P2)–
γ*GAPS(P1,P2)–δ*LD(P1,P2);

where:
• 0 ≤ α, β, γ, δ ≤ 1.
• α + β = 1 so that PS (P1,P2) = 1 in case of a perfect match.
• γ and δ much be chosen small enough so that PS cannot take a
negative value.

Parameters in above algorithm are given based on experimental
results from [10]: α = 0.75; β = 0.25; γ=0.25; δ=0.2

Algorithm 3 : context similarity measure

//Ancestor context similarity measure
AncestorContextSim(n1,n2) =
 PS((root,n1),(root,n2))*LS (n1,n2);

//Child context similarity measure
best_pairs = ∅;
while (SimMatrix ≠ ∅) {
 select (n1k,n2h,sim) where
 sim = max i∈[1,n], j∈[1,m]
{(n1i,n2j,lsim)∈SimMatrix};

best_pairs = best_pairs ∪ (n1k,n2h,sim);
SimMatrix = SimMatrix \ {(n1k,n2j,sim)|j=1,…,m}\
 {(n1i,n2h,sim)|i=1,…,n};

}

ChildContextSim = 1 2(, ,) _

max(,)

i jn n sim best pairs

m n

sim
∈

∑
;

//Leaf context similarity measure
for (l1i ∈ leaves(n1))

for (l2j ∈ leaves(n2) {
LeafSim(l1i, l2j) =

 PS((n1,l1i),(n2,l2j))*LS(l1i,l2j);
 SimMatrix = SimMatrix ∪
 (l1i,l2j,LeafSim(l1i,l2j));
}

best_pairs = ∅ ;
while (SimMatrix ≠ ∅) {
 select (n1k,n2h,sim) where
 sim = max i∈[1,n], j∈[1,m]
 {(n1i,n2j,LeafSim)∈SimMatrix };

best_pairs = best_pairs ∪ (n1k,n2h,sim);
SimMatrix = SimMatrix \ {(n1k,n2j,sim)|j=1,…,m}\
 {(n1i,n2h,sim)|i=1,…,n};

}

LeafContextSim = 1 2(, ,) _

max(,)

i jl l LeafSim best pairs
LeafSim

m n

∈
∑

;

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

72

The leaf context similarity between two nodes is obtained
by (1) computing the leaf similarity between each pair of
leaves in two leaves sets; (2) selecting the matching pairs with
maximum similarity values and (3) taking the average of best
similarity values.

Algorithm 3 describes detailed process of calculation of
leaf-context similarity between two nodes.

D. Element similarity measurement
Element similarity is computed by combining all the above

measures (linguistic similarity, datatype compatibility and

context similarity). The similarity between two nodes is
computed by weighted sum of their ancestor context
similarity, their child-context similarity and their leaf context
similarity. The formula for calculation of element similarity is
as follow: sim(n1, n2) = α*AncestorContextSim(n1, n2) +
β*LeafContextSim(n1, n2) + γ*ChildContextSim(n1, n2);

where α, β, γ are coefficients specifying role of the
similarities (linguistic similarity, datatype compatibility and
context similarity).

Here α + β + γ = 1 and α ≥ 0, β ≥ 0, γ ≥ 0.
Depending on the position of the nodes in schema, we can

distinguish follow cases: (1) both nodes are atomic nodes: the
similarity between two nodes is computed by the similarity of
their respective ancestor context weighted by their
terminological similarity; (2) one of the two nodes is an atomic

node: the similarity between the two nodes is computed by
weighted similarity of their ancestor and leaf contexts
(Algorithm 4).

V. EVALUATION
To implementing the solution we have installed above

algorithms using Java and JWNL to exploit the WordNet and
package XSOM to analyse XML schemas. To evaluate
proposed solution, we used 5 XML schemas for purchase
orders taken from www.biztalk.org (also provided in [6]).
Table II summarizes the characteristics about such schemas.
Look at this table; we can see that except for schema 1, in
other schemas, the number of paths is different from the
number of nodes, indicating the use of shared fragments in the
schemas (i.e., there are association edges in the schema
graph).

A. Matching quality measure
In this section, we consider the matching quality of

proposed solution based on criteria have described in [5], [6],
including Precision, Recall, F-measure and Overall. We have
implemented all schemas from the source and calculated these
criterions. Before dictionary correction the experiment results
show that the criterion Precision, Recall, F-measure and
Overall are 91%, 83%, 84% and 79%. After correction of the
dictionary conformable to the domain of schemas, the
experiment results show that Precision, Recall, F-measure and
Overall are 95%, 86%, 88% and 82% (Table III).

B. Comparison with several systems
We have implemented again Cupid algorithm and test with

above source schemas. As we known, SF is one of algorithms
that have equivalent effect with Cupid. In this comparative
study, we do not consider such algorithm because it can be
compared with Cupid based experimental results that have
described in [5]. In general, all criterion received our solution
are better than Cupid algorithm’s ones. Such comparative
results are illustrated in Figure 3. As in [5], we can see SF
consider essentially the similarity of child nodes, so, its
matching quality even is lower than Cupid. Whereas, in our
solution, we have considered all of ancestor-context, child-
context and leaf-context.

VI. CLUSTERING XML SCHEMAS
As shown in the section I, an XML schema clustering is

very important problem in data integration system. Solving
XML schemas clustering requires combination of techniques
and methods. In [12] is described the algorithm for clustering
DTD based on calculation element similarity in source DTD

Algorithm 4 : element similarity measure

if (both n1 and n2 are atomic nodes)
sim(n1,n2) = AncestorContextSim(n1,n2);

else if(n1 is a atomic node and n2 is not){

LeafContextSim (n1,n2) = 2 2

2 1
()

2

(,)

| () |
i

i
l leaves n

lsim

leaves

l n

n
∈
∑

;

sim(n1,n2) = α*AncestorContextSim(n1,n2) +
 β*LeafContextSim (n1,n2);
}

else {
sim(n1,n2) = α*AncestorContextSim(n1,n2)+

β*LeafContextSim(n1,n2)+
γ*ChildContextSim(n1,n2);

}

//Creating element similarity coefficient
matrix
for (s ∈ NS)

for (t ∈ NT)
SimMatrix = SimMatrix ∪ (s,t,sim(s,t));

Parameters in above algorithm are given based on experimental
results from [12]: α=0.33; β=0.33; γ=0.33.

TABLE II
CHARACTERISTICS OF TESTED SCHEMAS [6]

Schemas 1 2 3 4 5
Max depth 4 4 4 6 5
Nodes / paths 40/40 35/54 46/65 74/80 80/145
Inner nodes / paths 7/7 9/12 8/11 11/12 23/29
Leaf nodes / paths 33/33 26/42 38/54 63/68 57/116

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

73

and target DTD. This idea can be applied in to XML schemas
clustering.

We propose the sequence for clustering the SML schemas.
The sequence includes two phases: (1) Calculation of the
XML schemas similarity and (2) Clustering XML schemas.

In the first phase, the similarity between two schemas from
the XML source is realized as the sum of all the best element
similarity from the elements from two schemas. In the second
phase, the clustering XML schemas is realized based on
received in phase 1 the matrix of similarities and using
algorithm for clustering XML schemas. We have installed
proposed 4 algorithms for calculation of similarities and
compared the experiment results with [12]. Based on
evaluation in [12], we can conclude that clustering the XML
schemas based on our solution gives better results.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this paper we have described a solution for automatic

XML schema matching problem. In this solution, we have
combined several matching methods as well as using several
ideas from studies in other fields in order to produce best
matching results as well as possible. We implemented the
solution and compared our implementation to two others. In
future we will improve more linguistic phase as well as
improve the performance of matching algorithms, especially
linguistic algorithms. Currently, we used Hirst & St-Onge
algorithm to exploit WordNet, however, such algorithm
requires rather long computing time. Moreover, we plan to
test the proposed solution using a broader and more complex
data sources as well as compare it with some other solutions
except Cupid and SF. One of the remarkable applications in
schema matching is that automating translation, such as
translating technical documents form English to Vietnamese.
Current studies in automating translation generally use tree
transformation methods, so their performance is limited.

Schema matching could be a suitable solution to solve such
problems. This is also one of the future directions that we are
performing.

REFERENCES
[1] E. Rahm and P.A. Bernstein. A survey of approaches to automatic

schema matching. In VLDB Journal, pages 10: 334-350, 2001.
[2] A. H. Doan. Learning to map between structured representations of

data. PhD thesis, University of Washington, 2002.
[3] L. Zamboulis. XML Schema Matching & XML Data Migration &

Integration: A Step Towards The Semantic Web Vision. Technical
Report, 2003.

[4] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching
with Cupid. MSR Tech. Report MSR-TR-2001-58, 2001, Available at:
http://www.research.microsoft.com/pubs.

[5] S. Melnik, H. Garcia-Molina, E. Rahm. Similarity Flooding: A versatile
Graph Matching Algorithm and its Application to Schema Matching. In
Proceedings of the 18th International Conference on Data Engineering,
2002. Available at: http://dbpubs.stanford.edu/pub/2001-25. (Extended
Technical Report, 2001).

[6] H. H. Do and E. Rahm. COMA - a system for flexible combination of
schema matching approaches. In Proceedings of the Very Large Data
Bases Conference (VLDB), pages 610–621, 2001.

[7] A.G. Miller. WordNet: A lexical Database for English. In ACM 38 (11),
pages 39-41, 1995.

[8] A. Budanitsky and G. Hirst. Semantic distance in WordNet. An
experimental, application oriented evaluation of five measures, 2003.

[9] Lexical chains as representations of context for the detection and
correction of malapropisms. In: Christiane Fellbaum (editor), WordNet:
An electronic lexical database, Cambridge, MA: The MIT Press, 1998.

[10] D.Carmel, N. Efraty, G. M. Landau, Y. S. Maarek, and Y. Mass. An
Extension of the vector space model for querying XML documents via
XML fragments. Second Edition of the XML and IR Workshop, In
SIGIR Forum, Volume 36 Number 2, Fall 2002.

[11] L.Xu. Source Discovery and Schema Mapping for Data Integration, PhD
thesis, 2003.

[12] Mong Li Lee, Liang Huai Yang, Wynne Hsu, Xia Yang. XClust:
Clustering XML Schemas for Effective Integration, in 11th ACM
International Conference on Information and Knowledge Management
(CIKM), McLean, Virginia, November 2002.

[13] N. Routledge, L. Bird and A. Goodchild. UML and XML Schema,
ADC'2002, 2002.

[14] R. Xio, T. Dillon, E. Chang and L. Feng (2001). Modeling and
Transformation of Object Oriented Conceptual Models into XML
Schema. DEXA 2001, LNCS 2113, pages795-804, 2001.

[15] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML
Documents. In ICDE, 2002.

[16] D. Shasha, J. Wang, K. Zhang, and F. Shih. Fast algorithms for the unit
cost editing distance between trees. In Journal of Algorithms, pages 581-
621, 1990.

[17] S. Amer-Yahia, S. Cho, D. Srivastava, "Tree Pattern Relaxation"
EDBT'02, 2002.

[18] E.W. Myers. Incremental alignment algorithms and their applications.
TR 86-22, Department of Computer Science, University of Arizona,
1986.

[19] A. Boukottaya, C. Vanoirbeek. Schema Matching for Transforming
Structured Documents. In DocEng'05, 2-4, 2005.

[20] XML Schema Part 0: Primer, W3C Recommendation, 2004. Available
at: http://www.w3.org/TR/xmlschema-0/.

[21] XML Schema Part 1: Structures, W3C Recommendation, 2004.
Available at: http://www.w3.org/TR/xmlschema-1/.

[22] XML Schema Part 2: Datatypes, W3C Recommendation 2004. Available
at: http://www.w3.org/TR/xmlschema-2/.

C o m p ar a t ive s t u d y

9 5
8 6 88 8 2

7 4 6 8 71

5 5

0

20

40

60

80

1 00

Pre c is io n Re c a ll F-me a s ur e O v e ra ll

O u r s o lu tion Cup id

Fig. 3 Comparative study

TABLE III
MATCHING QUALITY MEASURE

Measure Average Result
Precision 95%
Recall 86%
F-measure 88%
Overall 82%

International Journal of Electrical, Computer, and Systems Engineering 4:1 2010

74

