
J Data Semant
DOI 10.1007/s13740-014-0045-5

ORIGINAL ARTICLE

Word-Sense Disambiguation for Ontology Mapping: Concept
Disambiguation using Virtual Documents and Information
Retrieval Techniques

Frederik C. Schadd · Nico Roos

Received: 24 April 2013 / Revised: 1 August 2014 / Accepted: 14 September 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Ontology mapping is a crucial task for the facil-
itation of information exchange and data integration. A
mapping system can use a variety of similarity measures
to determine concept correspondences. This paper proposes
the integration of word-sense disambiguation techniques into
lexical similarity measures. We propose a disambiguation
methodology which entails the creation of virtual documents
from concept and sense definitions, including their neigh-
bourhoods. The specific terms are weighted according to their
origin within their respective ontology. The document simi-
larities between the concept document and sense documents
are used to disambiguate the concept meanings. First, we
evaluate to what extent the proposed disambiguation method
can improve the performance of a lexical similarity metric.
We observe that the disambiguation method improves the
performance of each tested lexical similarity metric. Next,
we demonstrate the potential of a mapping system utilizing
the proposed approach through the comparison with con-
temporary ontology mapping systems. We observe a high
performance on a real-world data set. Finally, we evaluate
how the application of several term-weighting techniques
on the virtual documents can affect the quality of the gen-
erated alignments. Here, we observe that weighting terms
according to their ontology origin leads to the highest per-
formance.
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1 Introduction

Ontology mapping is an integral process for the facilita-
tion on information exchange. Originating from the field of
schema matching, this task is essential in numerous database-
related applications, such as data integration, schema evolu-
tion and migration, data warehousing and web site creation
and management [33,63]. This process has recently seen a
rise in importance for ontology-based information systems,
allowing functionalities like search [34] or querying [7,25]
over heterogeneous data sources, or the integration of several
ontology-based knowledge systems [8,77]. In this domain,
given two specifications of knowledge domains consisting of
a list of interrelated concepts and their meta-information, the
main task entails the identification of concepts which denote
the same meaning, and thus are used to model the same kind
of information.

The need for robust mapping systems and possible short-
comings has been established [71,72]; ongoing research aims
to overcome the current limitations of mapping systems to
realize the automatic and accurate mapping of ontology con-
cept under a variety of conditions [70,80].

This paper is an extended and updated version of an invited
workshop paper [67]. The main contributions of this paper
can be summarized as follows:

– We identify a lack in contemporary implementations of
lexical similarity metrics, where senses which do not
denote the correct meaning of an ontology concept are
used for the similarity computation.
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– We propose that lexical similarity metrics should perform
the task of concept disambiguation prior to the similarity
calculation.

– We present a method of concept disambiguation based on
the similarity of concept and sense definitions.

– We propose the application of virtual documents and infor-
mation retrieval techniques to determine the similarity
between concepts and senses.

– We evaluate experimentally to what extent concept disam-
biguation can improve the performance of a lexical simi-
larity metric.

– We establish to what extent a system using the proposed
technique can compete with state-of-the-art mapping sys-
tems through a comparison evaluation.

– We determine which terms of concept descriptions should
receive preferential weighting through the use of parame-
ter optimization.

– We evaluate the impact that different virtual document
weighting techniques can have on the mapping process.
Furthermore, this impact is contrasted against the observed
performance of a profile similarity utilizing the same doc-
ument model.

The remainder of this paper is organized as follows. Sec-
tion 2 will introduce the reader into the domain of ontology
mapping and detail the necessary background knowledge.
Section 3 discusses related research. Section 4 introduces
possible applications of virtual documents in ontology map-
ping, introduces a document model and discusses possible
weighting approaches. Section 5 details the proposed method
of concept disambiguation and how virtual documents can be
exploited in this process. The experimental results are pre-
sented in Sect. 6. Section 7 presents the conclusions of this
paper and suggestions for future work.

2 Background Information

2.1 Ontology Mapping

Ontology mapping is the essential process facilitating the
exchange of information between heterogeneous data
sources. Here, each source utilizes a different ontology to
model its data, which can lead to differences with regard to
the syntax of the ontology, concept naming and structuring
and the granularity with which the knowledge domain is mod-
elled. Euzenat et al. [12] identified three main heterogeneity
categories as terminological, conceptual and semiotic hetero-
geneities. Given two ontologies, these heterogeneities need
to be resolved, which in turn allows for the exchange of infor-
mation between any knowledge system which uses any of the
two given ontologies to model its data. This is achieved by

mapping concepts which model the same data, which are
compiled into a list of correspondences, referred to as an
alignment.

Formally, we define ontology mapping as a process which
takes as minimal input two ontologies O1 and O2 and pro-
duces an output alignment A′.

Further, this process can take as input an already existing
alignment A, external resources r and a set of parameters
p. The pre-existing alignment can originate from a different
system, thus allowing the combination of two systems in a
cascade arrangement, or from the same system, allowing the
possibility of designing an iterative mapping process. The set
of parameters p incorporates any parameter which influences
the mapping process, such as settings, weights or thresholds.
While r is broadly defined, in practise the most commonly
used resources are linguistic or domain thesauri and auxiliary
ontologies.

Following established work [13,18], we define a corre-
spondence between entities of two ontologies O1 and O2 as
a 5-tuple < id, e1, e2, q, c > such that:

– id is a unique identifier allowing the referral to specific
correspondences.

– e1 is a reference to an entity originating from the first
ontology. Commonly a URI is used as referral to a specific
entity.

– e2 is a reference to an entity originating from the second
ontology.

– q denotes the semantic relation between e1 and e2. Sev-
eral types of relations can be modelled, such as general-
ization (�), disjointness (⊥), overlapping (�) and equiva-
lence (≡).

– c is a confidence value in the interval [0, 1], which is used
to express the certainty that the particular relation holds.

Given the definition of a correspondence, an alignment
A between two ontologies O1 and O2 is defined as a set
of correspondences where each correspondence contains a
reference to one entity of O1 and one entity of O2.

Figure 1 visualizes the basic architecture of an ontology
mapping framework. The first essential process is the prepa-
ration of the input ontologies. Here, the two input ontologies
are parsed into a common format in case one of these is
formulated using a non-standard syntax or modelling lan-
guage. Moreover, the input ontologies are pre-processed by
for instance applying natural language processing techniques
to the concept names. The second essential process is the
computation of the pairwise concept similarities. For each of
n given similarity measures, a correspondence matrix is com-
puted indicating all pairwise similarities according to that
particular measure. These matrices are then assembled into a
similarity cube. Using an aggregation method, the similarity
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Fig. 1 Basic architecture of an
ontology mapping framework
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cube is then transformed into a two-dimensional similarity
matrix. During the last process, a selection method is applied
which extracts the output alignment between the two ontolo-
gies from the aggregated matrix. On this alignment one can
apply reasoning techniques, most notably consistency check-
ing, to improve the quality of the alignment.

An important design decision for the creation of a mapping
system is the selection of similarity measures. There exists a
wide variety of measures which can be described by the type
of ontological information which they exploit and the kind
of techniques which they apply [70].

The main focus of this paper lies on lexical similarities,
which will be explained in more detail in the next subsection.

2.2 Lexical Similarity Measure

Lexical similarity measure (LSM) are commonly applied
metrics in ontology mapping systems. These exploit exter-
nally available knowledge bases which can be modelled in
ontological or non-ontological form, for instance by utiliz-
ing databases. Such a knowledge base contains a list of con-
cepts describing the particular domain that is being modelled.
Each concept description contains various kinds of infor-
mation, such as synonyms and written explanations of that
concept. If such a description does contain at least a list of
synonyms, it is also often referred to as synset (synonym-set).
Another important feature of a knowledge base is that each
concept is also linked to other concepts using various seman-
tic relations, thus creating a large relational structure. A LSM
exploits these large structures by linking ontology concepts
to the nodes in the external knowledge base, such that the
proximity of concepts associated with source and target con-
cepts provides an indication to their similarity. One can here
distinguish between semantic relatedness and semantic sim-
ilarity [75], where the semantic relatedness denotes the mea-
sured proximity by exploring all given relations, whereas the
semantic similarity expresses the proximity using only is-
a relations. Whether a LSM determines the relatedness or
similarity depends on the utilized metric which expresses
the proximity [5,19], since the definitions of these metrics
typically also define which relations are exploited. For this

research, as further detailed in Subsect. 5.3, the applied met-
ric utilizes only is-a relations, rendering the base LSM which
our approach intends to improve, as a measure of semantic
similarity.

There exist several lexical knowledge bases which can be
used as a resource for a LSM. These originate from different
research efforts and were all developed with different capa-
bilities, which can roughly be grouped as follows:

Global/Cross-Domain Knowledge Resources of this cate-
gory intend model a multitude of domains, such that the
similarity between concepts can be identified even if these
are generally categorized in different domains. Examples of
global resources are WordNet [50] and YAGO [76].
Domain Knowledge These resources intend to model com-
mon knowledge of a single specified domain. Typically,
these domains are not very broadly defined, however, they
are usually modelled in great detail. An example of such
a resource is UMLS [4], which models the biomedical
domain.
Abstract Upper Ontology This group of resources primarily
focus on the creation of an abstract ontology using an upper-
level list of concept descriptions. Such an ontology can then
serve as base for domain-specific resources. SUMO [55],
MILO [56], Cyc [44] and OpenCyc [73] can be categorized
as abstract upper ontologies.
Multi-lingual When mapping ontologies, it can occur that
some concept descriptions are formulated in a different lan-
guage. In these situations, mono-lingual resources are insuf-
ficiently applicable, necessitating the usage of multi-lingual
resources, e.g. UWN [11] or BabelNet [53].

LSMs are a powerful metric and are commonly used
in contemporary state-of-the-art ontology mapping systems
[32,66,70], with WordNet being the most widely used
resource as basis. However, a common occurrence in con-
cepts formulated using natural language is word-sense ambi-
guity. This entails that a word can have multiple and possibly
vastly different meanings, such that one must eliminate all
meanings which do not adequately confer the intended mean-
ing of the word.
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Fig. 2 Histogram showing the number of words in WordNet (y-axis)
that have a specific number of senses (x-axis)

This task, while at a glance quite intuitive for a human can
be deceptively difficult. Given the word house for instance,
the intended meaning might be obvious to a human reader,
however, this word has 14 different meanings listed in Word-
Net, such that an accurate identification of the correct sense is
necessary to obtain accurate results. The histogram in Fig. 2
indicates the extent of such situations occurring within Word-
Net [50]. Here, all unique words that occur in WordNet have
been gathered and binned according to how many different
meanings each word describes.

One can see from Fig. 2 that while there is a large number
of words with only one meaning, there is a significant pro-
portion of words which do have more than one meaning and
hence are ambiguous. The general working hypothesis, also
adhered in this paper, is that a word in a given context has
only a single correct sense. The rejection of this hypothesis,
the acknowledgement of polysemous words, is an emerging
field of research for which new approaches are emerging [10].
Ultimately a LSM has to calculate the similarity between
two sets of senses, where the assumption whether these sets
can contain multiple correct senses may influence the choice
in specific employed techniques, including disambiguation
methods.

LSMs can incorporate polysemous concepts by for
instance calculating an aggregate similarity between these
sets of senses [10,14,61]. However, if a domain expert deter-
mines that the concepts in the ontology are not polysemous,
one can adapt the aggregation step by for instance only uti-
lizing the maximum pairwise similarity [14] between sets of
senses or by selecting the predominant sense as determined
by a given corpus [45]. The inclusion of a word-sense disam-
biguation technique in a LSM, which this paper proposes, is
likely to improve their accuracy.

2.3 Word-Sense Disambiguation

Word-Sense Disambiguation (WSD) can be described as the
automatic identification of the correct sense(s) of a given
word using the information in the proximity of that word as

context. While in many works only one sense is associated
with each word, we define WSD as a process which filters a
set of possible candidate senses. The resulting sets may con-
tain multiple senses if desired by the expert designing the
system, for instance to accommodate polysemous words. In
the classical problem of disambiguating words occurring in
natural language, the available context information is a body
of text co-occurring with the target word [52]. Depending on
the input document or the applied approach, this body of con-
text information can be limited to the sentence in which the
target word appears or extended over the entire input docu-
ment. The available context information originating from an
ontology is different compared to a natural language docu-
ment. In an ontology natural language is a rare occurrence
and usually limited to brief concept descriptions in the form
of annotations. Hence, context information must be extracted
from the entire concept description, its associated properties
and other related concepts.

Originally, WSD has been perceived as a fundamental task
to perform machine translation [40,82]. Here, the establish-
ment of accurate word senses is a requirement for the selec-
tion of correct word translations from a multi-lingual dic-
tionary. While research into WSD halted for a decade after
its acknowledged hardness [3], it has been re-instigated after
[83] tackled this problem using formal semantics to achieve
a computer understanding of natural language. For a more
comprehensive overview of the history of WSD we suggest
the reader consult the work of Ide and Véronis [28].

Many different approaches to WSD have been developed
over the past decades. Due to the prevalence of applied
machine-learning techniques, three general categories of
approaches have emerged:

Supervised Disambiguation One can formulate WSD as a
classification problem. Here, a training set is created by tag-
ging sentences with the correct senses of its contained words.
Once the training set has reached a sufficient size, one can use
this as basis for a supervised classification method. Exam-
ples of such methods are decision lists, decision trees, Naive
Bayes classifier, Neural-Networks, instance-based methods
such as the kNN approach and ensemble methods which
combine different classifiers [51,52].
Unsupervised Disambiguation These methods have the
advantage that they do not rely on the presence of a manually
annotated training set, a situation which is also referred to as
the knowledge acquisition bottleneck [17]. However, unsu-
pervised methods share the same intuition behind supervised
methods, which is that words of the same sense co-occur
alongside the same set of words [59]. These rely on clus-
tering methods where each cluster denotes a different word
sense.
Knowledge-based Disambiguation Instead of applying clas-
sification techniques, knowledge-based methods exploit
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available knowledge resources, such as dictionaries, data-
bases or ontologies, to determine the sense of a word [49].
These techniques are related to LSMs in that they often
exploit the same knowledge resources. This group of tech-
niques will be further discussed in Subsect 3.2.

For a more comprehensive survey of disambiguation tech-
niques we suggest the reader consult the excellent survey by
Navigli [52].

While originally conceived for the purpose of machine
translation, WSD techniques have been applied in a variety of
tasks [28]. In the field of information retrieval, one can apply
WSD to eliminate search results in which at least some of the
query keywords occur, but in a different sense than the given
query [69]. This would lead to a reduction of false positives
and hence increase the performance of the retrieval system.

WSD can also aid in the field of content and thematic
analysis [39]. Here, the aim is to classify a given text into the-
matic categories, such as traditional (e.g. judicial, religious),
practical (e.g. business), emotional (e.g. leisure, fiction) and
analytical (e.g. science) texts. Given a corpus of training data,
one can create a profile for each defined category consisting
of the distributions of types of words over a text.

In the field of grammatical analysis WSD is required to
correctly identify the grammatical type of ambiguous words
[43]. WSD can also aid a speech synthesis system such that
ambiguous words are phoneticised more accurately [74].
Yarowsky [84] applied WSD techniques for text process-
ing purposes with the aim to automatically identify spelling
errors.

2.4 Virtual Documents

The general definition of a virtual document (VD) [81] is
any document for which no persistent state exists, such that
some or all instances of the given document are generated at
runtime. These stem from an emerging need for document to
be more interactive and individualized, which is most promi-
nently seen on the internet.

In the domain of lexical similarity metrics the basic data
structure used for the creation of a virtual document is a
linked-data model. It consists of different types of binary
relations that relate concepts, i.e. a graph. RDF [37] is an
example of a linked-data model, which can be used to denote
an ontology according to the OWL specification [47]. A key
feature of a linked-data model is that it not only allows the
extraction of literal data for a given concept, but also enables
the exploration of concepts that are related to that partic-
ular concept. From the linked-data resource information is
gathered and stored in a document with the intention that
the content of that document can be interpreted as a semantic
representation of the meaning of a specific ontology concept.

A specific model for the creation of such a virtual document
will be presented in Subsect. 4.1.

3 Related Work

3.1 Ontology Mapping Approaches

Numerous approaches and systems have been developed, of
which some are of particular interest due to the high-quality
alignments they produce or specific techniques they employ.
The framework AgreementMaker [9] matches ontologies
using a layered approach. In the initial layer, similarity matri-
ces are computed using syntactic and lexical similarities
based on WordNet, among others, which are then used to cre-
ate a set of mappings. Further iterations in subsequent layers
refine the existing mappings using structural properties to
create new mappings. After a sufficient amount of iterations,
multiple computed mappings are selected and combined to
form the final mapping.

The framework ASMOV [30] is capable of using general
lexical ontologies, such as WordNet, as well as domain spe-
cific ontologies in its matching procedure. After creating a
mapping using a set of similarity measures, a semantic verifi-
cation process is performed to remove correspondences that
lead to inferences which cannot be verified or are unlikely to
be satisfied given the information present in the ontologies.

As evidenced by the results of the 2012 Ontology Align-
ment Evaluation Initiative [1], one of the current state-of-the-
art ontology mapping system is YAM++, developed by Ngo
et al. [54]. This system combines machine-learning and infor-
mation retrieval techniques on the element level and similar-
ity propagation techniques on the structure level to derive a
mapping, to which consistency checking is applied to further
increase the quality.

A notable feature of the Anchor-PROMPT system [57] is
its exploitation of input alignments. Here, the concept pairs of
the input alignment are interpreted as anchors, which serve
as start and end point of a path-exploration approach. The
taxonomies of both ontologies are explored in parallel, with
each concept pair encountered during this traversal between
anchors receiving an increased score. Concept pairs which
have been encountered frequently during the many traversals
are thus more likely to correspond with each other.

The S-Match approach [20] is a notable example for a
semantic mapping approach. Here, concept sets are com-
puted from the labels and nodes of the ontologies such that
the comparison between the extensions of the nodes indicates
which type of relation holds between the nodes. For a more
in-depth survey of existing ontology mapping systems, we
suggest the excellent surveys of Shvaiko and Euzenat [70]
and Saruladha et al. [66].
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Recently, several systems implemented approaches that
directly compare concept profiles to linguistically deter-
mine concept similarities. The PRIOR and CroMatcher
frameworks [23,42] achieve this by weighting the profiles
using TF-IDF weights, whereas the Falcon-AO framework
[27,62] applies a virtual document model with a parame-
trized weighting scheme. The web-based framework WeSeE
[58] uses the concept profiles as input for web queries, where
the resulting information snippets are compared according
to their overlap. The techniques of these works share some
similarities with parts of this work, specifically regarding the
creation of profiles. However, these approaches either com-
pare the profiles directly or use them in a different context.

3.2 Methods of Word-Sense Disambiguation

There exists a notable spectrum of word-sense disambigua-
tion techniques, which have been used for varying purposes,
however, certain techniques stand out due to their applica-
bility to this domain. The method of context clustering [68]
can be used to exploit large amounts of labelled training data.
Here, co-occurrences with a target word are modelled as a
vector in a word space and grouped into clusters accord-
ing to their labelled word sense. Given a new occurrence of
the given word, one can identify its sense by modelling a
new context vector from its neighbourhood and classifying
it using the created word-sense clusters. This can be done for
instance by determining the centroid vector of each cluster
and computing the vector distance for each centroid vector.

A more linguistic approach can be achieved through the
application of selectional preferences [26]. By determining
the grammatical types of words within a sentence, one can
limit the amount of possible sense by imposing limitation
according to the grammatical or semantic context of a par-
ticular word. Such a technique can be especially relevant for
the mapping of ontology properties, since property names
or labels can contain combination of grammatical types, e.g.
nouns, verbs or adjectives, where its proper classification can
improve their semantic annotations.

A very effective group of disambiguation methods is based
on glossary overlap. The techniques of this group are essen-
tially knowledge-based methods. These rely on the presence
of a detailed corpus of word senses that include their descrip-
tions in natural language. Determining the overlap between
the set of words occurring in context of a target word and
the different sense descriptions of that word within the given
corpus can be used to determine its proper sense. This type
of method has been pioneered by Lesk [38], which can be
improved by incorporating the descriptions of words that are
related to the different possible senses [2].

Cross-lingual word-sense disambiguation is another
knowledge-based approach which exploits multi-lingual cor-
pora [64]. A target word is translated into several distinct lan-

guages such that the intended sense is likely the one whose
meaning has been preserved for the majority of the used lan-
guages.

Structural methods [60] exploit the concept structure of a
given corpus. This is achieved by applying a similarity metric
between word senses, such that the disambiguated sense of
a word from a text is the particular sense which maximizes
the aggregate similarities between all possible senses of the
words occurring in the text and itself.

Budanitsky and Hirst [5] evaluated five different sense-
similarity measures which serve as the basis for structural
disambiguation methods; however, these are also applica-
ble to lexical similarities between ontology concepts. For a
more in-depth survey of word-sense disambiguation meth-
ods, especially the types which do not strongly relate to the
techniques applied in this research, we suggest the reader
consult the comprehensive survey by Navigli [52].

3.3 Word-Sense Disambiguation in Ontology Mapping

Given the large set of possible techniques originating from
many different research areas that can be applied to the
process of ontology mapping, only limited research has been
performed into applying word-sense disambiguation tech-
niques. Some of this research involves the creation of anno-
tation frameworks, which can facilitate a standardized format
of lexical concept annotations and can even provide a more
fine-grained annotation. An example of such a framework
is the work of Buitelaar et al. [6], who proposed a linguis-
tic labelling system for the annotation of ontology concepts.
While the primary intent of this system was the facilitation
of ontology learning and natural language generation from
ontologies, the linguistic meta-information of this system
can also be used to disambiguate word senses, for instance
by extracting selectional preferences generated from these
annotations.

McCrae et al. [46] proposed a common model for link-
ing different lexical resources to ontology concepts. This
model not only includes constructs modelling terms and their
senses, but also models the morphosyntactic properties of
term which would allow for a more fine-grained annotation
of ontology concepts.

Some ontology mapping systems apply WSD to aid their
lexical similarity measures. The AUTOMS system [35],
which is designed for the task of ontology merging, employs
a technique called HCONE-Merge [36]. Part of this tech-
nique involves the process of latent semantic indexing (LSI),
which is used to associate senses with the given ontology
concepts. The approach assumes that concepts are monose-
mous. Ontology concepts are associated with the sense which
resulted in the highest score when querying a latent semantic
space using a binary query. This space is created by perform-
ing singular value decomposition on the sense descriptions.
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Po and Sorrentino [61] introduced a probabilistic WSD
method which has been included in the AgreementMaker
system [10]. Here, each ontology concept is annotated with
a set of possible senses, where each sense is annotated with
a probability value. This probability value is determined by
combining the results of several WSD techniques, i.e. struc-
tural disambiguation, domain disambiguation and first-sense
heuristic, using the Dempster-Shafer Theory. This method
is related to our work due to its application of the basic
Lesk method as one of the different WSD techniques. The
approach of our paper also relies on the principle behind the
Lesk method, such that substituting our approach with the
basic Lesk method could improve the WSD accuracy of the
AgreementMaker system.

4 Virtual Documents in Ontology Mapping

As stated in Subsect. 2.2, a feature lacking in contempo-
rary lexical similarity measures is the disambiguation of con-
cept senses. A knowledge-based approach is the most logi-
cal choice since the result of the disambiguation process is
required to be in the form of identified senses from the given
lexical resource. If one were to choose a different type of
approach, it would be necessary to map the disambiguation
result, for instance an identified context cluster, to a lexi-
cal sense definition which adds more degrees of uncertainty
to the disambiguation process. From the knowledge-based
approaches, a method based on glossary overlap is the most
suited candidate. This is because these methods generally
outperform selectional preference-based approaches [52].

In glossary-overlap methods, the context of a target word
is gathered and matched against the context of different sense
definitions. Hence, to realize the gathering and mapping of
context information one can utilize virtual documents. Given
the domain of ontology mapping, it is therefore possible to
utilize virtual documents in two different ways, one of which
being the primary contribution of this paper:

Profile Similarity Given two ontology concepts, one can
determine their similarity by creating their respective vir-
tual documents, in the literature also referred to as profiles
[24,41], and applying a document similarity metric [62].
Hence, the applied metric can be treated as a concept similar-
ity and directly integrated into a ontology mapping system.
Concept Sense Disambiguation This paper proposes the
application of virtual documents within a lexical similar-
ity metric of an ontology mapping system. Here, virtual
documents can be used to perform WSD on the ontology
concepts, more specifically the concept names, to determine
their intended meaning. The intention of this is that using
only senses resulting from WSD in a LSM will cause the
LSM to produce more accurate similarity measures.

The virtual document model serves as context gathering
method. Once created, it is necessary to process the virtual
documents to facilitate the computation of document sim-
ilarities. This is done by transforming the documents into
a vector-space model [65], where each dimension in this
high-dimensional space represents the occurrence of a spe-
cific term. A given document is formulated as a vector of
this space, such that the values for each dimension represent
its respective term-frequency (TF) within that document. By
comparing these document vectors using a specific metric, it
becomes possible to asses to what extent two arbitrary doc-
uments address the same topic. In information retrieval, this
document metric is used to retrieve relevant documents.

In Subsect. 4.1, we will present the used document model
for this research, including a parametrized weighting scheme.
Subsection 4.2 will discuss an alternative weighting scheme.

4.1 Ontology Document Model

We will provide a generalized description of the creation
of a virtual document based on established research [62].
The generalization has the purpose of providing a descrip-
tion that is not only applicable to an OWL/RDF ontology
like the description given in the work by Qu et al. [62], but
also to non-ontological knowledge sources. While a variety
of external resources can be utilized, for this research we
will use the most widely utilized resource, which is Word-
Net [50]. To provide the functions that are used to create a
virtual document, the following terminology is used:

Synset: Basic element within a knowledge source, used to
denote a specific sense using a list of synonyms. Synsets are
related to other synsets by different semantic relations, such
as hyponymy and holonymy.
Concept: A named entity in the linked-data model. A concept
denotes a named class or property given an ontology, and a
synset when referring to WordNet.
Link: A basic component of a linked-data model for relat-
ing elements. A link is directed, originating from a source
and pointing towards a target, such that the type of the link
indicates what relation holds between the two elements. An
example of a link is a triplet in an RDF graph.
sou(s), type(s), tar(s): The source element, type and target
element of a link s, respectively. Within the RDF model,
these three elements of a link are also known as the subject,
predicate and object of a triplet.
Collection of words: A list of unique words where each word
has a corresponding weight in the form of a rational number.
+: Operator denoting the merging of two collections of
words.
×: Operator denoting multiplication.
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A concept definition within a linked-data model contains
different types of literal data, such as a name, different labels,
annotations and comments. The RDF model expresses some
of these values using the rdfs:label, rdfs:comment relations.
Concept descriptions in WordNet have similar capacities,
but the labels of a concepts are referred to as its synonyms
and the comments of a concept are linked via the glossary
relation.

Definition 1 Let ω be a concept of a linked-data model, the
description of ω is a collection of words defined by (1):

Des(e) = α1 × collection of words in the name of ω

+ α2 × collection of words in the labels of ω

+ α3 × collection of words in the comments of ω

+ α4 × collection of words in the annotations of ω

(1)

where each α1, α2, α3 and α4 is a rational number in [0, 1],
such that words can be weighed according to their origin.

Next to accumulating information that is directly related
to a specific concept, one can also include the descriptions
of neighbouring concepts that are associated with that con-
cept via a link. Such a link can be a standard relation that
is defined in the linked-data model, for instance the spe-
cialization relation and also an ontology-defined property if
the used syntax allows the property to occur as a predicate.
While theoretically the presented model would also allow
instances to be included if these are present in the ontology,
it is very unlikely that a given knowledge resource contains
similar specific instance information for which an overlap
can be determined. Hence, given instances are filtered from
the ontologies before the creation of the documents.

The OWL language supports the inclusion of blank-node
concepts which allow complex logical expressions to be
included in concept definitions. However, since not all knowl-
edge resources support the blank-node functionality, mean-
ing anonymous concepts defined using a property restriction,
among which WordNet, these are omitted in our generaliza-
tion. For more information on how to include blank nodes in
the description, consult the work by Qu et al. [62].

To explore neighbouring concepts, three neighbour oper-
ations are defined. SON(ω) denotes the set of concepts that
occur in any link for which ω is the source of that link. Like-
wise TYN(ω) denotes the set of concepts that occur in any
link for which ω is the type, or predicate, of that link and
TAN(ω) denotes the set of concepts that occur in any link for
which ω is the target. WordNet contains inverse relations,
such as hypernym being the inverse of the hyponym relation.
When faced with two relations with one being the inverse
of the other, only one of the two should be used such that
descriptions of neighbours are not included twice in the vir-

tual document. The formal definition of the neighbour oper-
ators is given below.

Definition 2 Let ω be a named concept and s be a vari-
able representing an arbitrary link. The set of source neigh-
bours SON(ω) is defined by (2), the set of type neighbours
TYN(ω)ofω is defined by (3) and the set of target neighbours
TAN(ω) of ω is defined by (4).

SO N (ω) =
⋃

sou(s)=ω
{t ype(s), tar(s)} (2)

T Y N (ω) =
⋃

t ype(s)=ω
{sou(s), tar(s)} (3)

T AN (ω) =
⋃

tar(s)=ω
{sou(s), t ype(s)} (4)

Given the previous definitions, the definition of a virtual
document of a specific concept can be formulated as follows.

Definition 3 Let ω be a concept of a linked-data model. The
virtual document of ω, denoted as V D(ω), is defined by (5):

V D(ω) = Des(ω)+ β1 ×
∑

ω′∈SO N (ω)

Des(ω′)

+β2 ×
∑

ω′∈T Y N (ω)

Des(ω′)+ β3

×
∑

ω′∈T AN (ω)

Des(ω′) (5)

Here, β1, β2 and β3 are rational numbers in [0, 1]. This
makes it possible to allocate a different weight to the descrip-
tions of neighbouring concepts ofω compared to the descrip-
tion of the concept ω itself.

We will provide a brief example for the resulting term
weights in a virtual document that is created using this model.
For this, we will use an example ontology provided in Fig. 3.

Suppose one would want to construct a virtual document
representing the concept Car. The term weights of this doc-
ument are determined through the merger of the description

Car

rfds:label: Auto,
Automobile

rdfs:comment: A motor
vehicle with four wheels

Vehicle

rfds:label: -

rdfs:comment: A
conveyance that
transports people or
objects

Ambulance

rfds:label: -

rdfs:comment: A vehicle
that takes people to and
from hospitals

rdfs:subClassOf:

rdfs:subClassOf

Fig. 3 Example ontology for the construction of a virtual document
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Table 1 Term weights for the document representing the concept Car,
according to the example ontology displayed in Fig. 3

Term Weight Term Weight

a α3 + β1 × α3
+ β3 × α3

Motor α3

Ambulance β3 × α1 Objects β1 × α3

Auto α2 People β1 × α3 + β3 × α3

Automobile α2 Takes β3 × α3

Car α1 That β1 × α3 + β3 × α3

Conveyance β1 × α3 Transports β1 × α3

Four α3 To β3 × α3

From β3 × α3 Vehicle α3 + β1 × α1 + β3 × α3

Hospitals β3 × α3 Wheels α3

of the concept Car and the weighted descriptions of the con-
cepts Vehicle and Ambulance. The term weight of the word
car would be α1, since the term only occurs in the name of
the concept Car. The term vehicle would receive the weight
α3+β1×α1+β3×α3. This is because the term occurs in three
locations in the neighbourhood of the concept Car, once in a
comment of the given concept, once in the name of a source
neighbour and once in a comment of a target neighbour. The
sum of these particular occurrences hence forms the final
term weight for this word. The full list of term weights of
the document representing the example concept Car can be
viewed in Table 1. For the sake of demonstration the list also
includes the weights of stop-words.

4.2 Term-Frequency Weighting

Instead of weighting terms in a virtual document according
to their origin from within their respective ontology, it is
also possible to treat a virtual document as a standard natural
language document.

This allows for the application of well-known weighting
techniques originating from the field of information retrieval.

The most prominent weighting technique is TF-IDF [31].
This method relates the term-frequency (TF) of a word within
a document with the inverse document frequency (IDF),
which expresses in how many of the registered documents
a term occurs. Given a collection of documents D and an
arbitrary term t and the term-frequency of the term t within
document dx as tf (t, dx ), the TF-IDF weight of the term t
within document dx is then specified as follows:

tf -idf (t, dx , D) = tf (t, dx )× log
|D|

|{d ∈ D : t ∈ d}| (6)

However, given the availability of ontological background
knowledge which can aid the document creation process, it is
questionable whether the application of a weighting scheme
which is designed to be applied on texts formulated in natural

language outperforms the weighting functionality supplied
by the virtual document model. We will compare the perfor-
mance of TF-IDF with the virtual document model in Sect.
6.3.

5 Concept Sense Disambiguation

Our proposed approach aims at improving matchers applying
lexical similarity metrics. For this resarch, the applied LSM
will use WordNet as knowledge resource. The synsets of
WordNet will be used to annotate the meanings of ontology
concepts and express their semantic relatedness.

The goal of our approach is to automatically identify the
correct senses for each concept of an ontology by apply-
ing information retrieval techniques on virtual documents
that have been created using either ontology concepts or
word-sense entries from the knowledge resource. Given two
ontologies O1 and O2 that are to be matched, O1 contains
the sets of entities E1

x = {e1
1, e1

2, ..., e1
m}, where x distin-

guishes between the set of classes, properties or instances,
O2 contains the sets of entities E2

x = {e2
1, e2

2, ..., e2
n}, and

C(e) denotes a collection of synsets representing entity e.
The main steps of our approach, performed separately for
classes, properties and instances, can be described as fol-
lows:

1. For every entity e in Ei
x , compute its corresponding set

C(e) by performing the following procedure:

(a) Assemble the set C(e)with synsets that might denote
the meaning of entity e.

(b) Create a virtual document of e, and a virtual document
for every synset in C(e).

(c) Calculate the document similarities between the vir-
tual document denoting e and the different virtual
documents originating from C(e).

(d) Discard all synsets from C(e) that resulted in a low
similarity score with the virtual document of e, using
some selection procedure.

2. Compute the lexical similarity for all combinations of
e1 ∈ E1

x and e2 ∈ E2
x using the processed collections

C(e1) and C(e2).

The essential operation of the approach is the exclusion of
synsets from the lexical similarity calculation. This is deter-
mined using the document similarities between the virtual
documents originating from the synsets and the virtual docu-
ment originating from the ontology concepts. Figure 4 illus-
trates steps 1.b–2 of our approach for two arbitrary ontology
entities e1 and e2:

Once the similarity matrix, meaning all pairwise similari-
ties between the entities of both ontologies, is computed, the
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Fig. 4 Visualization of step 1.b–2 of the proposed approach for any
entity e1 from ontology O1 and any entity e2 from ontology 2

final alignment of the mapping process can be extracted or
the matrix can be combined with other similarity matrices.

5.1 Synset Selection and Virtual Document Similarity

The initial step of the approach entails the allocation of
synsets that might denote the meaning of a concept. The
name of the concept, meaning the fragment of its URI, and
alternate labels, when provided, are used for this purpose.
While ideally one would prefer synsets which contain an
exact match of the concept name or label, precautions must
be made for the eventuality that no exact match can be found.
For this research, several pre-processing methods have been
applied such as the removal of special characters, stop-word
removal and tokenization. It is possible to enhance these pre-
cautions further by for instance the application of advanced
natural language techniques; however, the investigation of
such techniques in this context is beyond the scope of this
research. When faced with ontologies that do not contain
concept names using natural language, for instance using
numeric identifiers instead, and containing no labels, it is
unlikely that any pre-processing technique will be able to
reliably identify possible synsets, in which case a lexical
similarity is ill-suited for that particular matching problem.

In the second step, the virtual document model as
described in Sect. 4.1 is applied to each ontology concept
and to each synset that has been gathered in the previous step.
The resulting virtual document is represented using the well-
known vector-space model [65]. To compute the similarities
between the synset documents and the concept documents,
the established cosine-similarity is applied [78].

5.2 Concept Disambiguation

Once the similarities between the entity document and the
different synset documents are known, a selection method is
applied to disambiguate the meaning of the given concept.

Here, senses are only coupled to the concept if they resulted in
a sufficiently high document similarity, while the remaining
senses are discarded. To determine which similarity score can
be considered sufficiently high, a selection policy needs to
be applied. It is possible to tackle this problem from various
angles, ranging from very lenient methods, discarding only
the very worst synsets, to strict methods, associating only
the highest scoring synset with the given concept. Several
selection methods have been investigated for this research,
such that both strict and lenient methods are tested:

G-MEAN The most lenient method aggregates the docu-
ment similarities using the geometric mean and uses this as
a threshold to discard senses with a lower similarity value.
A-MEAN Similar to the previous method, however, the arith-
metic mean is used as a threshold instead.
M-STD This more strict method dynamically determines a
threshold by subtracting the standard deviation of the docu-
ment similarities from the highest obtained similarity. It has
the interesting property that it is more strict when there is a
subset of documents that is significantly more similar than
the remaining documents, indicating a strong sense corre-
spondence, and more lenient when it not as easy to identify
the correct correspondences.
MAX The most strict method consists of dismissing all
senses from C except for the one single sense that resulted
in the highest document similarity.

Once all concepts of both input ontologies are disam-
biguated, one can compute the lexical similarity between
concepts using the processed synset collections.

5.3 Lexical Similarity Metrics

After selecting the most appropriate synsets using the doc-
ument similarities, the similarity between two entities can
now be computed using their assigned synsets. This presents
the problem of determining the similarity between two sets
of synsets. To approach this task, we will evaluate three dif-
ferent methods of determining the lexical similarity between
two collections of synsets.

A reasonable assumption is that each collection of synsets
only contains one synset that represents the true meaning
of its corresponding entity. Thus, if one were to compare
two sets of synsets, assuming that the originating entities
are semantically related, then one can assume that the result-
ing similarity between the two synsets that both represent the
true meaning of their corresponding entities, should be a high
value. Inspecting all pairwise similarities between all com-
binations of synsets between both sets should yield at least
one high similarity value. When comparing two sets originat-
ing from semantically unrelated entities, one can assume that
there should be no pairwise similarity of high value present.
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Thus, in this scenario, a reasonable way of computing the
similarity of two sets of synsets is to compute the maximum
similarity over all pairwise combination between the two sets.
This intuition is similar to the principle of Maximum Relat-
edness Disambiguation [60] in the sense that two concepts
can be considered similar if a certain amount of their concept
information can be considered similar by some measure.

Formally, given two concepts x and y, their corresponding
collections of synsets C(x) and C(y), a measure of semantic
similarity sim(m, n) ∈ [0, 1] where m and n are two arbitrary
synsets, we define the first lexical similarity lsm1 between x
and y as:

lsm1(x, y) = max
m∈C(x);n∈C(y)

sim(m, n) (7)

A potential weakness of lsm1 is the eventuality where a con-
cept has several appropriate senses. When comparing these
senses to other collections, one might prefer a method which
values the quantity of high similarities as well. For example,
assume that the sense collections C(x), C(y) and C(z) each
contain two senses and that we wish to determine whether
C(y) or C(z) are a more appropriate match for C(x). Further,
assume that each pairwise similarity between senses in C(x)
and C(y) results in the value ψ , where as only one sense
of C(z) results in the similarity ψ with the remaining sense
being unrelated and resulting in a similarity of 0. Comput-
ing lsm1(x, y) and lsm1(x, z) would both result in the value
ψ . In this example, however, one would be more inclined to
match x with y since the comparison with y resulted in more
high similarity values. A way to adapt for this situation is to
determine the best target sense for each sense in both col-
lections and to aggregate these values, which we will denote
as lsm2. Given two concepts x and y, their corresponding
collections of synsets C(x) and C(y), a measure of semantic
similarity sim(m, n) ∈ [0, 1] where m and n are two arbi-
trary synsets, we define lsm2 as follows:

lsm2(x, y) =
∑

m∈C(x)
(
maxn∈C(y) sim(m, n)

) + ∑
n∈C(y)

(
maxm∈C(x) sim(n,m)

)

|C(x)| + |C(y)|
(8)

A more general approach to determine the similarity
between two collections of senses is to aggregate all pair-
wise similarities between the two collections. This has the
potential benefit that similarity values which have no effect
on the result of lsm1 or lsm2 are affecting the outcome of
the lexical similarity measure. We will denote this measure
as lsm3. Formally, given two concepts x and y, their corre-
sponding collections of synsets C(x) and C(y), a measure
of semantic similarity sim(m, n) ∈ [0, 1], we define lsm3 as
follows:

lsm3(x, y) =
∑

m∈C(x)
∑

n∈C(y) sim(m, n)

|C(x)| × |C(y)| (9)

There exist various ways to compute the semantic similarity
sim within WordNet [5] that can be applied, however, finding
the optimal measure is beyond the scope of this paper since
this is not a component of the disambiguation process. Here,
a similarity measure with similar properties as the Leacock–
Chodorow similarity [5] has been applied. The similarity
sim(s1, s2) of two synsets s1 and s2 is computed using the
distance function dist (s1, s2), which determines the distance
of two synsets inside the taxonomy, and the over depth D of
the taxonomy:

sim(s1, s2) =
{ D−dist(s1,s2)

D if dist(s1, s2) ≤ D
0 otherwise

(10)

This measure is similar to the Leacock–Chodorow similarity
in that it relates the taxonomic distance of two synsets to the
depth of the taxonomy. To ensure that the resulting similarity
values fall within the interval of [0, 1] and thus can be inte-
grated into larger mapping systems, the log-scaling has been
omitted in favour of a linear scale.

6 Experiments

In this section, the experiments that have been performed to
test the effectiveness the approach of adding a concept disam-
biguation step to a lexical similarity will be presented. These
experiments serve to evaluate different aspects of the pro-
posed approach and to demonstrate the feasibility of word-
sense disambiguation techniques for an ontology mapping
system. The different experiments can be divided into the
following categories:

– Subsect. 6.1 describes the performed experiments to eval-
uate the different concept disambiguation policies to deter-
mine whether lenient or strict policies should be preferred.

– The experiments described in Subsect. 6.2 demonstrate the
potential performance a system can achieve when utilizing
the proposed techniques.

– Subsection 6.3 presents the performed experiments which
evaluate the considered virtual document weighting tech-
niques.

– The runtime performance overhead and gains introduced
by our approach will be analysed in Subsect. 6.4.

The tested mapping system used for the performed exper-
iments contains two similarity metrics: a lexical similarity
using a configuration which is specified in the experimental
setup and a syntactic similarity using the Jaro string similar-
ity [29] applied on concept names and labels. The combined
concept similarities are aggregated using the Naive descend-
ing extraction algorithm [48]. The tested system in Sects.
6.1 and 6.2.2 used the parameter schemes obtained from the
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experiment presented in Sect. 6.3.2, while the system in Sect.
6.2.1 had a manually tuned parameter set.

When evaluating the performance of an ontology map-
ping procedure, the most common practise is to compare a
generated alignment with a reference alignment of the same
data set. Measures such as precision and recall [21], can then
be computed to express the correctness and completeness
of the computed alignment. Given a generated alignment A
and reference alignment R, the precision P(A, R) and recall
R(A, R) of the generated alignment A are defined as:

P(A, R) = R ∩ A

A
(11)

R(A, R) = R ∩ A

R
(12)

Given the precision and recall of an alignment, a common
measure to express the overall quality of the alignment is
the F-measure [21]. Given a generated alignment A and a
reference alignment R, the F-measure can be computed al
follows:

F-Measure(A,R) = 2 ∗ P(A, R) ∗ R(A, R)

P(A, R)+ R(A, R)
(13)

The F-measure is the harmonic mean between precision
and recall. Given that these measurements require a refer-
ence alignment, they are often inconvenient for large-scale
evaluations, since reference alignments require an exceeding
amount of effort to create. The used data sets, however, do
feature reference alignments, such that the performance of a
mapping approach can easily be computed and compared.

6.1 Concept Disambiguation

To investigate to what extent disambiguation techniques can
improve a framework using a lexical similarity, we evaluated
our approach using different variations of our approach on
the conference data set of the 2011 competition [15] from
the Ontology Alignment Evaluation Initiative (OAEI) [16].
This data set consists of real-world ontologies describing the
conference domain and contains a reference alignment for
each possible combination of ontologies from this data set.
We performed this evaluation using the three lexical similar-
ity measures lsm1, lsm2 and lsm3, evaluating each measure
using the disambiguation policies G-Mean, A-Mean, M-STD
and MAX. We denote None as the omission of the disam-
biguation step, such that its results denote the baseline per-
formance of the respective lexical similarity measure. Figure
5 displays the different results when using lsm1.

From Fig. 5 we can make several key observations. First,
we can see that a stricter disambiguation policy clearly ben-
efits the lsm1 metric, evidenced by the steadily increasing F-
measure. The low precision for lenient policies implies that
there are numerous false positives which exhibit a higher
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Fig. 5 Evaluation of disambiguation policies using the lexical similar-
ity lsm1 on the OAEI 2011 Conference data set
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Fig. 6 Evaluation of disambiguation policies using the lexical similar-
ity lsm2 on the OAEI 2011 Conference data set

semantic similarity than the true correspondences. When
increasing the strictness of the filtering policy, the precision
rises steadily, meaning an increasing amount of false pos-
itives is eliminated. We can also observe a slight drop in
recall for stricter policies, particularly when comparing M-
STD with MAX, which implies that in a few situations the
wrong senses are filtered out.

The same evaluation has been performed using the lsm2

lexical similarity. The results of this evaluation can be seen
in Fig. 6.

From Fig. 6 we can see that the disambiguation policies
have a different effect on lsm2, as opposed to lsm1. We can
observe an improvement in performance when applying G-
Mean or A-Mean as policies, with F-measures of .517 and
.526, respectively, compared to the baseline F-measure of
.501. This improvement stems from an increase in precision,
which more than compensates for the loss in recall. How-
ever, the F-measure decreases again when applying M-STD
and MAX as policies. This implies that preferring to match
concepts whose sense have multiple high pairwise similari-
ties can be beneficial, since for M-STD and MAX it is unlikely
at least that after the disambiguation step there are multiple
senses left. Thus, main observation of this evaluation is that
a disambiguation step is also beneficial for lsm2, though not
for all disambiguation policies.
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Fig. 7 Evaluation of disambiguation policies using the lexical similar-
ity lsm3 on the OAEI 2011 Conference data set

Lastly, the results of the evaluation when applying lsm3

can be observed in Fig. 7.
From Fig. 7, we can see that the precision and recall

values obtained by applying lsm3 differ significantly when
compared to the values obtained by applying lsm1 or lsm2.
For the baseline and the policies G-Mean and A-Mean we
can observe a very high precision and low recall. The high
precision implies that a high average semantic similarity
between collections of synsets is likely to represent a true
correspondence. The low recall implies though that this
does not occur very frequently. Upon applying the most
lenient disambiguation policy G-Mean, we can see a dras-
tic increase in both recall and F-measure. Applying the
stricter policy A-Mean the recall and F-measure increase
slightly, though at the cost of a reduced precision. The
performance of M-STD is similar to its performance when
applying lsm1 or lsm2, implying that it is not a regu-
lar occurrence that this policy retains more than one word
sense.

Overall, we can conclude that the application of the pro-
posed disambiguation method benefited the tested lexical
similarity metrics. For lsm1 and lsm3 a strict disambigua-
tion policy has produced the best results, while for lsm2 the
lenient policies have been shown to be most effective.

6.2 Framework Comparison

In this subsection, we will compare the performance of a
mapping system utilizing our approach with the performance
of established techniques. To do this, we have entered a con-
figuration of our approach in the OAEI 2011 competition
[15], of which the results are reported in Sect. 6.2.1. A com-
parison with the performances of additional and revised state-
of-the-art systems will be presented in Sect. 6.2.2.

6.2.1 Preliminary OAEI 2011 evaluation

During the research phase of this approach, we entered the
described system in the 2011 OAEI competition under the

name MaasMatch to evaluate its performance. The config-
uration used the lexical similarity metric lsm1 with disam-
biguation policy M AX , since at the time the performance
of lsm2 and lsm3 was not evaluated, yet. The results of the
competition on the conference data set can be seen in Fig. 8.

From Fig. 8 one can see that MaasMatch achieved a
high precision and moderate recall over the conference
data set, resulting in the fifth highest F-measure among
the participants, which is above average. A noteworthy
aspect of this result is that this result has been achieved
by only applying lexical similarities, which are better
suited at resolving naming conflicts as opposed to other
conflicts. This in turn also explains the moderate recall
value, since it would require a larger, and more impor-
tantly a more varied set of similarity values, to deal with
the remaining types of heterogeneities as well. Hence,
it is encouraging to see these good results when tak-
ing into account the moderate complexity of the frame-
work.

A different data set of the OAEI competition is the bench-
mark data set. This is a synthetic data set, where a refer-
ence ontology is matched with many systematic variations of
itself. These variations include many aspects, such as intro-
ducing errors or randomizing names, omitting certain types
of information or altering the structure of the ontology. Since
a base ontology is compared to variations of itself, this data
set does not contain a large quantity of naming conflicts,
which our approach is targeted at. However, it is interest-
ing to see how our framework performs when faced with
every kind of heterogeneity. Figure 9 displays the results
of the OAEI 2011 evaluation [15] on the benchmark data
set.

From Fig. 9 we can see that the overall performance
MaasMatch resulted in a high precision score and rela-
tively low recall score when compared to the competi-
tors. The low recall score can be explained by the fact
that the disambiguation method relies on collecting candi-
date synsets using information stored in the names of the
ontology concepts. The data set regularly contains ontolo-
gies with altered or scrambled names, such that it becomes
extremely difficult to allocate candidate senses which can
be used for the disambiguation step. These alterations
also have a negative impact on the quality of the con-
structed virtual documents, especially if names or anno-
tations are scrambled or completely left out, resulting in
MaasMatch performing poorly in benchmarks that contain
such alterations. Despite these drawbacks, it was possi-
ble to achieve results similar to established matchers that
address all types of heterogeneities. Given these results,
the performance can be improved if measures are added
which tackle other types of heterogeneities, especially if
such measures increase the recall without impacting the
precision.
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Fig. 8 Results of MaasMatch
in the OAEI 2011 competition
on the conference data set,
compared against the results of
the other participants
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Fig. 9 Results of MaasMatch
in the OAEI 2011 competition
on the benchmark data set,
compared against the results of
the other participants
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6.2.2 Comparison with OAEI 2013 frameworks

To give a more complete picture of the performance of our
approach compared to other frameworks, we re-evaluated
our approach using the 2013 conference data set [22] using
the same evaluation methodology than the OAEI competi-
tion. This allows for the comparison with newer frameworks.
Here, the frameworks edna and StringEquiv are purely string-
based systems which serve as a baseline comparison. We
limit the comparison to systems which performed above the
lowest baseline, StringEquiv, for the sake of brevity. We test
three variations of our approach, allowing each lexical sim-
ilarity metric to be compared. As disambiguation policies
we applied MAX for lsm1 and A-Mean for lsm2 and lsm3.
While A-Mean is sub-optimal for lsm3 with regard to the F-
measure, applying its best performing measure MAX would
result in a performance similar to the configuration of lsm1.
The comparison of the OAEI 2013 performances with the
three lexical similarity measures can be seen in Table 2.

One can observe from Table 2 that of the three tested lexi-
cal similarity measures, lsm1 and lsm2 scored above the two
baseline matchers. The quality of the alignments produced
by the two variants of the tested systems is very similar, espe-
cially with regard to the F-measure. Similar to its 2011 per-
formance, the lsm1 variant displayed a strong emphasis on
precision, while the precision and recall of lsm2 resembles
the measures obtained by similarly performing systems, most

notably ODGOMS1_1 and HerTUDA. The performance of
lsm3 is more comparable to the baseline and the OntoK sys-
tem.

Overall, we can conclude that a system using our approach
can perform competitively with state-of-the-art systems,
especially when taking into account the modest complexity
of the tested system.

6.3 Weighting Schemes Experiments

In this section, we will demonstrate the effect of the parameter
system of the used document model. We will demonstrate this
effect when the model is used to calculate word-sense scores,
as described in our approach, and the effect when the model
is used in its original context as a profile similarity.

6.3.1 Preliminaries: Parameter Optimization

The applied VD model provides the possibility of para-
metrized weighting, which allows the emphasis of words
depending on their origin.

Recall from Subsect. 4.1 that the model contains a set
of parameters, being α1, α2, α3, α4, β1, β2 and β3, which
weight terms according to their place in the ontology. Next to
evaluating the weighting approaches in the proposed WSD
method, we will also test a profile similarity that uses the
presented virtual document model for gathering the context

123



Word-Sense Disambiguation

Table 2 Evaluation on the conference 2013 data set and comparison
with OAEI 2013 frameworks

Framework Precision Recall F-measure

YAM++ 0.78 0.65 0.71

AML-bk 0.82 0.53 0.64

LogMap 0.76 0.54 0.63

AML 0.82 0.51 0.63

ODGOMS1_2 0.7 0.55 0.62

StringsAuto 0.74 0.5 0.6

ServOMap_v104 0.69 0.5 0.58

MapSSS 0.77 0.46 0.58

ODGOMS1_1 0.72 0.47 0.57

lsm1 0.8631 0.4436 0.5685

lsm2 0.7382 0.4797 0.5643

HerTUDA 0.7 0.46 0.56

WikiMatch 0.7 0.45 0.55

WeSeE-match 0.79 0.42 0.55

IAMA 0.74 0.44 0.55

HotMatch 0.67 0.47 0.55

CIDER_CL 0.72 0.44 0.55

edna 0.73 0.44 0.55

lsm3 0.6327 0.5041 0.5466

OntoK 0.72 0.43 0.54

LogMapLite 0.68 0.45 0.54

XMapSiG1_3 0.68 0.44 0.53

XMapGen1_4 0.64 0.45 0.53

SYNTHESIS 0.73 0.41 0.53

StringEquiv 0.76 0.39 0.52

information of a concept, similar to the work by Qu et al. [62].
Here, given two concepts c and d, originating form differ-
ent ontologies, and their respective virtual documents V D(c)
and V D(d), a profile similarity can be created by comput-
ing the document similarity between V D(c) and V D(d). For
each of the tested approaches the conference and benchmark
data sets were used as separate training sets, resulting in four
different parameter sets. We will use the terms Lex-B and
Lex-C to refer to the parameter sets which have been gen-
erated by optimizing the LSM on the benchmark and con-
ference data set, respectively. For the parameter sets which
have been generated using the profile similarity we will use
the terms Prof-B and Prof-C.

Tree-Learning Search (TLS) [79] was applied to optimize
the different combinations of similarity metrics and train-
ing sets. TLS combines aspects of Monte-Carlo Tree Search
and incremental regression tree induction in order to selec-
tively discretize the parameter space. This discretized para-
meter space is then sampled using the Monte-Carlo method
to approximate the optimal solution. The results of the per-
formed optimization can be seen in Table 3.

From Table 3 some notable differences emerge. The para-
meter α1 tends to have a higher value for profile similarities
compared to the LSM parameters sets. This can be explained
by the fact that the synset candidate collection step of the
proposed disambiguation method selects candidate synsets
using the processed ontology concept names as basis. Hence,
all sysnet candidates will contain terms that are similar to the
ontology concept name, diminishing their information value
for the purpose of WSD. Conversely, values for α2 tend to
be higher for LSM parameter sets, indicating that matching
alternative concept names are a strong indication of a con-
cept’s intended meaning.

6.3.2 Preliminaries: Test Setup

We will evaluate six different weighting schemes for virtual
documents to investigate what impact these have on the map-
ping quality. The six weighting schemes were evaluated on
the conference data set and can be described as follows:

TF As a reference point, we will evaluate the performance
of standard term-frequency weights as a baseline, which is
done by setting all VD parameters to 1.
Lex-C/Prof-C This scheme represents the VD model using
optimized parameters that were obtained from the same data
set. This scheme will be referred to by the name of its corre-
sponding parameters set, which is Lex-C for the WSD evalau-
tion and Prof-C for the profile similarity evaluation.
Lex-B/Prof-B Similar to the previous scheme, however, the
parameter set was obtained through the optimization on a
different training set.
TF-IDF This scheme entails the combination of term-
frequency and inverse document frequency weights, as com-
monly seen in the field of information retrieval. Similar to
TF weighting, all weights of the VD model will be set to 1.
Lex-C/Prof-C * TF-IDF It is possible to combine the VD
model with a TF-IDF weighting scheme. This scheme repre-
sents such a combination using the parameter sets that have
been obtained from the same data set. In the WSD exper-
iment this scheme will be referred to as Lex-C * TF-IDF,
while in the profile similarity experiment it will be referred
to as Prof-C * TF-IDF.
Lex-B/Prof-B * TF-IDF Similar to the previous scheme, how-
ever, the parameter sets that were obtained from the bench-
mark data set are used instead.

The evaluation of the TF-IDF method and its combination
with the VD model weighting is especially critical since pre-
vious work using this model has included TF-IDF weighting
in its approach without evaluating the possible implications
of this technique [62]. For each weighting method the com-
puted alignments are ranked according to their similarity. For
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Table 3 Optimized parameter
sets for the VD model when
applied to a LSM (Lex) and
profile similarity (Prof) using
the conference (C) and
benchmark (B) data sets as
training sets

Parameter set α1 α2 α3 α4 β1 β2 β3

Lex-C 0.51 0.68 0.58 0.42 0.32 0.07 0.06

Lex-B 0.52 0.99 0.08 0.65 0.01 0.09 0.16

Prof-C 0.71 0.02 0.01 0.58 0.09 0.04 0.01

Prof-B 0.85 0.13 0.54 0.32 0.90 0.32 0.99
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Fig. 10 Precision versus recall graph of the created alignments from
the conference data set using the lexical similarities with the virtual
document

each ranking the interpolated precision values will be com-
puted such that these can be compared.

6.3.3 Lexical Similarity with Applied WSD

The different weighting schemes have been separately
applied to this approach and subsequently used to calculate
mappings on the conference data set. The precision vs recall
graph of the produced alignments can be seen in Fig. 10.

From Fig. 10 we can observe some key points. For lower
recall values, Lex-C, Lex-B and Lex-B * TF-IDF weight-
ing resulted in the highest precision values. When inspect-
ing higher recall values, one can observe that the Lex-C
and Lex-B weighting outperformed the remaining weight-
ing schemes with differences in precision reaching values
of 10 %. However, only the alignments generated with TF,
TF-IDF and Lex-B * TF-IDF weighting achieved a possi-
ble recall value of 0.7 or higher, albeit at very low precision
values. Another notable observation is the performance of
TF-IDF based schemes. The standard TF-IDF scheme dis-
played performance similar to TF, thus being substantially
lower than Lex-C or Lex-B. Also, the combination schemes
Lex-C * TF-IDF and Lex-B * TF-IDF performed lower than
their respective counterparts Lex-C and Lex-B. From this we
can conclude that when applying VD-based disambiguation
for a LSM, it is preferable to weight terms according to their
origin and avoid the use of inverse document frequencies.
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Fig. 11 Precision versus recall graph of the created alignments from
the conference data set using the document similarities of the virtual
documents

6.3.4 Profile Similarity

After having established the impact that different weight-
ing techniques can have on the VD model when applied as
context gathering method for a disambiguation approach, it
would be interesting to see the impact of these techniques
when the VD model is used for its original purpose [62].
Hence, in this subsection, we will detail the performed exper-
iments with the six investigated weighting schemes when uti-
lizing the virtual document model as the context gathering
method for a profile similarity. All weighting schemes were
used to calculate mappings on the conference data set. The
measures of precision and recall were computed using the
resulting alignments. The precision vs recall graph of these
alignments can be seen in Fig. 11.

From Fig. 11 several key observations can be made. Ini-
tially, one can see that the overall two best performing
schemes are Prof-C and Prof-C * TF-IDF weighting. The
Prof-C * TF-IDF scheme displays a slightly worse perfor-
mance than the Prof-C scheme. This indicates that the com-
bination with TF-IDF weights not only failed to improve the
term weights of the virtual documents, but rather it caused
the representative strength of the VD to decrease, leading
to alignments of lesser quality. The same contrast is visible
when comparing Prof-B weighting with Prof-B * TF-IDF
weighting.

Next, another observation can be made when contrasting
the results of the TF-IDF weights with TF weights. Both
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Fig. 12 Precision versus recall graph contrasting the LSM and Profile
similarity performances using TF weighting with the VD model using
the optimized parameter sets

schemes lead to alignments of similar quality, indicating that
the combination of the inverse document frequencies to the
term frequencies does not lead to the same improvements that
one can observe when performing information retrieval on
regular documents. Lastly, when comparing TF-IDF weight-
ing to Prof-C and Prof-B weighting, one can see that TF-IDF
weighting can at most match the performance of the other
two schemes.

6.3.5 Improvement Comparison

To provide a better contrast with regard to how much the
weighting scheme of the document model can impact the per-
formance, we have compiled the baseline TF performances
of the lexical and profile similarity along with the perfor-
mances of the lexical and profile similarity when applying,
respectively, optimized weights of the document model. The
resulting precision versus recall graph can be seen in Figure.

From Fig. 12 we can observe that the application of the
document model weighting scheme had a more drastic impact
on the profile similarity than on the lexical similarity. This
difference can be explained by the nature of the two similarity
measures. In a profile similarity, the virtual documents of two
concepts are compared directly, thus changing the weights
associated with each term can severely alter the result when
the documents are compared. This is evidenced by the stark
differences between Profile(TF) and Profile(Prof-C). For a
lexical similarity, however, altering the weighting scheme
is likely to cause little difference when comparing the con-
cept document to a document representing an unrelated word
sense, since the word-sense document is unlikely to contain
many overlapping words. Thus, significant changes are only
likely to occur in more ambiguous cases, where unrelated
sense do have at least some term overlap. This explanation
is substantiated in the difference in performance between
WN(TF) and WN(Lex-C) over the different recall levels. For
the lower recall levels, there is only little different between
WN(TF) and WN(Lex-C), meaning that the correspondences

with higher confidence levels do not vary much and are hence
associated with the same word senses regardless of weight-
ing approach. Only for the higher recall levels is a large dif-
ference in performance observed, suggesting alternate asso-
ciated word senses for the more difficult to disambiguate
concepts.

6.4 Runtime Analysis

When designing an ontology mapping framework the issue of
runtime can be an important factor. This becomes an increas-
ingly important issue when attempting to create a mapping
between large ontologies, with both ontologies containing
several hundred up to thousands of concepts. Adding a dis-
ambiguation procedure to a lexical similarity might cause a
decrease in runtime performance, which if sufficiently sig-
nificant would make in infeasible to include this approach
for a large mapping task. To establish how much runtime
overhead our approach generates, we executed our system
on the OAEI 2013 conference data set while recording the
total runtimes for the three general steps of lexical similarity
measure: the retrieval of candidate senses, the disambigua-
tion procedure and the computation of the lexical similarity.
The disambiguation procedure involves the process of creat-
ing the virtual documents, document similarity computations
and application of the disambiguation policy. To accurately
establish the overhead added to the runtime of a standard
lexical similarity, no word senses are discarded in the disam-
biguation step. As lexical similarity metric, lsm1 was applied,
though in terms of runtime there is likely to be little differ-
ence since lsm1, lsm2 and lsm3 all require the computation
between all pairwise combinations of senses to obtain their
results. The recorded runtimes are presented in Table 4.

From Table 4 we can see that the most time-consuming
step of the entire similarity measure, consuming 74 % of the
expended computation time, is the calculation of the actual
similarity values after having disambiguated all the word
senses. Determining all candidate word senses for the ontol-
ogy concepts, which involves several string-processing tech-
niques such as tokenization, word-stemming and stop-word
removal, required 22 % of the spent computational time. The
creation of virtual documents and disambiguation of senses
only required 3 % of the computation time, meaning that the
addition of this step increased the runtime by 3.65 %. Given
the potential performance increases of our approach, one can
conclude that the additional overhead introduced is negligi-
ble.

The previous comparison assumed a worse-case scenario
where no senses are discarded. However, the filtering of
senses can reduce the computational time for the lexical sim-
ilarity by requiring fewer evaluations of the semantic simi-
larity between senses. To see to what extent the different
disambiguation policies reduce the runtime of this step, we
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Table 4 Runtimes of the
different elements of the lexical
similarity on the conference data
set

Computation Sense retrieval Disambiguation Lexical similarity Overhead (%)

Runtime (ms) 35,272 5,632 118,900 3.65

Table 5 Runtimes of the
different elements of the lexical
similarity for each
disambiguation policy

Policy Sense retrieval
(ms)

Disambiguation
(ms)

Lexical similarity
(ms)

Runtime reduc-
tion (%)

None 35,272 5,632 118,900 0.0

G-mean 35,350 5,590 61,761 35.7

A-mean 35,780 5,828 24,847 58.4

M-STD 34,229 5,472 7,244 70.6

MAX 33,975 5,374 2,005 74.1

recorded the runtimes of each policy on the conference data
set to establish possible performance gains.

From Table 5 we can observe that the application of the
disambiguation policies can lead to significant improvements
in terms of runtime. Applying the most lenient G-Mean pol-
icy leads to a reduction in runtime of 35 % where as the most
strict policy reduces the overall runtime by 74.1 %.

Overall, we can conclude the the application of a disam-
biguation procedure can lead to significant improvements in
runtime despite the addition of computational overhead of
the disambiguation method.

7 Conclusion

Lexical similarity measures are a critical component in
contemporary ontology mapping procedures. In this paper,
we proposed the inclusion of word-sense disambiguation
techniques into lexical similarity metrics to disambiguate
ontology concepts, such that lexical similarities more accu-
rately reflect the semantic relatedness between two ontology
concepts. Further, we proposed a concept disambiguation
method which identifies corresponding senses using a vir-
tual document model. For each given concept and possible
senses, a parametrized model is used to gather relevant infor-
mation into separate virtual documents, such that their doc-
ument similarities indicate which sense is the most likely to
denote the meaning of the given concept.

We investigated to what extent the proposed disambigua-
tion method can improve a mapping system. To do this several
disambiguation policies, ranging from lenient to strict, have
been evaluated using three different lexical similarity met-
rics. The experimental results show that the application of
the disambiguation approach improves the performances of
all the tests’ similarity metrics, with two metrics favouring
a strict and one metric favouring a lenient disambiguation
policy.

To establish the potential of a mapping system utilized the
proposed approach, we compared such a system with con-

temporary ontology mapping frameworks in the context of
the OAEI 2011 and OAEI 2013 competition. The evalua-
tion on the real-world data set shows very promising perfor-
mance, exhibiting the fifth highest alignment quality among
the tested frameworks. The evaluation on a synthetic bench-
mark revealed a dependency on properly formed concept
names.

Furthermore, we investigated the effects of different
weighting approaches for the terms in the virtual documents.
These approaches were tested on the proposed disambigua-
tion method and a profile similarity, which uses the assembled
virtual documents as concept profiles. From this experiment,
we can conclude that weighting terms according to their ori-
gin from their respective ontology is the superior weighting
method. TF-IDF weighting did not result in any measurable
benefits, suggesting that term-weighting methods that were
developed with the assumption that these will be applied to
texts written in natural language should be avoided.

Lastly, a performed runtime analysis revealed that the fil-
tering of word senses reduces the runtime of the similarity
metrics to such an extent that it more than off-sets the added
overhead introduced by the disambiguation method.

We suggest that future work should focus on the robustness
of the approach when faced with disturbed concept names or
descriptions. This can be achieved for instance through the
application of automatic spell checking or the usage of soft
document similarities during the disambiguation process.
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