
Dr
af

t v
er

sio
n

Model Integration with Model Weaving:

a Case Study in System Architecture

Albin Jossic1 Marcos Didonet Del Fabro2 Jean-Philippe Lerat1

Jean Bézivin2 Frédéric Jouault2

1Sodius SAS

6, rue de Cornouaille,
BP 91941, 44319 Nantes Cedex 3 France

{ajossic, jplerat}@sodius.com

2ATLAS Group, INRIA & LINA
2, rue de la Houssinière,

BP 92208, 44322 Nantes Cedex 3 France
{marcos.didonet-del-fabro, jean.bezivin,

frederic.jouault}@univ-nantes.fr

Abstract

Complex metamodels are often decomposed into several
views, in particular for architecture framework metamodels
such as DoDAF (Department of Defense Architecture
Framework). Designing models that conform to this kind of
metamodels implies data integration problems between the
different views. Usually, different views from a same
metamodel share a common core. This is the reason why
those views are interrelated. The common core is identified
with the creation of mapping links.. Within MDE (Model
Driven Engineering) approaches, these links may be
captured by weaving models. Using MDE principles, we
automate this data integration process by generating
transformations between these views. For this, we generate
weaving models between different views using matching
heuristics and then we produce model transformations from
this weaving model. We have applied this method to
DoDAF metamodels. In this architecture framework, SV-5
(a system view) relates to OV-5 (an operational view) and
SV-4 (another system view) with the aim to provide a
traceability matrix about system architectures.

1 Introduction

System Architecture (SA) is becoming an important
concern in the management of complex computer systems.
A general definition of SA may be found in [1]. Many
frameworks have been proposed for dealing with SA. One
of them is DoDAF (Department of Defense Architecture
Framework) [2] [3]: DoDAF is a framework for the
development of system architectures for military or
enterprise organizations. This framework enables to specify
these architectures following three different views, called
Operational Views (OV), System View (SV), and Technical
Standards View (TV). There are different relationships

between the concepts of these views. For example, the
Traceability Matrix in SV-5 (a subset of SV) is used to
capture the relationships between the Operation Activities
contained in OV-5 (a subset of OV) and System Functions
in SV-4 (another subset of SV). Each one of these views is
constructed conforming to a common set of architecture
data entities and relationships between these entities. This
data model is called DoD Core Architecture Data Model
(CADM). Since they are created using similar data entities
(concepts), there are many common entities between these
different views.

In this paper, we study how to generate the traceability
matrix that contains the overlapping concepts between these
different views, most particularly from OV-5 and SV-4
views into SV-5 view. All these views come from
architecture descriptions defined within DoDAF. This
traceability matrix can be generated by manually coding
model transformations. However, the OV-5 and SV-4
metamodels contain several elements and this task may be
quite complex. It should be possible to automate this
process as much as possible.

We propose a model driven engineering (MDE)
approach that automates the process of defining the
traceability matrix. We concentrate on the automation of
the data integration from a model to another one. This
process concerns the entities that are the same and also their
common properties and relationships in the different
metamodels.

Our solution is divided into different steps. First, we
propose to represent the different views (OV-5, SV-4 and
SV-5) in KM3 metametamodel [4]. Second, we capture the
relationships (i.e., mapping links) between these views
using a weaving model [5]. A weaving model is a model
that specifies different kinds of mappings between
metamodel elements. The weaving model is created by a set
of transformations that are executed sequentially. Each

Dr
af

t v
er

sio
n

transformation calculates similarity values between the
concepts of the views, based on different matching
heuristics. Last, we intend to implement an ATL [6]
transformation from SV-5 to itself, to calculate the
traceability matrix. This is a future work.

This paper is organized as follows. Section 2 describes
our case study. Section 3 presents our solution to automate
the data integration process. Section 4 concludes the paper.

2 Case Study

In our case study, we choose views OV-5 and SV-5, SV-
4 and SV-5 in the DoDAF context. DoDAF [3] is an
architecture framework designed by the United States
Department of Defense. DoDAF framework supersedes the
C4ISR (Command, Control, Communications, Computers,
Intelligence, Surveillance and Reconnaissance)
Architecture Framework. There are existing derivative
frameworks based on DoDAF like MoDAF (United
Kingdom Ministry of Defense) or NATO-AF (North
Atlantic Treaty Organization). First, we introduce the
possible solutions and then we explain the intersection
between DoDAF views.

2.1 Possible solutions
We have distinguished two choices to generate a

traceability matrix in a SV-5 view for DoDAF architecture
descriptions. The first possibility is to implement a
transformation from the OV-5 and SV-4 metamodels to the
SV-5 metamodel. This transformation translates the data
from the input models (OV-5 and SV-4 views) into the
output model that conforms to SV-5 metamodel and that
calculates the traceability matrix. In this case, we must code
the transformation manually. However, creating this
transformation by hand is a complex process that should be
automated.

The second possibility is to automate the data integration
from the input to the output metamodels. In this case, we
propose to create a model that captures mapping links
between OV-5 and SV-5, SV-4 and SV-5. From there, we
are able to generate the two transformations that translate
the necessary data into a model that conforms to SV-5.
Finally, we implement a transformation from SV-5 to itself
with the aim to create the traceability matrix.

2.2 Overlapping parts between DoDAF views
To build the SV-5 traceability matrix for a given

architecture description, we need views OV-5 and SV-4.
The reason is because the Operational Activity to Systems
Function Traceability Matrix (SV-5) contains the
relationships between the Operational Activities from the
Operational Activity Model (OV-5) and the System
Functions from the Systems Functionality Description (SV-

4). Figure 1 illustrates the relationships between DoDAF
views. In this class diagram, System Function elements
inherit from Process Activity; Task is another term for
Operational Capability.

ActivityModelSpecification (OV5)

1

*

specifies

SystemFunctionalityDescription (SV4)

1

*
isUsedToDescribe

Document

ActivityModel

1

*

includes

ActivityModelProcessActivity

ProcessActivity

*

1isIncludedIn

SystemProcessActivity
*

1isAssignedTo

ProcessActivityTask*

1

correspondsTo *

1correspondsTo

Task

0.
.1

*

isCitedBy

SystemDocument 1*
describes

SystemFunctionTraceabilityMatrix (SV5)

FunctionalSpecification

0.
.1

*

mayBeA

0.
.1

*

mayBeA

SystemFunctionTraceabillityMatrixElement

*

0..1

mayBeCitedFor

*

1isDefinedeBy

*

0..1

mayBeCitedFor

*

0..1

mayBeCitedFor

Figure 1: Relationships between DoDAF views

Due to the fact that SV-5 view for an architecture
description must be able to capture many parts of the OV-5
and the SV-4 views, we found several common entities and
common relationships between these entities. Moreover,
according to the inheritance tree, in the three views we
found common parent entities, such as Document, because
all the views on DoDAF metamodel are based on the same
core. Another example is the set of elements and their
relationships composed of Activity Model, Activity Model
Process Activity, and Process Activity. These elements exist
in the three DoDAF views.

The three views have an average of 100 entities, and
approximately thirty percent of common entities between
OV-5 and SV-5, SV-4 and SV-5. The majority of the
properties from the common entities are the same, in all the
views. This is the reason why we propose to partially
automate the data integration of OV-5 and SV-4 into a SV-
5 model. After the integration is done, we are able to
calculate the traceability matrix into the SV-5 view.

3 Model Integration

We present in more details the steps to automate the
integration of DoDAF views. First, we show how to
represent DoDAF views with MDE practices. Second, we
define the process that creates a weaving model between
both metamodels. This process is called matching. Last, we

Dr
af

t v
er

sio
n

describe how to use the weaving model to generate the
transformation that executes the data integration.

3.1 Representing DoDAF views in MDE
 We translate OV-5, SV-4, and SV-5 as metamodels for

DoDAF architecture descriptions. In MDE practices, a
metamodel is a formal definition of a model. A model
conforms to a metamodel. With aim to use the AMMA
platform [7] [8] to implement weaving models and
transformation, we define OV-5, SV-4, and SV-5 view
metamodels in KM3 (Kernel MetaMetaModel).

We first define the CADM (Core Architecture Data
Model) for each DoDAF view. The CADM defines
structured representations of the architecture data elements
using the IDEF1X notation [9]. This representation is the
data model for DoDAF views with entity relation diagram
without composition relationships between data entities.
With the aim to give more expressivity for metamodel
views, we translate some relationships between the data
entities as composition relationships between classes of the
KM3 metamodels. For example, we translate the
relationship includes between an Activity Model and its
Process Activities as a composition relationship. This
situation occurs in the three views.

3.2 Matching
The process that defines the mappings between two

different metamodels is called matching. The matching
process is encapsulated in a model management operation
called Match [10]. A Match operation takes two models Ma
and Mb as input and produces a mapping Map between the
elements of both models as output:

Map = Match (Ma, Mb).
Usually, with the Match operation, it is not possible to

automatically define exact mappings for every model
elements. In this case study, we want to define only
equivalence links between entities of both metamodels. Our
goal is to generate, as much as possible, the exact mapping
between the entities of OV-5 and SV-5, SV-4 and SV-5
metamodels. This mapping is a representation of the
intersection between the models.

The matching process produces a weaving model that
captures a set of mapping links. A mapping link is defined
by the element references in their respectively models and a
similarity value that characterizes the equivalence between
them. To define the exact similarities between entities, we
assign a similarity value using a matching technique that
sets a similarity value to one (1) if the entities or the
structural features in the two metamodels are exactly the
same. The default similarity value is zero (0). Finally, we
choose all links with a similarity value equal to one. These
mappings with exact equivalence are saved in a weaving
model. The weaving model conforms to a weaving

metamodel that is an extension of a core weaving
metamodel [5]. We describe the different steps of the
matching operation in the following sections.

3.2.1 Creating weaving models
A weaving model supporting different kind of mappings

is created by a model management operation called
CreateWeaving, which is defined below:

Mw = CreateWeaving (Ma, Mb).
The operation takes the two models as input (Ma and

Mb) and it produces a weaving model as output (Mw). We
propose to implement this operation using model
transformations. Consequently, we may say that the two
input models are transformed into one output model that
contains the mappings between them.

At this stage, the transformation does not create the
exact mappings between the elements of models Ma and
Mb, but it matches all the elements of Ma and Mb (the
Cartesian product Ma × Mb), and it creates equality
mappings for every pair of elements.

The transformation creates a weaving model that
conforms to an extension with equality mappings, as
illustrated in Figure 2 (in KM3 [4]).
class Equal extends Equivalent {

 attribute similarity : Double;

}

class Equivalent extends WLink {

 reference left container subsets end: Element;

 reference right container subsets end: Element;

}

class Element extends WLinkEnd {}

Figure 2: Weaving metamodel extension

We show in Figure 3 how a transformation rule written
in ATL [6] matches all the classes from a left and a right
model (conforming to KM3) and produces an equality
mapping between a left and a right element. The from part
indicates that the transformation matches all the classes of a
left model with all the classes of a right model. The to part
creates the output element, which is an equality mapping
conforming to the metamodel extension of Figure 2.
 rule EqualityMapping {

 from

 left : KM3L!Class, right : KM3R!Class

 to

 anode : AMW!Equal (

 left <- <the left element>

 right <- <the right element>

)

 }

Figure 3: Matching rule in ATL

Dr
af

t v
er

sio
n

We use an ATL transformation to create the weaving
model between the two models. In this transformation, we
first generate the Cartesian product between all entities of
both models and then we assign the similarity value with
the previous algorithm. The Cartesian product contains
several imprecise relationships. To refine the Cartesian
product, we filter the relationships based on the entities
types. In fact, the Cartesian product is done only between
elements of the same type (i.e., Class-to-Class, Attribute-to-
Attribute, and Reference-to-Reference). This prevents from
creating a large model with unnecessary relationships, for
example Class-to-Attribute relationships. This
transformation takes as input the left and the right models,
and the weaving model.

The rule that creates the Cartesian product is illustrated
in Figure 4. This rule applies three actions: it creates a new
node in the mapping model defined by the concatenation of
the left and the right entity names; it saves the concerned
entity references from the both input model; and, it sets the
similarity value between the left and the right elements.
rule PairWise {
 from
 left : KM3L!ModelElement,
 right : KM3R!ModelElement
 (
 (left.oclIsTypeOf(KM3L!Class) and
 right.oclIsTypeOf(KM3R!Class))
 or
 (left.oclIsTypeOf(KM3L!Attribute) and
 right.oclIsTypeOf(KM3R!Attribute))
 or
 (left.oclIsTypeOf(KM3L!Reference) and
 right.oclIsTypeOf(KM3R!Reference))
)
 to
 anode : prop_g!Node (
 name <- left.name+'_'+right.name,
 model <- thisModule.aModel,
 leftRef <- left,
 rightRef <- right,
 similarity <- left.similarity(right),
)
}

Figure 4: ATL Rule for Cartesian product

3.2.2 Calculating Equivalence
To create the weaving model that captures all the

equivalence links between elements, we must calculate the
similarity value between each entity of both models. In our
case, we have only two values for the similarity. In fact, the
similarity is set to one if both elements are the same
according to different criteria (explained later). Otherwise,
the similarity is set to zero (i.e., default value). We illustrate
the similarity algorithm in Figure 5. This algorithm is
implemented for all existing types of metamodel elements:
Class, Attribute, and Reference.

helper context KM3L!ModelElement
 def:similarity(right:KM3R!ModelElement):
 Integer=
 if self.similarityName(right)
 and self.similarityType(right)
 then
 if (self.oclIsTypeOf(KM3L!Attribute) and
 right.oclIsTypeOf(KM3R!Attribute))
 or (self.oclIsTypeOf(KM3L!Reference) and
 right.oclIsTypeOf(KM3R!Reference))
 then
 if self.owner.similarity(right.owner)=1
 and self.similarityUpper(right)
 and self.similarityLower(right)
 then
 1
 else
 0
 endif
 else
 1
 endif
 else
 0
 endif;

Figure 5: Similarity algorithm

In the following section, we explain in more details the
similarity algorithm for Class-to-Class and Structural
Feature-to-Structural Feature mapping. In particular, we
define characteristics to specify the equivalence link for
each entity type.

3.2.2.1 Class-to-Class equivalence
According to the similarity algorithm (Figure 5), Class-

to-Class similarities are calculated taking one element from
the left metamodel and one element from the right
metamodel and analyzing their internal features. We apply
two methods to calculate the similarities:
• String similarity: the names of the model elements are
considered as Strings. The names are compared using
normal string comparison. This is implemented in
similarityName helper.
• Type similarity: the types of the model elements are
extracted with the OCL function oclType and are compared.
This is implemented in similarityType helper.

There are other methods that can be used to calculate the
similarities. For example, it is possible to check if the
containing elements of the classes from the left and the
right models are equivalent. This way, the children
elements are also equivalent. Another possible method is to
compare the similarity of the inheritance trees of these
elements.

The heuristics described determine the strength of the
equivalence concept that we want to apply (it ranges from
zero to one [0-1]). The mapping link is considered as
equivalent only if all conditions are satisfied. In this case
the similarity value is set to one.

Dr
af

t v
er

sio
n

3.2.2.2 StructuralFeature-to-StructuralFeature
equivalence

A structural feature is an internal feature of a class. It
can be an attribute or a reference. Structural Feature-to-
Structural Feature similarities are calculated taking one
structural feature from the left metamodel and another one
from the right metamodel. In fact, we treat only Attribute-
to-Attribute and Reference-to-Reference elements because
we choose not to calculate equivalence value for elements
with different types. To calculate the equivalence between
two structural features, we reuse the similarity algorithm
(Figure 5) and we add three specific methods:
• Owner Entity similarity: owner classes of the given
structural features are compared using the similarity
algorithm.
• Structural Feature Type similarity: the types of the
model elements given by the structural features are
compared using the similarity algorithm.
• Cardinality similarity: the upper and the lower
cardinality of the structural features are compared.
Cardinalities are the same only if the upper and the lower
cardinalities are the same in both structural features. This is
implemented in similarityUpper and similarityLower
function.

To calculate Structural Feature-to-Structural Feature
similarities, we take advantage of the knowledge about the
KM3 metametamodel [4]. For instance, we take into
account the cardinalities and the referenced types.

3.2.3 Filtering the result
The weaving model contains a set of links with many

similarity values. However, this is not the final weaving
model. It is necessary to select only the links with the
highest similarity values. We filter the weaving model
using another transformation that chooses the equivalence
mappings. In this operation, we are only interested in the
mappings with a similarity value equal to one. This
transformation takes as input the previous weaving model
and produces another weaving model without the links with
lower similarity values. This allows to keep only the
relevant mapping links.

3.3 Generating transformations
In this step, we use the weaving model to generate the

transformations that implement the data integration
between metamodels. According to our motivating
example, we produce the transformations from OV-5 to
SV-5 and from SV-4 to SV-5.

We have implemented an ATL transformation to
generate these transformation models. This transformation
takes as input the following models: the left model, the
right model, and the weaving model created by the filtering
process. This transformation produces as output a

transformation model that conforms to the ATL metamodel.
Finally, the transformation model is extracted into an ATL
file.

In the following schema (Figure 6), we show that
AMW2ATL transformation produces MML2MMR
transformation from the left metamodel MML, the right
metamodel MMR and the weaving model MW. AMW2ATL
is a Higher Order Transformation (HOT). A HOT is a
transformation that takes transformations as input and/or
produces transformations.

KM3

MML

MMW MMATL ATLgrammar

EBNF

MML2MMRMML2MMR

in in in

outAMW2ATL_HOT

MMRMW

MDE technical space Grammar technical space

conformsTo

ATL transformation

projector
Figure 6: Producing MML2MMR Transformation

In our case, MML is OV-5 or SV-4 metamodels and
MMR is the SV-5 metamodel. From this, we generate OV-5
to SV-5 and SV-4 to SV-5 transformations, which are
implementations of data integration from OV-5 and SV-4 to
SV-5 metamodels. To reverse the data integration process,
it is necessary to invert MML and MMR metamodels.
According to our example, we can also produce SV-5 to
OV-5 and SV-5 to SV-4 data integration.

4 Conclusions

In this paper, we have presented a practical MDE-based
solution to automate the integration of different models. We
used DoDAF as case study. In our solution, we produced a
weaving model between metamodels using ATL
transformations. This weaving model represents
equivalence mapping links between the metamodels’
elements. The similarity algorithm that calculates the
equivalence mappings can be improved by using other
criteria or can be made more permissive. From this step, we
are able to produce the transformation model that
implements the data integration from the left to the right
metamodels. This transformation is generated based on a
weaving model. In the last step, we can export the
transformation model into an ATL code source.

This process is particularly adapted for complex
metamodels composed of several views which are based on

Dr
af

t v
er

sio
n

a same core. In fact, it is possible to exchange data between
models that conforms to two different parts with a
generated transformation between them. This exchange
concerns only the exactly common part, in other words the
metamodels intersection.

As future work, we plan to implement a transformation
that produces the traceability matrix from a SV-5 view.
After the data integration, this SV-5 model about an
architecture description contains all the Operational
Activities of the OV-5 model and all the System Functions
data of the SV-4 model. The re-factoring transformation
will refine the SV-5 model to obtain the same model with
the calculated traceability matrix.

Acknowledgments
This work is being partially supported by Modelplex,

European Integrated Project (FP6-IP#034081).

References
[1] Systems Architecture online definition from Wikipedia

website. Available at
http://en.wikipedia.org/wiki/System_architecture

[2] DoDAF online definition from Wikipedia website. Available
at http://en.wikipedia.org/wiki/DODAF

[3] DoDAF 2004 Volume II: Product Description, 4/2/2004.
Available at
http://www.defenselink.mil/nii/global_Info_grid.html

[4] Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel
Specification. In: Proceedings of 8th IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems, LNCS 4037, Bologna, Italy, pp. 171-
185. 2006

[5] Didonet Del Fabro, M., Bézivin, J., Jouault, F., Valduriez, P.:
Applying Generic Model Management to Data Mapping. In
proc. of Base de Données Avancées (BDA 2005), October
17-20, 2005, Saint-Malo, France

[6] Jouault, F., Kurtev, I.: Transforming Models with ATL. In
proc. of the Model Transformations in Practice Workshop at
MoDELS 2005, Montego Bay, Jamaica

[7] Bézivin, J., Jouault, F., Touzet, D.: An Introduction to the
ATLAS Model Management Architecture. Research Report
LINA, (05-01). 2005

[8] Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-
based DSL Frameworks. In: Companion to the 21st Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, OR, USA.
ACM. 2006

[9] IDEF1X, Integration Definition For Information Modeling,
Federal Information Processing Standards Publication 184,
December 21, 1993

[10] Bernstein, P., A.: Applying Model Management to Classical
Meta Data Problems. In proc. of the 1st Biennial Conf. on
Innovative Data Systems Research (CIDR 2003), pp 209-220

