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Abstract. Automatically discovering semantic relations between ontologies is
an important task with respect to overcoming semantic heterogeneity on the se-
mantic web. Ontology matching systems, however, often produce erroneous map-
pings. In this paper we propose a method for optimizing precision and recall of
existing matching systems. The principle of this method is based on the idea that
it is possible to infer logical constraints by comparing subsumption relations be-
tween concepts of the ontologies to be matched. In order to verify this principle
we implemented a system that uses our method as basis for optimizing mappings.
We generated a set of synthetic ontologies and corresponding defective mappings
and studied the behavior of our method with respect to the proeperties of the
matching problem. The results show that our strategy actually improves the qual-
ity of the generated mappings.

1 Motivation

Recently, a number of heuristic methods for matching concepts from different ontolo-
gies have been proposed. These methods rely mostly on computing similarities based
on linguistic and structural criteria. Evaluation studies have shown that existing meth-
ods often trade off precision and recall. The resulting mapping either contains a fair
amount of errors or only covers a small part of the ontologies involved [2, 4]. Our goal
is to provide a component for matching systems that optimizes the results with respect
to both recall and precision of the generated mapping. The method that we suggest is
based on a reasoning approach that goes beyond existing structural methods and can be
classified as semantic-based technique due to Euzenat [3].

1.1 Problem Statement
In accordance to Euzenat [3] the problem of ontology matching can be defined in the
following way. For each ontology T there is a function Q(T ) that defines matchable
elements of T . Given two ontologies T and T ′ the task of matching is to determine cor-
respondences between the matchable elements in the two ontologies. Correspondences
can be defined as 4-tuples 〈e, e′, r, c〉 where e ∈ Q(T ), e′ ∈ Q′(T ′), r is a semantic
relation and c is a confidence value from a suitable structure 〈D,≤〉. In this work, we
only consider the simple case where e and e′ are concepts and r =′≡′ but there is some
evidence that our approach can also be extended to r ∈ {v,w,≡}.

The problem we address in this paper is the following. Given a set of correspon-
dences M ′ between two ontologies T and T ′ generated as intermediary or final result
of a matching system and a set of correspondences M that contains all correct seman-
tic relations between elements from the two ontologies, to determine M ′ ∩ M . In the
following we refer to a set of correspondences between two ontologies as a mapping.



1.2 Approach and Contributions

The approach taken in this work is to interpret the problem defined above on the one
hand as optimization problem with respect to the confidences of the correspondences
in M ′. On the other hand we assume that any acceptable solution to the problem has
to fulfill additional logical constraints imposed by the logical theories encoded in the
ontologies. In particular, semantic relations between ontologies should not cause any
inconsistencies. Therefore, we will develop a method that enables us to find a subset of
M ′ that is the optimal mapping among the consistent mappings in the powerset of M ′.
The concrete contributions of this work are:

– We propose a method for automatically optimizing automatically generated map-
pings based on a reasoning approach that is orthogonal to existing matching ap-
proaches.

– We give a detailed explanation of the developed algorithm and implemented it in a
tool for mapping optimization.

– We applied this tool on several synthetic data sets, to identify success factors for op-
timizing ontology mappings in terms of properties of the mapping and the matched
ontologies.

The paper is organized as follows. First, we discuss related work and explain why
our approach goes beyond existing structural methods used in ontology matching. In
section 2 we introduce the main principle of our approach and define the mapping prop-
erty of consistency. In section 3 we describe the algorithms and components that our
method is based on and show how these components can be integrated into a system
for optimizing mappings. The experiments we conducted are described in section 4. In
particular, we analyse the relation between certain properties of the matching problem
and their influence on the results of the suggested method. We close with a general
discussion of the approach and possible extensions in future work in section 5.

1.3 Related Work

A variety of methods for computing mappings have been proposed. A common feature
of these methods is that they are based on an initial mapping created by matching labels
that occur in the ontologies and successively improve this initial mapping by combining
and updating mappings based on certain heuristics [3]. The work described in this paper
is a new approach for combining and updating an initial mapping set.

So far two types of methods for improving an initial mapping have been proposed.
The first kind of approaches are so-called structural techniques. They are based on the
propagation of evidences for certain mapping hypotheses based on the structure of the
ontologies. The GLUE system [1] uses relaxation labeling to update the probability
that a mapping is correct. The main idea is that the label (concept in the target ontol-
ogy) of a node (concept in the source ontology) is influenced by the features of the
nodes neighborhood in the subsumption graph. The OMEN tool [10] uses a Bayesian
network, where a node stands for a correspondence between classes or properties of the
ontologies and where an edge represents the influences between individual correspon-
dences. In order to generate conditional probability tables for the given network a set



of meta-rules is used. The other kind of methods are so-called semantic methods that
try to infer additional correspondences using logical reasoning. The idea is to encode
the semantics of concepts as well as the initial mapping in a logical theory. Additional
correspondences are inferred by proving implications between formulas that represent
concepts in the different ontologies. In [6] a semantic matching approach is proposed
that uses propositional logic for encoding the semantics of concept labels and uses a
SAT prover to derive mappings. In [8] the approach is extended to the task of matching
structured representations by coding them into description logics and inferring sub-
sumption relations across ontologies.

Both of these approaches have shortcomings. While structural approaches that rely
on numerical methods have problems in capturing hard semantic constraints, semantic
approaches that solely rely on logical reasoning are often too strict to capture all valid
mappings. In our work we combine numerical and logical methods thereby leveraging
the problems of the individual approaches.

2 General approach

In this section we revert to some examples based on the scenario that has been described
by Quine as radical translation [13]. Radical translation is concerned with the problem
of finding a correct translation manual for a fully unknown language L. Obviously,
this problem is closely related to the problem of finding a correct mapping between
ontologies. Therefore, it is useful to explain the intuition that forms the basis of our
strategy first in the context of radical translation. Later in this section, we will shift to
the problem of ontology matching and give a formal representation.

2.1 Translation

Suppose that a linguist wants to explore the unknown language L of some people that
have not been in contact to human civilization yet. The native people accept the re-
searcher and let him be part of their daily life. At the first stage of his project the linguist
simply observes the linguistic behavior of the natives and establishes some hypothesis
about the meaning of the words that are uttered by the natives. The following could be
a typical example for such a situation.

Example 1. The linguist and a native are standing in front of an oak tree. A rabbit is
sitting close to the tree. The native points at the direction of the tree and utters the
word ”Gavagai!”. The linguist considers two possible hypothesis about the meaning
of the word. Gavagai could on the one hand refer to oak or could on the other hand
refer to rabbit. He writes both hypothesis in his dictionary and marks them with a q as
questionable.

As time goes by, the linguist is able to utter simple sentences in L. He also finds out
which words and gestures mean approval and rejection. After a while he also manages
to ask questions of the form ”Are all x y?” translated to L. This enables him to apply a
more elaborative strategy.



Example 2. From time to time the linguist cleans up the entries in his dictionary. He
finds, amongst others, the following three entries.

gavagai = rabbitq (1)
gavagai = oakq (2)

snok = tree (3)

In order to find out if the first or the second entry has to be removed he asks the native
the question ”Are all gavagais snoks?”. The native looks quite confused and denies the
question. For that reason the linguist removes the second entry and keeps the first one.

The reasoning that is the base for the linguists decision follows this line. If gavagai
means oak and snok means tree then everything that is a gavagai also has to be a
snok, because the linguist knows that an oak is a special kind of a tree. He transfers this
subsumption relation to the concepts gavagai and snok. By asking the question ”Are
all gavagais snoks?” the linguist checks if this entailment is accepted by the native. The
native denies this question and therefore the linguist is justified in removing the second
or the third entry. Since he has marked the second entry as questionable he decides to
remove it instead of removing the third entry.

2.2 Formalization

The problem of radical translation is structurally closely related to the problem of auto-
mated generation of mappings between ontologies. An ontology can be understood as
a formal representation of (parts of) a language that can be used to talk about certain
parts of the world. Thus, every entry in the dictionary of the linguist can be interpreted
as a correspondence in an ontology mapping.

How can the strategy of the linguist be formalized in order to apply it to the problem
of matching ontologies? The linguist uses his dictionary to connect both views of the
world. By doing this he derives knowledge about the subsumption relations of the na-
tives concepts. The same can be done in the context of ontologies by defining the union
of two ontologies connected by a mapping in the following straight forward way.

Definition 1 (Union of ontologies). Let T1 and T2 be ontologies (finite sets of axioms).
The union T1 ∪M T2 of T1 and T2 connected byM is defined as T1 ∪M T2 = T1 ∪T2 ∪
{t(x) | x ∈M} with t being a translation function that converts correspondences into
axioms in the following way:

t(〈1: C, 2: D,≡, c〉) = 1: C ≡ 2: D

Such a union ontology defines a taxonomy determined by the axioms of both ontolo-
gies and the additional correspondence axioms. Consider again example 2. The linguist
first had the union ontology in mind that results from the mapping consisting of dictio-
nary entries 2 and 3. Therefore, the linguist inferred the axiom L : gavagai v L : snok.
If the native would accept this axiom his ontology would become inconsistent. Thus,
the native denies the question of the linguist. We call the corresponding notion mapping
consistency and introduce it formally as follows.



Definition 2 (Consistency of a Mapping). Given ontologies T1 and T2 and a mapping
M between T1 and T2. M is consistent iff there exists no concept i : C with i ∈ {1, 2}
such that Ti 6|= i : C v ⊥ and T1 ∪M T2 |= i : C v ⊥. Otherwise M is inconsistent.

As we have argued, an inconsistent mapping is a mapping that contains erroneous
correspondences. In the next section we will define the closely related notion of pair-
wise mapping consistency and we will see how to apply it to the problem of mapping
optimization.

3 Algorithms

The problem stated in section 1.1 can now be addressed in the following way. On the
one hand we have to find a subset M∗ of M ′ that is an approximation of the correct
mapping M taking into account the confidence values of the correspondences in M ′.
Since we are only focussed on equivalence correspondences, we can restrict M∗ to be
a one-to-one mapping. A one-to-one mapping is a mapping that contains no pairs of
correspondences 〈c1, c2〉 with c1 6= c2 such that the source (target) concept of c1 is
also the source (target) concept of c2. On the other hand M∗ has to be a consistent
mapping. Thus, we need an efficient algorithm that finds a consistent mapping M∗ that
is also optimal with respect to the confidence values of M ′. We will now introduce
such an algorithm that is based on three components. The first two components provide
methods for optimization respectively checking consistency, while the third component
combines these methods to solve the problem.

3.1 Optimization

Finding an optimal solution to the one-to-one matching problem based on the confi-
dence values of the elements of M ′ depends on choosing an appropriate aggregation
function. We decided to maximize the sum of all confidence values. The optimization
problem can thus be stated in the following way:

Definition 3 (Optimal solution). Given a set of correspondences M ′, an optimal one-
to-one mapping Mopt ⊆ M ′ is a one-to-one mapping such that for every other one-to-
one mapping M ′′ ⊆ M ′ we have

∑
c∈Mopt

confidence(c) ≥
∑

c∈M ′′ confidence(c).

A standard algorithm to solve this problem is known as the hungarian method [7]. In
order to show how this method can be applied to our problem a few explanations have to
be given. The hungarian method expects a real-valued matrix as input and creates a one-
to-one assignment, such that the sum of the chosen entries is minimal. To use the hun-
garian method the input mapping M ′ has to be transformed into a corresponding matrix
H . Each concept of the source ontology corresponds to a row and each target concept
corresponds to a column. Since the hungarian method finds a minimal assignment an
entry in the matrix has to be interpreted as distance between two concepts, where the
distance between 1: C and 2: D is defined as 1 − confidence(〈1: C, 2: D,≡, c〉).
Without loss of generality we assume that the input confidence values are in the interval
[0, 1]. If there exists no such correspondence in M ′ the distance is set to ∞.



In most matching situations it will not be possible to match all or even the majority
of concepts. Matching candidates will thus not be available. Therefore, the input matrix
has to be extended by additional concepts that play the role of alternative matching can-
didates. We call these concepts phantom concepts. Thus, if n is the number of concepts
in T1 and m is the number of concepts in T2, we add m rows to the input matrix corre-
sponding to m phantom concepts 1: P1, . . . , 1: Pm as well as n columns corresponding
to n phantom concepts 2: P1, . . . , 2: Pn. The value of the entries in these rows respec-
tively columns is set to 1 + ε with ε > 0. Thus, for a given concept 1: C the algorithm
will first try to find a corresponding concept 2: D. If this is not possible within the con-
text of global minimization one of the phantom concepts 2: P1, . . . , 2: Pn is chosen.
In such a case 1: C is interpreted as unmatchable.

Example 3. Assume mapping M consists of the following correspondences between
T1 and T2.

〈1: C, 2: X, =, 0.94〉 (4)
〈1: C, 2: Y,=, 0.29〉 (5)
〈1: D, 2: X, =, 0.12〉 (6)
〈1: E, 2: X, =, 0.31〉 (7)

The corresponding input matrix to the hungarian method looks like this:

j : X j : Y 2 : P1 2 : P2 2 : P3

1 : C 0.06 0.71 1 + ε 1 + ε 1 + ε
1 : D 0.88 ∞ 1 + ε 1 + ε 1 + ε
1 : E 0.69 ∞ 1 + ε 1 + ε 1 + ε
1 : P1 1 + ε 1 + ε 1 + ε 1 + ε 1 + ε
1 : P2 1 + ε 1 + ε 1 + ε 1 + ε 1 + ε

Suppose we set ε = 9. Applying the hungarian method will result in the one-to-one
mapping consisting of correspondences 5 and 7. Concept 1: D is mapped on a phan-
tom concept. The aggregated distance value for the chosen correspondences is 31.4. ε is
an important parameter that affects the behaviour of the mapping extraction. Consider
again example 3 with ε set to 0.001. The hungarian method will now find another opti-
mal extraction consisting of only one correspondence, namely correspondence 4. This
mapping extraction has an aggregated cost of 4.1. The algorithm chooses this mapping,
since the cost of assinging an additional concept to a phantom concept is less than the
relatively high cost of choosing two correspondences with a high distance. We will later
see how to set the value of ε according to the properties of the matching problem to be
solved.

3.2 Reasoning

The second component of our system consists of an incomplete but efficient reasoning
method. This method can be used to detect mapping inconsistencies and subsets of
the mapping that cause these inconsistencies. As our approach extensively relies on



checking consistency in the mapped ontologies, using existing methods for reasoning
about ontologies is infeasible.

Therefore, we decided to use the following method that allows us to check mapping
consistency for each mapping of cardinality two. First, we use a reasoner to compute
the whole concept hierarchy of both T1 and T2. For each ontology Ti with i ∈ {1, 2}
we save the results in a subsumption matrix that contains the information if i : C is a
subclass of i : D for each pair of concepts 〈i : C, i : D〉. In the same way we prepare
a disjointness matrix that contains the information if two concepts are disjoint. Hav-
ing once computed these four matrices the reasoning method can be implemented by
comparing entries in matrices. Given a set of correspondences M = {〈1: C, 2: D,=
, v1〉, 〈1: E, 2: F,=, v2〉} we first check if 1: C is a subclass or superclass of 1: E.
If this is the case 2: D and 2: F cannot be disjoint because this would result in an
inconsistency in the union ontology T1 ∪M T2. We also apply the same procedure in
the other direction by entailing subsumption relations from T2 to T1 accompanied by
checking disjointness in T1. Notice that inconsistencies can also emerge, if a concept
j : D becomes a subclass of j : C even if j : C and j : D are not defined as disjoint in
Tj . This may happen if a subclass of j : D is defined as disjoint to j : C. Therefore, all
subclasses of a class that becomes subsumed have to be checked for disjointness, too.

In order to apply this strategy to a mapping M that consists of more than two cor-
respondences we check consistency of each dual-element subset of M . This results
in a correct but incomplete reasoning method for checking consistency of the whole
mapping M . We call a mapping M that is consistent for all pairs of correspondences
pairwise-consistent. The according property can be defined as follows.

Definition 4 (Pairwise-Consistency of a Mapping). Given ontologies T1 and T2 and
a mappingM between T1 and T2.M is pairwise-consistent iff there exists noM′ ⊆M
with |M′| = 2 such that M′ is inconsistent. Otherwise M is pairwise-inconsistent.

In experiments on real-world ontologies we found out that the vast majority of all
inconsistencies can be detected by this strategy. Another advantage of this reasoning
approach, in addition to its efficiency, is the fact that we can restrict the reason for
inconsistency to a pair of correspondences. Due to our considerations in the previous
sections, we thus know that one of the elements in the pair cannot be accepted. Note
that exactly the same kind of reasoning has been used by the linguist in example 2.

3.3 Search

The two components described in the sections above can be combined in a uniform cost
search. Thus, it is possible to find the best solution to the matching problem among
the set of all pairwise-consistent solutions. The algorithm starts with the optimal solu-
tion that results from applying the hungarian method to the original matching problem
as root node. Therefore, we convert the input mapping M to a distance matrix H as
described in section 3.1 and compute the optimal one-to-one mapping M ′. If M ′ is a
consistent mapping, we have found a solution to the problem in the first step. If M ′

is not pairwise-consistent, there exists at least one conflicting pair of correspondences
〈c1, c2〉 in M ′. We now know that a consistent solution must not contain both c1 and c2,



while it is possible that one of these correspondences is contained in the final solution
that we are searching for. Therefore, we have to consider two branches in our search
tree. In the first branch we have to search for a solution that must not contain c1, while
in the second branch we have to search for a solution that must not contain c2.

Now remember that the hungarian method will never chose a mapping that consists
of a correspondence with a distance value of ∞. We can make use of this property to
create the branches in the search tree. Therefore, we have to set the cell corresponding
to c1 to ∞ in the first branch while setting the cell corresponding to c2 to ∞ in the
second branch. In the following we describe this procedure as locking a cell in H , which
corresponds to making the associated correspondence unavailable in this branch. In this
way we create new search states based on the results of the consistency checks applied
to every state that gets expanded. For each new search state we compute its aggregated
minimum value by applying the hungarian method and save the state and its associated
minimum in minimum-priority queue. Notice that a search state is fully described by a
set of locked cells and the associated minimum with respect to a particular input matrix
H . In each step of the search we expand the state with lowest minimum. Thus, our
algorithm finally results in a uniform cost search that uses the techniques described in
the sections above to create new search states and to decide which states to expand first.

The algorithm terminates if it expands a state that corresponds to a pairwise consis-
tent mapping. Due to the property of the uniform cost search, to first expand a set of
locks with lowest aggregated distance, any other set of locks with a lower aggregated
distance must have been expanded in an earlier step of the search, and thus has to be
a pairwise-inconsistent mapping. Therefore, the algorithm will always find an optimal
pairwise-consistent solution to the matching problem.

The runtime of the algorithm is exponential in worst case. The actual runtime de-
pends on the structure of the input matrix. The most influential parameters are the size of
the input mapping M , the size of the ontologies, the number of pairwise-inconsistencies
caused by M , the quality of the confidence ordering in M with respect to correct and
incorrect correspondences, and the number of matching alternatives in M .

4 Experiments

In the following we describe some of the experiments we conducted on synthetic data
sets. In these experiments we examine the relation between certain parameters of the
matching problem on the one hand and precision and recall of our algorithm on the
other hand. In particular, we will address the following questions:

– How does the fraction of correct correspondences in the mapping affect the re-
sults of our approach?

– In how far does the fraction of concepts to be covered via correspondences in-
fluence the results?

– How strong and under which circumstances does the quality of the confidences
affect the optimization process?

– Does the structure of the ontologies influence the results of our approach?

By using synthetic datasets we can vary these parameters with respect to the question
under discussion. Besides the properties of the matching problems we will also vary ε



and study interrelations between different ε-values and the characteristics of the match-
ing problem.

4.1 Experimental Settings

Data sets We construct some synthetic ontologies Tb,d where b denotes the branch-
ing factor and d the depths of the subsumption hierarchy. Further, we define sibling
concepts to be disjoint. We consider one-to-one mappings Mb,d to the same ontology,
matching each concept to itself. In the experiments we randomly choose subsets of Mb,d

of varying size to represent correct correspondences between concepts. We refer to the
size of this subset as coverage in the following. In addition, we add a certain amount
of incorrect correspondences by linking randomly chosen concepts C 6= D from Tb,d.
To simulate matching systems that differ in the quality of confidence estimations we
assign confidence values to correct and incorrect correspondences according to certain
patterns that will be explained below. Notice that a synthetic mapping M ′ constructed
in this way has to be understood as an intermediate result of a matching system. The
final result has to be extracted from M ′. This final step is often done using the hungar-
ian method [7] which produces an global optimum (see [3]). Therefore, we will always
compare the synthetic mapping after applying the hungarian method, to the mapping
after applying our algorithm.

Experiments The first experiment is based on the synthetic ontology T3,3 and the associ-
ated mapping M3,3. We generated M3,3 and decided to analyze subsets with a coverage
from 0.1 to 1.0 increasing the coverage stepwise by 0.05. For each of these mappings we
added n incorrect correspondences respectively n/3 incorrect correspondences where
n is the number of concepts in the particular mapping. Thus, we created mappings with
a precision of 0.5 respectively 0.75. For each mapping we distributed confidence val-
ues randomly not distinguishing between correct and incorrect correspondences. Notice
that such a distribution is a challenge for every approach that tries to improve the qual-
ity of an input mapping. It can be adopted that matching systems will generate more
reliable confidence estimations in most cases. Normally, the recall of a mapping M ′ is
defined as |M ′ ∩M |/|M |, where M is the reference mapping that contains all correct
correspondences between the ontologies to be matched. Since M is not known to us we
compare the number of correct correspondences in the synthetic mapping to the number
of correct correspondences left after applying the standard extraction respectively our
algorithm and interpret the fraction as recall.

In the second experiment we are concerned with the probability of a correct cor-
respondence having a greater confidence value than an incorrect correspondence. We
refer to this probability as the perfection of a mapping. Notice that this parameter is
different from the precision of a mapping. More precisely, the perfection of a mapping
is the probability that a randomly chosen correct correspondence has a higher confi-
dence than a randomly chosen incorrect correspondence. Again, we created M3,3 and
randomly chose subsets with a coverage of 0.2. In contrast to the first experiment we
added more incorrect correspondences resulting in a relatively low precision of 0.3. To
study different distributions of confidence values we increased perfection from 0.5 to
0.9 stepwise by 0.1. A mapping with low precision but relatively high perfection can



be regarded as the intermediary result of a matching system which is optimized for re-
call. In order to compare the effects of different ε-values we applied the algorithm with
ε = 0.001 and ε = 100. For each configuration we repeated the experiment 100 times
focussing on the resulting mean values.

The third experiment deals with the issue of different subsumption hierarchies.
Therefore, we decided to apply our algorithm on ontologies that differ in depth and
branching factor to obtain information about the influence on the optimization process.

4.2 Experimental Results

The results of the first experiment are presented in figure 1. The left side shows the
results with respect to precision, the right side refers to recall. There are four curves
plotted in both parts of the figure. The data series resulting from an input mapping
with a precision of 0.75 are marked with a rectangle. The data series resulting from an
input mapping with a precision of 0.5 are marked with a circle. For both experiments
we compared the mapping after applying the hungarian method (dashed grey line) to
the mapping after applying our algorithm (black solid line). The results are based on
randomly creating 500 mappings for each setting computing the mean of precision and
recall with ε set to a high value, that forces our algorithm to find a consistent mapping
that has a maximum number of elements.

Fig. 1. Precision and recall with respect to coverage and precision of the input mapping

First, let us consider the results with respect to precision. For an input precision of
0.5 and a coverage from 0.05 to 0.6 we observe a difference of approximately 20%
comparing the straight forward one-to-one mapping extraction to the results based on
applying our algorithm. The differences become smaller with increasing coverage. No-
tice that in most real world matching problems there will only be a relatively low cov-
erage. Even if two ontologies describe largely overlapping domains their concepts can
be overlapping without being equivalent. Equivalence correspondences will thus only
cover a small number of concepts. Therefore, the results for a high coverage are of
minor interest. For an input precision of 0.75 we can observe a similar pattern. The
precision of the one-to-one mapping extraction starts at 0.9 while applying logical con-



straints increases this value to 0.97 even for a coverage of 0.05. For a coverage above
0.35 the average precision of the optimized mapping is continuous greater than 0.99.

The results for recall are similar to the results for precision. As mentioned above
we defined recall in our setting with respect to the correct correspondences of the input
mapping. Thus, the first extraction as well as the final extraction decreases the actual
recall of the input mapping that we interpreted as the initial or intermediary result of a
matching system. But since any matching system that aims at generating a one-to-one
mapping has to find an extraction from an intermediary result - which could e.g. be a
whole similarity matrix - we are well-founded in comparing the extraction based on the
hungarian method to the application of our algorithm. For settings with a low coverage
we can increase recall by approximately 5% for both mappings with a precision of 0.5
and 0.75. These results look unusual at first sight. One might have expected a trade-
off between precision and recall. The reason for increasing both precision and recall is
based on the fact that our method does not filter out particular correspondences as long
as an alternative is available. More precisely, instead of selecting a subset of the first
extraction, the algorithm forces rearrangements upon the assignments available. These
rearrangements will with some probability result in choosing more correct correspon-
dences compared to the first or some of the previous mapping extractions computed in
the search procedure. This approach is opposed to the method suggested in [9] where
inconsistencies are used to filter out correspondences by removing the correspondence
with the lowest confidence in a conflict set.

We can therefore conclude that the proposed approach is capable of increasing pre-
cision as well as recall of an input mapping to a substantial extent for both low and
high input precision. Actually, our algorithm has stronger effects on input mappings
with a low precision. The explanation for this observation is simply based on the fact
that with increasing number of incorrect correspondences the probability of conflict-
ing pairs of correspondences increases, too. Nevertheless, this consideration can only
be extended to a certain degree. For an input mapping M with extremly low precision
there could also be a subset M∗ of M consisting mostly of incorrect correspondences
that are pairwise-consistent. If this subset is larger than the subset of correct corre-
spondences M ′ (extended by some incorrect and not conflicting correspondences) the
algorithm will choose M∗ instead of M ′. You should also notice that there is a sub-
stantial variance not depicted in the mean values of figure 1. By taking a look at the
negative outliers that cause this variance, the pattern just mentioned can be detected.
Since the probability of consistent sets of type M∗ decreases with increasing size of
M , the variance decreases also with increasing coverage.

In the second experiment we focussed on the relation between the value of ε and
the perfection of the input mapping. The results of this experiment are summarized in
table 1. Each row in the table shows the results for a particular input perfection. Besides
precision and recall we also added the f-value which is the weighted harmonic mean
of both. This value provides us with an overall estimation of the performance of our
algorithm. In order to compare the results for ε = 0.001 and ε = 100 we listed the
differences of both approaches with respect to the resulting f-values in the last column.

First, we see that there is a strong positive correlation between perfection of the in-
put mapping and precision respectively recall of the outcome. This result is not supris-



ε = 0.001 ε = 100
Perfection Precision Recall f-value Precision Recall f-value ∆ f-value

0.5 0.370 0.551 0.443 0.399 0.634 0.490 -0.047
0.6 0.389 0.589 0.468 0.393 0.630 0.484 -0.016
0.7 0.431 0.659 0.521 0.417 0.671 0.514 0.007
0.8 0.458 0.705 0.555 0.434 0.702 0.536 0.019
0.9 0.478 0.739 0.581 0.446 0.724 0.552 0.029

Table 1. The influence of perfection on precision and recall for low and high ε.

ing. Nevertheless, it shows that the algorithm makes use of the additional information
encoded in the confidence values. It is more interesting that for ε = 0.001 this infor-
mation has much stronger positive effects. With respect to the f-value we gain an ad-
vancement of 0.138 for ε = 0.001 if we compare both extremes in perfection, while the
advancement for ε = 100 is limited to 0.062. What is the reason for this difference? As-
sume there are (amongst others) two overlapping pairs of conflicting correspondences
〈c1, c2〉 and 〈c1, c3〉 in the input mapping. There are two possibilities to solve this prob-
lem: Discard c1 or discard c2 and c3. In the context of the algorithm we would put a
lock on the associated cells in the matrix. If we now choose a high ε value the algorithm
is forced to take the first option, not at all taking into account the confidence values in-
volved. The situation changes if we set ε = 0.001. Now the algorithm will make its deci-
sion based on comparing confidence(c1)+1.01 to confidence(c2)+confidence(c3).
A decision that is based on this comparison, obviously, makes sense only if the confi-
dence values under consideration are with some probability correct estimations. By
definition the perfection of a mapping is a parameter that is characteristic for this prob-
ability. For a high perfection decisions based on the consideration explained above will
expand the search tree in the correct direction with a high probability, while for a low
precision these considerations will be misleading. This explains the values presented in
the last column. For a low precision the conservative strategy - using a high ε value and
therefore keeping as much correspondences as possible - works better, while for a high
perfection the conservative strategy cannot exploit the additional information encoded
in the confidence values to its full extent.

In the third experiment we studied the behavior of the algorithm working with on-
tologies that differ in their hierarchical structure. Obviously, the applicability of our
algorithm relies on the existence of pairwise inconsistencies. With respect to the syn-
thetic ontologies we used in our experiments the number of subsumption statements
and disjointness statements is determined by the branching factor and the depth. Thus,
we varied these parameters to understand their impact on the results. In one of our test-
cases we compared mappings for T7,2 (relatively flat subsumption hierarchy with 56
concepts) and T2,5 (deep subsumption hierarchy with 62 concepts). We could achieve
stronger effects in optimizing mappings linking concepts of T2,5. Compared to T7,2 we
measured 8% more precision and 3% more recall. There are several reasons for this
difference. With respect to T7,2 pairwise inconsistencies will on the one hand only oc-
cur, if there are some correspondences in the input mapping that link concepts of the



first level. On the other hand incorrect correspondences linking sibling concepts that
are leaves will never cause pairwise-inconsistencies in a one-to-one mapping. If we
compare results for e.g. T4,3 to T2,5 the differences become noticeable smaller. We can
conclude that our approach works slightly better on matching ontologies with a deep
subsumption hierarchy.

5 Discussion and Conclusions

We presented an approach to optimize matching systems based on a combination of nu-
merical optimization and logical reasoning, thereby leveraging the problems of existing
approaches that are solely based on optimization or logical reasoning, respectively.

We introduced the basic principle of the approach based on the idea of radical
translation and transferred it to the problem of matching ontologies. We defined the
properties of mapping consistency and pairwise mapping consistency as a basis for
automating this principle. We presented an algorithm for computing an optimal and
pairwise-consistent mapping that combines the hungarian method with a uniform cost
search over the space of pairwise consistent mappings. We ran several experiments on
synthetic data sets and showed that our method increases precision and recall of a map-
ping in comparison to the result of applying standard optimization techniques without
considering mapping consistency. In particular, we showed that even for mappings with
poor confidence estimations our approach works quite well.

There are two main lines of future work. The first is concerned with improving the
efficiency of our method to scale up to large real world ontologies. While the incomplete
reasoning method we use is rather efficient due to the pre-compilation of the subsump-
tion and the disjointness matrix, the complexity of the current approach is mainly influ-
enced by the optimization and the search procedure. The hungarian algorithm currently
used for the optimization has a complexity of O(n3). Sacrificing global optimality we
can improve this by replacing the hungarian method with the Gale-Shapley algorithm
[5] which runs in O(n2). We expect major improvements from using more sophisti-
cated search procedures instead of uniform cost search to deal with the combinatorial
explosion of space of consistent mappings. We will also investigate the use of efficient
but incomplete search methods such as greedy or stochastic local search.

The second major point for future work is the systematic application of the method
to real data sets. In this paper, our aim was to better understand the behavior of our
method in terms of the influence of different problem characteristics. For this purpose,
artificial data sets are better suited than real ones. Now that we gained an understanding
of the success factors, we are ready to tackle real matching problems. First experiments
we carried out on data sets from the ontology alignment evaluation initiative have shown
that the critical point here is the assumption we make about the presence of disjointness
statements in the ontologies. It turned out that ontologies often do not contain such
statements even though the concepts are clearly disjoint. A possible solution is to sim-
ply add disjoint statements for all sibling concepts. In [11] it has been shown that this
radical approach works well in many cases. A more sophisticated approach is to try to
learn disjointness statements for underspecified ontologies based on suitable text cor-
pora and background knowledge. In [12] first results for this approach are reported that



suggest that learning is indeed feasible. We will investigate and contrast these different
approaches on real data in future work.
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