The Harmony Integration Workbench

Peter Mork, Len Seligman, Arnon Rosenthal, JoebK@hris Wolf

The MITRE Corporation
McLean, VA, USA
{pmork, seligman, arnie, jkorb, cwolff{@mitre.org

Abstract. A key aspect of any data integration endeavoreigrdnining the
relationships between the source schemata andutfpet tschema. This schema
integration task must be tackled regardless ofitbegration architecture or
mapping formalism. In this paper, we provide a tas&del for schema
integration. We use this breakdown to motivate acklwench for schema
integration in which multiple tools share a comnkoewledge repository.

In particular, the workbench facilitates the infezation of research prototypes
for schema matching (which automatically identifykely semantic
correspondences) with commercial schema mappirg tadich help produce
instance-level transformations). Currently, eacltheke tools provides its own
ad hoc representation of schemata and mappingshicmg these tools
requires aligning these representations. The woidtbgrovides a common
representation so that these tools can more rapeombined.

1. Introduction

Schema integration is an integral aspect of ang mhkaégration endeavor. The goal of
this paper is to organize the strategies and tosésl in schema integration into a
consistent framework. Based on this framework, wappse an open, extensible,
integration workbench to facilitate tool interopéva.

We view the development of a data integration smluto consist of three main
steps: schema integration, instance integrationdaptbyment. This paper focuses on
schema integration, which generates a transformadkiat translates source instances
into target instances.

Schema integration first involves identifying, at hégh level, the semantic
correspondences between (at least) two schemataalels, or ontologies, a task
we refer to aschema matching. Second, these correspondences are used to gstabli
precise transformations that definechema mapping from the source(s) to the target.

Researchers have built many systems to semi-autmihat perform schema
matching [1, 2]. Schema mapping tools generallyigl® the user with a graphical
interface in which lines connecting related ergitand attributes can be annotated
with functions or code to perform any necessanndi@mations. From these
mappings, they synthesize transformations for emtatabases or documents. These
tools have been developed by commercial vendodu@img Altova’s MapForce,

2 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, Chris Wolf

BEA’s Aqualogic, and Stylus Studio’s XQuery Mappar)d research projects (such
as Clio [3], COMA++ [4] and the wrapper toolkit TSIMMIS [5]).

Currently, an integration engineer can choose tbraoe a specific development
environment. The engineer benefits from the autedhatupport provided by that
vendor but cannot leverage new tools as they beaaiable. The alternative is to
splice together a number of tools, each of which iteown internal representation
for schemata and mappings. In one case, we neededlifferent pieces of software
to transform a mapping from one tool’s represeotsitito another.

By adopting an open, extensible workbench, intégmaéngineers can more easily
leverage automated tools as they become availaldechoose the best tool for the
problem at hand.

1.1. Contributions

First, we discuss the information likely to be &afble to integration engineers:
1) contrary to conventional wisdom, many real-watthemata are well documented,
so linguistic processing of text descriptions ispamant, 2)in several real-world
scenarios, schema integration must be performeubuitthe benefit of instance data,
and 3) domain values are often available and cbeldetter exploited by schema
matchers.

Second, we establish a task model for schema attegrbased on a review of the
literature and tools and on observations of enggselving real-world integration
problems. We have presented our task model to tlesgeerienced integration
engineers to verify that the model includes athef subtasks they have encountered.

The task model is important because it allows usake comparisons: Among
integration problems, we can ask which of the taales unnecessary because of
simplifying conditions in the problem instance. Amgotools, we can ask what each
tool contributes to each task and quantify the chparealistic settings.

Third, we describe how the task model and pragntitsiderations guide the
development of a specific integration tool, in @ase Harmony, a prototype schema
matcher, which bundles a variety of match algorgthwith a graphical user interface.

Fourth, we articulate the need for data integrawnong schema integration
tools—our community can benefit in insight anditytiby practicing what we preach.
We propose a candidate collection of interfaces ttmnstitute an integration
workbench, which allows multiple integration todts interoperate and provides a
common knowledge repository for schemata and magpi®ne outcome of the
integration workbench is that integration engineesis more easily choose which
match algorithms (or suites thereof [6]) to use nvhelving real integration problems.

In this expanded version of our previous work {¥§ add two new contributions:
Our fifth contribution is to demonstrate the in&gwn workbench by describing how
several schema integration tools can be instadtiaii¢thin the workbench. We
introduce a general model for matching tools tltabants not only for the extent to
which the available evidence suggests the existehaesemantic correspondence (as
is traditionally done), but also tle@nount of evidence. Thus, the results generated by
multiple matching tools can be combined based erathount of evidence considered
by each approach. In our experiences, the resuttiagh scores correspond more

The Har mony I ntegration Workbench 3

closely to the intuitions of integration engineabmut the “goodness” of a match than
traditional methods.

Our sixth contribution is a discussion of the lessave have learned from our
users’ experiences with the integration workbenste describe how the modular
architecture allows these users to utilize Harmémymeet their specific schema
integration needs including situations in whichyth@ve needed to introduce new
tools to accomplish their tasks. We conclude bycdiesg how the integration
workbench simplifies integration of our schema rhatg tools with a commercial
schema mapping tool (BEA’s Aqualogic) that generaiobal-as-view (GAV) [8]
mappings.

1.2. Outline

This paper is organized as follows: Section 2 daostaur observations regarding
schema integration efforts performed on behalf oé federal government. In
Section 3 we describe a task model for integrapimblems. In Section 4 we present
design desiderata based on the task model andiltedow the Harmony schema
matching tool addresses these desiderata. Sectiwsbribes the interfaces that
constitute the integration workbench. In Sectiowé describe a set of schema
matching tools that we have plugged into the irggn workbench. Section 7
describes the lessons we have learned from intinge our users about their
experiences with Harmony. Finally, we discuss eslawork in Section 8 and future
work in Section 9.

2. Integration in Large Enterprises

Conventional wisdom suggests that schema matclhiagls focus on data instances

because instances are common and documentatiopaises(or even incorrect).

Whereas these phenomena may be observed in samgsgparticularly web-based

sources, it is often not the case for schemataldgsd for or by the US federal

government (or, we suspect, other large enterprises

From the perspective of an integration enginedia destances may be extremely
hard to obtain (the data exist, but are not avkdlab the engineer) for at least two
reasons.

e Security/sensitivity: Data instances are often more sensitive thanr thei
corresponding schemata—e.g., in defense applicatian integration engineer
may have access to schemata but may lack sufficilrdtrances to access
instances. Sometimes, an agency that owns thedatiling to share them with
another agency, but not with the contracting irdégn engineers responsible for
developing the initial mappings. Wider release ofiema information is less
problematic.

e Integrating to a future system: One may begin creating important mappings to
and from a new system, even before it has any @atanning applications. For
example, the U.S. Federal Aviation Administrativeloped a mapping of some

4 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, Chris Wolf

of its systems to a conceptual model for the newofean Air Traffic Control

System before that system was implemented or haéthatance data. As a general

phenomenon, when one builds a data warehouse, apbpings from data sources

are the actual means for populating it.

Thus, we have observed that it is not safe to assilnat instance data will be
available to integration tools. Instead, schemagrgtion tools must use whatever
information is available. Instance data, thesaeit, are sometimes available and
sometimes not.

While instance data are often unavailable, we Hauad that many government
(and probably many other enterprises’) schematavatedocumented. Evidence for
this claim will now be presented.

We obtained a collection of 265 conceptual (ER) ef®drom the Department of
Defense metadata registry (which contains scheroaty, no instances!). This
repository contains 13,049 elements (entities atiomships) and 163,736 attributes.
As indicated in Table 1, the vast majority of thessms contain a definition of
roughly one sentence.

This registry also explicitly enumerates domairuesl for which documentation is
also available. A domain introduces a list of codesch of which has particular
semantics. A domain is a reusable schema constiattcan be referenced by
multiple attributes. For example, a common domaithe list of two-character state
codes (such as VA or MD). In a shipping order, thosnain might be referenced by
both the shipping entity and the billing entity. Mains and their associated
documentation facilitate schema integration everthim absence of instance data.
Unfortunately, this documentation is often lost wtee logical schema is converted
into SQL. The standard approach is to store eadingescheme in its own relation,
and each code as a string or integer vatares documentation.

This approach is good for referential integrityt tbad for integration efforts. A
better solution would be to define semantic dom&mseach coding scheme so that
integration tools could more easily identify domegrrespondences. In fact, when we
asked integration engineers to describe how thpyoagh an integration problem, a
recurring pattern emerged. They first identify aws top-level entity
correspondences. But then, instead of proceedirsytteelements or attributes, they
then manually inspect the domain values to findespondences. From this low-
level, they then work their way up the schema hatnato attributes, sub-elements,
and finally back to top-level entities. Our taslkedkdown is designed to support this
pattern.

Table 1. Frequency and length of documentation in the Daf2adata Registry

#With % With Word Words | Words per
Definition | Definition Count Iltem Definition
Element 13,049 12,946 ~99% 143,315 ~11.0 ~11.1
Attribute 163,736 135,686 ~83% 2,228601 ~136 416.
Domain 282,331 282,128 ~100% 1,036,822 ~3.67 ~3.68

Item Item Count

The Har mony I ntegration Workbench 5

3. Task Model for Data I ntegration

To better understand how schema integration tasstan integration engineer, we
enumerated the subtasks involved in schema integrat/e started with a task model
that we created and that was acceptable to 14®wysarticipants familiar with
schema integration from a research or practicabpgeetive [9]. We extended that
model to include the subtasks addressed by a yafesystems ([4, 5, 10-16]) and
then presented it to three experienced integratimgineers for validation. Based on
their feedback, we extended the model to includ#asks not directly supported by
any system.

At a high level, we consider 13 fine grained intgipn tasks, grouped into five
phases: schema preparation, schema matching, schapgng, instance integration
and finally system implementation. During schemgppration, the source and target
schemata are identified so that a set of corresproces can be identified during the
matching phase. These semantic correspondencésramaized in the third phase as
explicit logical mappings. Once schema integratocomplete, instance integration
reconciles any remaining discrepancies. In thel fih@se the integration solution is
deployed.

In this section, we describe each phase in detdild@scribe how we evaluated the
task model's completeness. Throughout this seetiomefer to the following terms: a
schema is a collection of schema elements, eaethwh is either an entity or an
attribute. An entity represents a collection ofatetl instances, and an attribute
represents a relationship between an entity andhan@ntity or a datatype. An
instance belongs to a particular entity and it @nsates values for that entity’s
attributes. In many cases, the ultimate goal oé datiegration is to transform source
instances into valid target instances.

3.1. Schema Preparation

The first phase of schema (or data) integratiortuceap knowledge about the source
and target schemata, to facilitate the subsequemthing and mapping phases. It
identifies the target schema, and organizes theee@chemata. The specific subtasks
are:

1) Obtain the source schemata. This step gathers available documentation and
imports the source schemata into the integratiatfgrim. If the source schemata are
not in a format compatible with the platform, tlsitep also includes any necessary
syntactic transformations.

2) Obtain or develop the target schema. If performed, this step is analogous to
the previous step. In many cases, the target schenuefined by the problem
specification (e.qg., translate data into the follmyvmessage format). In other cases,
the target schema must be developed based on #reegio be supported, or to
combine the data from multiple sources. This stemptional because the target
schema may be derived from the correspondencedifidénamong the source
schemata, as is assumed in [11].

In both cases, one may enrich the schemata, g.glefining coding schemes as
domains, or documenting constraints that are notighented in the actual system,

6 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, Chris Wolf

either because the system does not support thedeesmstructs, or because nobody
took the time to do so. Thus, the integration platf may enable richer descriptions
than the underlying systems. One also needs a nedegp the metadata in synch as
the actual systems change.

3.2. Schema M atching

The second phase establishes high-level correspoaseamong schema elements.
There is a semantic correspondence between twonschlements if instances of one
schema element imply the existence of corresponidistgnces of the other [17]. We
avoid a more precise definition of a semantic gpomdence because the nature of a
correspondence depends on the overall goal of sclhiegration. For example, in
the case of a data exchange system, these cordespms imply the existence of a
logical transformation that can convert instandethe source element into instances
of the target. However, when the integration gaaltd generate a consensus
vocabulary for a particular community, a semanticespondence may indicate that
the set of source instances overlaps with the $earget instances (i.e., their
intersection is non-empty).

If a target schema has been identified, these sporelences establish
relationships between each source schema and ripet.tés noted in [11], in the
absence of a target schema, correspondences cabeatstablished between pairs of
(or across sets of) source schemata.

For example, to publish data stored in a relaticiéhbase into an XML message
format, some correspondences indicate that tupbes the source relation will be
used to generate XML elements. Additional correggoices indicate which attributes
will be used to generate data values. For exammltjple relations might correspond
to a single element because a join is needed tol@i@pthe element’s attributes, or a
single relation may correspond to multiple elementsnatch nesting present in the
target.

3) Generate semantic correspondences. This step determines which schema
elements loosely correspond to the same real veordepts. These correspondences
establish a weak semantic link in that they indidhtat instances of one element can
be used to generate instances of the other.

Whereas this phase consists of a single step, wsid®r matching to be its own
phase because of its importance and the resedssitiaf it has received. The exact
transformations implied by a correspondence araledtin the mapping phase.

3.3. Schema M apping

The schema mapping phase establishes, at a logieal, the rules needed to
transform instances of the source schemata intarines of the target. The mappings
must generate results that adhere to the targetrsxifor the target must be modified
to reflect accurately the transformed data).

These mappings are often expressed as queriesssgdri a language applicable
to the source or target schema. For example, imfgjpings are expressed as Datalog

The Har mony I ntegration Workbench 7

queries and in [18] mappings are expressed usingeXQ(even though the source
schema is relational). However, in [19] the mappirage expressed in SQL even
though the transformed data are expressed as XML.

The first four subtasks below establish piecemeamhsformations, and are not
performed in a particular order. Each transfornmatiaicates the precise mechanism
by which source data is used to generate target. ddbte that at times these
transformations cross the schemal/instance bouf@@fyOnce transformations have
been established for each schema element, thexggregated into a logical mapping
and verified.

4) Develop domain transformations. For each pair of corresponding domains, a
transformation must be developed that relates safumm the source domain to
values in the target domain. In the simplest cdme is a direct correspondence (i.e.,
no transformation is needed). However, it is oftbe case that an algorithmic
transformation must be developed, for example,diovert from feet to meters, or
from first- and last-name to full-name. In the mdstailed case, the transformation
can best be expressed using a lookup table (e.gartvert from one coding scheme
to a related coding scheme). Context mediationnigcies can then be applied [21,
22].

5) Develop attribute transformations. The previous step handled the case where
the same property was encoded using different dmnarhis step deals with
properties that are different but derivable. Somesi one provides a transformation
from source to target values, either scalar (eAge from Birthdate), or by
aggregation (e.g., AverageSalaryByDepartment fratarg). Other transforms we
have seen include pushing metadata down to dafa {(@.populate a type attribute or
timestamp), and populating a comment (in the targetstore source attribute
information that has no corresponding attributeaalfy, it may be necessary to
convert a single attribute into a composition dfriltites (in the local-as-view
(LAV) [8] formalism) or vice versa for GAV.

6) Develop entity transformations. The next step is to determine the structural
transformations necessary to generate instancteedfirget schema. In the simplest
case, a direct 1:1 mapping can be establishedrnaligely, multiple entities may
need to be combined to generate a single targiy.efthis combination may require
a join operation if the source schema verticallgtipans information across multiple
entities or a union operation if the source scham@zontally partitions information
across entities that are subclasses of the tangjgt. @dditionally, a single entity may
need to be split into multiple entities (e.g., lwhsm the value of some attribute),
which effectively elevates data in the source ttahata in the target.

7) Determine abject identity. For each entity in the target, the next step is to
determine how unique identifiers will be generatiedthe simplest case, explicit key
attributes in the source can be used to generatevddees in the target. This may
include populating implicit keys (such as thoseerited from a parent entity), or
correctly establishing parent/child relationshipsch as in a nested meta-model). For
arbitrarily assigned identifiers (such as interolbject identifiers), Skolem functions
are commonly employed (see, for example, [3]).

These four subtasks interact with schema matchirgalse establishing
transformations is an iterative process. For exampi the first pass, we might
establish a transformation from Professor to Engéogsince instances of the former

8 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, Chris Wolf

are also instances of the latter). While workingtlom Course/Grade sub-schema, we
might realize that, in some cases, Students are Efsployees. This new insight
requires us to refine the Employee mapping. Inrotierds, the previously identified
correspondences may be both imprecise and incamplet

The remaining mapping subtasks produce an exeeutadgbping.

8) Create logical mappings. The next step is to aggregate the piecemeal
mappings, which all concern individual elements$p ian explicit mapping for entire
databases or documents. Humans may need to spddiyonal information (e.g., to
distinguish join from outerjoin) before automatedls can sew the pieces together. In
most cases, this requires writing a query (overdsiwerce schemata) that generates
instances of the target schema, although in LAV{8¢ source schemata are
expressed as views over the target schema.

9) Verify mappings against target schema. If the integration task included a
specific target schema, the final step is to vetifyat the transformations are
guaranteed to generate valid data instancesdil@onstraints are satisfied). In some
cases, the only solution may be to modify the tasgbema to remove constraints that
we cannot satisfy. If a target schema is not sgetithe final step is to generate the
target schema based on the logical mappings.

3.4. Instance Integration

At this point, the tasks involved in schema intéigraare complete, and we turn our
attention to instance integration.

10) Link instance elements. Two source instances (with different unique
identifiers) may represent the same real-world abj&his subtask merges these
instances into a single instance or creates arciatiem between the instances. See
[23] for an overview of the algorithms involved.

11) Clean the data. This subtask removes erroneous values from inssanke
value may be erroneous because it violates a domeirstraint or because it
contradicts information from a more reliable soufeer example, we may know that
a person should have a single value for the heitjhibute, but the available sources
might provide differing values for this attributalve. See [24] for more information
about this subtask.

3.5. System I mplementation

Finally we are ready to develop and deploy a systeat addresses operational
constraints—factors external to schema and instatements. Examples include
determining the frequency and granularity of upslaiad the policy that governs
exceptional conditions.

12) Implement a solution. In this phase the system developers must firstegath
any operational constraints and then design agriatien system that satisfies these
constraints. The significance of the operationasta@ints on real-world integration
systems is stressed by the integration engineecshalie reviewed the task model.
For example, operational constraints such as tHem® of data involved, the

The Har mony I ntegration Workbench 9

freshness of results, and security factors stromgfjuence whether a federated
database or data warehouse should be developed.

13) Deploy the application. This step does not receive much research attention,
but ease of deployment is an important concern. yMahthe commercial data
integration tools place particular emphasis on thibtask. Once deployed, system
engineers must maintain the application, but a mas#tel for application maintenance
exceeds the scope of this paper.

This task model guided our development of the Haryrethema matching tool.

4. Har mony

Harmony is a schema matching tool that combinegiphellmatch algorithms with a
graphical user interface for viewing and modifyitig identified correspondences.
The architecture for Harmony is shown in Fig. 1rhiany’s contributions include
adding linguistic processing of textual documemwtatio conventional schema match
techniques, learning from the input of a humanhe toop, and GUI support for
removing clutter and iterative development, asudised in following sections.

Harmony currently supports XML schemata, entitgtienship schemata from
ERWin, a popular modeling tool, and will soon suppeelational schemata.
Schemata are normalized into a canonical grapleseptation.

The Harmony match engine adopts a conventional nsgheantegration
architecture [6, 25-27]. It begins with linguistpreprocessing (e.g., tokenization,
stop-word removal, and stemming) of element namesl any associated
documentation. Then, severaiatch voters are invoked, each of which identifies
correspondences using a different strategy. Fomplea one matcher compares the
words appearing in the elements’ definitions. Aeotmatcher expands the elements’
names using a thesaurus. For each [source eletaggef element] pair, each match
voter establishes a confidence score in the rargerl) where —1 indicates that there
is definitely no correspondence, +1 indicates ainitef correspondence and 0O

$ Match Engine Match Voters
Bag of Words:
Normalized R - initi
Saerias Linguistic Names and Definitions
Loader / [=CNemas P :
Normalizer reprocessing Bag of Words with
I Thesaurus Expansion
Learning Vote Py Edit Distance (Names)
> Merger [T
l Acronym Matcher
%_ GuUI Structural
Mapping Matcher
Matrix Generic Acronyms/
Thesaurus Abbreviation:

Domain
Thesauri

Fig. 1. Architectural Overview of Harmony

10 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

indicates complete uncertainty.

Given k match voters, the vote merger combineskivalues for each pair into a
single confidence score. The vote merger weightk a@mtcher’'s confidence based on
its magnitude—a score close to 0 indicates thatmhteh voter did not see enough
evidence to make a strong prediction.

A version of similarity flooding [28] adjusts theomfidence scores based on
structural information. Positive confidence scopeepagate up the schema graph
(e.g., from attributes to entities), and negatieafience scores trickle down the
schema graph. Intuitively, two attributes are uglljkto match if their parent entities
do not match.

Finally, these confidence scores are shown grahies color-coded lines
connecting source and target elements. The GUIligeswarious mechanisms for
manipulating these lines, based on our design el

4.1. Design Gaals

The statistics presented in Section 2 suggeststti@ma matching algorithms should
not assume the absence of usable documentatiory Mahe candidate matchers in
the Harmony engine perform natural language pravgsand comparisons on this
documentation. In our experience, these matchere gaod recall, although their
precision is less impressive.

The task model in Section 3 suggests additionalgdedesiderata. First, the
integration engineer needs to be able to focusf@reht levels of granularity. For
example, a common first step is to establish cpaedences among conceptual sub-
schemata. In the air traffic flow management domdirese sub-schemata might
include facilities (airports and runways), weathand routing. Note that the
hierarchical and decomposable nature of XML Schemakes it easier to identify
sub-schemata.

After establishing these high-level correspondendls integration engineer
focuses on one sub-schema at a time and delvesthiataletails of the domains
appearing in that sub-schema. The engineer wantbetdlistracted neither by
correspondences pertaining to other sub-schematthase at intermediate levels of
granularity.

A related goal is that the software tools must supfierative refinement. This
desideratum is one of our motivations for develgpthe integration workbench
described in Section 5. If data cannot flow fremiyong components, the engineer has
little control over the order in which tasks wikk lsompleted.

The final desideratum is that all sub-tasks invdlire schema integration must be
supported. The commercially available tools nalyrtdke this requirement more
seriously than do research tools, such as Harm@flyereas it is an interesting
research problem to identify semantic corresponekentbis contribution alone does
not greatly assist the integration engineer. Bezadarmony by itself does not
currently support schema mapping, we defer furtbesideration of this desideratum
to Section 5. We now consider how Harmony addretbseeemaining desiderata.

The Har mony Integration Workbench 11

4.2. Filtering

The Harmony GUI supports a variety of filters thatp the integration engineer focus
her attention. These filters are loosely categdrias link filters and node filters. A
link filter is a predicate that is evaluated agaieach candidate correspondence to
determine if it should be displayed. A node fil@etermines if a given schema
element should benabled. An enabled element is displayed along with itkdi a
disabled element is grayed out and its links atedisplayed.

Harmony currently supports three link filters. Eirs confidence slider filters links
based on the confidence assigned to a link by tenbny engine. Only links that
exceed the slider-set threshold are displayed.d.ihk&t were drawn by the integration
engineer, or were explicity marked as correct, ehav confidence score of +1.
Similarly, links explicitly rejected have a score-d.

The second filter determines if a link should bsptiyed based on whether it is
human-generated or machine-suggested. The firtal filisplays those links with
maximal confidence for each schema element (uswalgingle link, but ties are
possible).

The node filters include a depth filter and a sige-filter. The former enables only
those schema elements that appear at a given depthove. For example, in an ER
model, entities appear at level 1, while attribudes at level 2. In XML schemata,
arbitrary depths are possible. Thus, using thigerfil the engineer can focus
exclusively on matching entities.

The sub-tree filter enables only those elements dppear in the indicated sub-
tree. For example, this filter can be used to famess attention on the ‘Facility’ sub-
schema. By combining these filters, the engineer mastrict her attention to the
entities in a given sub-schema.

4.3. Iterative Devel gpment

Harmony supports iterative refinement through twechanisms. First, the engineer
can rerun the Harmony engine, which can learn fluen feedback. Second, the
engineer can mark sub-schemata as complete. We deseribe these two
mechanisms.

When the Harmony engine is invoked after some spoedences have been
explicitly accepted or rejected (i.e., set to +1-b), this information is passed to the
engine and used in two ways. First, each candidateher can learn from the user’s
choices and refine any internal parameters. Fompleg a matcher that weighs each
word based on inverted frequency increases or deesevord weight based on which
words were most predictive. Second, the vote mesgaghts the candidate matchers
based on their performance so far. Learning newghteimust be done carefully,
though. Each candidate matcher focuses on a partiform of evidence, such as
elements’ names. If the engineer based her fisst pa exactly that form of evidence,
the corresponding candidate matcher will appearysgeccessful.

In addition to accepting and rejecting specifikéinthe engineer can mark a sub-
tree as complete. This action has several effEatst, it accepts every link pertaining
to that sub-tree as accepted (if currently visibde)rejected (otherwise). Once a link

12 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

has been accepted or rejected, the engine wilimpad modify that link. This ensures
that links do not mysteriously disappear or appslaould the user subsequently
invoke the Harmony engine.

Second, it updates a progress bar that tracks Hose dhe engineer is to a
complete set of correspondences. This feature waeduced at the request of
integration engineers working on large schema tatem problems that involve
several dozen iterations.

Once all schema elements have been marked as dempthe final set of
correspondences could be used to guide the geme@tia more detailed mapping.
Harmony provides neither a mechanism for authokdpnde snippets, nor a code
generation feature; these would duplicate commierzipabilities. Instead, we are
developing the integration workbench to couple matching tools (and GUI) with
commercially-available mapping products.

5. Integration Wor kbench

Our attempts to integrate Harmony with other schartegration tools revealed a
key barrier to interoperability. Whereas schemeaegmdtion experts trumpet the
advantages of a modular, federated architecture ghesents a unified view of
multiple data sources, we (as a community) haveapptied that same insight when
we develop our own systems and tools.

As a concrete example, we recently received a ct@ie of XML files from a
colleague. Each file described a schema mappingeeet a source and target schema.
However, before we could use these files, we neddettansform them into a
structure compatible with Harmony. To effect thiansformation we used one tool to
reverse engineer the schema assumed by our colle@dgrithen matched that schema
to the Harmony schema (using Harmony). We recreitednatch in Aqualogic to
generate a suitable XQuery for transforming a singML file. Finally, we wrote a
Perl script to apply the XQuery to each XML file. odular architecture would
facilitate tool interoperability.

While some vendors (such as IBM and BEA) may beingin this direction
internally to support integration of their own tepthey have not published their
approaches or interfaces. There are obvious adyestep user organizations and
small software companies to developingamdard framework for combining schema
integration tools. We propose the following as g wainitiate discussion that could
lead toward development of such a standard.

At the core of our workbench proposal is an integnablackboard, which is a
shared knowledge repository. Mediating between hteekboard and the various
schema integration tools is a workbench managee MaAnager provides several
services including transaction management, evemices and query evaluation. The
following sections describe the blackboard and mana

The Har mony Integration Workbench 13

5.1. Integration Blackboard

The integration blackboard (IB) is a shared repogifor information relevant to
schema integration that is intended to be accessednultiple tools, including
schemata, mappings, and their component elemergprdpose using RDF [29] for
the IB, because: 1) it is natural for representaigeled graphs, 2) one can use RDF
Schema to define useful built-in link types whitdl ®ffering easy extensibility, 3) it
is vendor-independent, and 4) it has significavettgpment support.

The basic contents of the IB are schema graphsmapging matrices (an approach
also taken in [25]). However, in RDF, any elemeah ©e annotated; we use this
feature to enrich the graphs and matrices withtimhdil information. We predefine
certain annotations using a controlled vocabultrgge terms appear sans serif).

5.1.1. Schemata
The IB represents a schema as a directed, labesth.gThe nodes of this graph
correspond to schema elements. In the relationaleindhese elements include
relations, attributes and keys. In XML, they induelements and attributes.

The edges of a schema graph correspond to strucelationships among the
schema elements. These edges are object propehiiese subject and object are both
schema elements. For example, in the relationaletmamhtains-table edges are used
to link a database to the tables it contains. Faldee linked to attributes via
contains-attribute edges. In XML, elements are linked to sub-elemerizs
contains-element edges, and to attributes vi@ntains-attribute edges. For many
schema languages, the edge-types are specifiedebmédeling language, but with
ontologies they are extensible.

Whereas schema elements can be annotated arpjtrasl identify three edge
labels of particular importance to schema importamgl matching utilitiesname,
type and documentation. Import tools populate these metadata so that daey be
used by schema matchers to identify potential spmedences.

14 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

Source Schema

containstelement

[firstName] [lastName] [subtotal]

Target Schema

shippingInfo

contains-
attribute

contains-

Fig. 2. Sample schema graphs

Sample schema graphs appear in Fig. 2. In the geetion we present a sample
mapping from the source schema to the target schema

5.1.2. Mappings
Inter-schema relationships can be represented ptrally as anapping matrix. This
matrix consists of headers (describing source arget elements) plus content (a row
for each source element and a column for eachttalgment). Note that whereas the
structure can easily be interpreted as a matrixstae this matrix using RDF.

For example, the mapping matrix for the schemafgign2 contains four rows and

code=

return

let $shipto := $purchOrd/shipTo

shippinginfo name total
is-complete=false is-complete=false is-complete=false
code= code= code=

<shippinglnfo total =
"{ data($shipto/subtotal) * 1.05 }">
{
for $fName in $shipto/firstName,
$IName in $shipto/lastName
return
<name>{
concat($IName, concat(", ", $fName))
}</name>
}
</Shipping Info>

concat($IName,
concat(", ", $fName))

data($shipto/subtotal)
*1.05

shipTo
is-complete=false
variable=$shipto

confidence=+0.8
user-defined=false

confidence=-0.4
user-defined=false

confidence=-0.6
user-defined=false

firstName
is-complete=true
variable=$fname

confidence=-1
user-defined=true

confidence=+1
user-defined=true

confidence=-1
user-defined=true

lastName
is-complete=true
variable=$lname

confidence=-1
user-defined=true

confidence=+1
user-defined=true

confidence=-1
user-defined=true

subtotal
is-complete=true
variable=$shipto/subtotal

confidence=-1
user-defined=true

confidence=-1
user-defined=true

confidence=+1
user-defined=true

Fig. 3. Sample mapping matrix in which every componentl®es annotated

The Har mony Integration Workbench 15

three columns, as shown in Fig. 3. Each cell in thegpping matrix describes a
potential correspondence between a source elemdrg target element.

Mapping elements are also annotated. First, eadh iseannotated with
confidence-score, which ranges from —1 (definitely not a match)}+b (definitely a
match), andis-user-defined. This latter annotation is true for any correspamzt
provided by the user (for example, by drawing & letween two elements), and the
associatectonfidence-score is either +1 or —1 (for rejected links). When atcha
algorithm is executeds-user-defined is false, and theonfidence-score falls in the
range (—1,+1).

Each row is further annotated witlvaiable-name. Each column is annotated with
code that references these names. Finally, the matsixaawhole has a@ode
annotation, which represents the mapping from sout@ target. Additional
annotations are possible; for example, Harmony &@te® rows and columns with
is-complete to track progress. The relationship between ttes®tations and the
mapping matrix appears in Fig. 3.

5.1.3. Integration Blackboard Enhancements

We currently assume that the blackboard captufesnmation about the source and

target schemata, as well as the current stateeofmdgpping that relates the source(s)

to the target. Future goals include the following.

e The blackboard should maintain a library of mappirmartly to facilitate mapping
reuse, but also as a resource for some matchitg too

e Schemata inevitably change; the blackboard shoadd schemata across versions.

e Mappings are also refined over time, especiallyeotihey are tested on real data.
The blackboard should maintain mapping provenance.

e Based on Section 4.2, the blackboard should allemtextual information, such as
focus on a particular subschema, to be sharedsamols.

e The blackboard should be shared across multipl&heorch instances.

5.2. Workbench M anager

All interaction with the IB occurs via the workbdénenanager, which coordinates
matchers, mappers, importers, and other toolsnfdreager provides several services:
First, it provides transactional updates to the $8cond, following each update, it
notifies the other tools using an event. Third, thenager processes ad hoc queries
posed to the IB.

16 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf
Schema Schema Schema Code
Loader Matcher Mapper Generator

Tool Interface

sjuang

Integration Blackboard
(stored in RDF)

K Integration Workbench /

Fig. 4. Workbench Architecture

A single-user version of the workbench architecippears in Fig. 4. Ultimately,
we envision there to be one IB for each communityinterest—i.e., a set of
stakeholders “who must exchange information in ptiref their shared goals,
interests, missions, or business processes” [Ehtegration engineer would have
her own instance of the integration workbench dairtg a single manager and
multiple tools.

52.1.Tods
We focus on four kinds of tools: loaders, matcherappers and code-generators. The
first two tools support the first two phases of estia integration. Given the
complexity of schema mapping, we separate out &ppd, in which the mapping is
produced piecemeal, from steps 8) and 9), in wbatke is generated.

Loaders are used during schema preparation to parslkeema from a file, database
or metadata repository (including ancillary infotioa such as definitions from a data
dictionary) into the internal representation usgdhe IB. When the user invokes a
loader, that tool places the new objects in thewBich extends the mapping matrix
accordingly and advises the other tools via an teven

Schema matching can be performed manually, asisdbe for most commercial
tools, or semi-automatically. (Harmony supportshbapproaches.) A match tool
updates the cells of the mapping matrix. When epoBdences are generated
automatically, all of the interactions with the #Be wrapped in a transaction; no
events are generated until the mapping matrix bas bhpdated.

Schema mapping can also be performed manually tomsiically [31], although
we are not aware of any commercial automatic mappaols. A mapping tool

The Har mony Integration Workbench 17

updates theode associated with each column. Both matchers an@ getherators
may need to listen for these events to update itfteimal state.

Finally, a code-generator assembles the code assdawith each column into a
coherent whole. Thus, the code-generator must stadel how to assemble code
snippets based on the structure of the target sigeaph (e.g., Clio [3]).

This enumeration of tools is by no means compktmther tool might attempt to
enforce domain-specific constraints on the mappimatyix. Or, a tool might annotate
a schema with information culled from external doeatation. All that is required is
that a tool implements the tool interface.

The tool interface defines two methods. First, al tmust provide arinvoke
method. The implementation of this method mightntdu a GUI (for mapping),
invoke a match algorithm, or display a file selestdialog (to load). Second, when
the workbench starts, each tool has the optiormplémenting arinitialize method.
Generally, this is done when a tool needs to regfet events.

5.2.2. Events:

Tools generate events whenever they make any chartbe contents of the IB. The
workbench manager propagates these events to allgwtool to respond to the
update. A different type of event is generatedefach major component of the IB so
that a tool can register for only those eventsvegleto that tool.

A schema loader generateschema-graph event when it imports a schema into
the workbench. Any tool with a GUI listens for thesvents and refreshes the display.

A mapping-cel event is generated when a user manually establishes a
correspondence. Multiple such events are triggbyedn automatic matching tool. A
mapping tool can listen for these events to progosandidate transformation, such
as a type conversion.

Conversely, when a mapping tool establishes a fvanation, it generates a
mapping-vector event. Match tools listen for these events to synch®iiee mapping
cells with the updated row or column. A code getienatool similarly listens for
these events to synchronize the assembled mapfiegcode generation tool, in turn,
generates amapping-matrix event when the user manually modifies the final
mapping.

Additional interactions are possible, but generapeaking, a tool listens for
events immediately upstream or downstream in tek taodel. It is necessary to
listen in both directions given the iterative babawdescribed in Section 4.3 and
illustrated by the schema matching tools we haveldped.

6. Sample Schema M atching Tools

Our research has focused on the development ofyjves of schema matching tools.
The role of a match voter is to consider some sof@vidence to generate a match
score for a particular (source element, target efgjnpair. The match score is a
function of the amount of evidence observed thggests the pair of elements match
(the positive evidence) and the total amount ofience available. The standard

18 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

approach for generating a match score is to competeatio of positive evidence to
total evidence.

However, this approach ignores the fact that, asathount of evidence increases,
the impact of that evidence is greater. In thigisecwe first formalize the roles of
positive and total evidence. We then describe hovagply this theory to various
match voters.

Within the integration workbench, multiple matchters might be available. The
role of a vote merger is to combine the match scgenerated by a suite of match
voters into a single confidence score to be storetie mapping matrix. To derive a
confidence score the vote merger assigns a weigihth match voter and combines
the match scores based on the amount of evidersegwall by each match voter.

In this section we describe each component in greftail. As a preliminary, we
briefly describe how we normalize the available doentation. We then describe
how any match voter can compute a match score based oariwusgores for positive
and total evidence. Next, we describe a specifitcimaoter in which the evidence is
based on the extent to which the words appearirtgarschema documentation for
two elements overlap. Finally, we describe how s$eres generated by multiple
match voters can be combined into a single value.

6.1. Text Normalization

For some match voters, several pre-processingegtest are required. First, we
tokenize all text strings in the source and tasgbtemata, splitting those phrases that
are not divided by spaces into distinct words. Beeaof the frequency with which
upper-case letters are used to indicate word boigsdésometimes called CaMelL
case), whenever an upper-case letter is immedi&atbyved by a lower-case letter,
we break the text into separate words at that bayn(e.g., ‘firstName’ becomes
‘first Name’). Tokenization also removes all puration. Following tokenization, the
text contains only letters, numbers and white-space

Second, we replace all capital-letters with lowase letters. Third, we remove
plural suffixes and verb conjugations. For exampreading books’ becomes ‘read
book’. Fourth, we remove any words that appear prealefined list, (such as ‘a’ and
‘for’). These stop-words are too common to be useful for linguistic prooegsWe
refer to the output of these four stepsiasralized text.

During pre-processing, we also count the frequenfcyeach normalized word
appearing anywhere in a source or target schemaeate Generally speaking, words
that are rarely used are more significant that wahct appear frequently. The word
frequency functiorfreq(wd) maps each wordd to the number of times it appears in
normalized text:

freqg(wd) — N (1

The weight associated with each word is inversebpgrtional to the number of
times it appears in the source and target schemnmathe ideal case, a word appears
exactly once in the source and once in the tamgyetwice total. Based on this
observations, the weight functiew(wd) is:

The Har mony Integration Workbench 19

wwd)= -2 (2
freq(wd)

As an ongoing example, we will consider two schest@anents drawn from the
domain of military tracking. In this domain, it iimportant to know how a particular
set of coordinates were obtained so that humanrexpan gauge the reliability of the
information. Hence, we will consider source elenmgent‘How: provides a hint about
how the coordinate was obtained,” and target elémen“TargetSource: indicates
how the latitude and longitude were obtained.” Véaer these elements are not
identical, they are similar in nature and shouldrached (and ultimately mapped) to
one another.

After normalization, these elements are simplified¢how provide hint about how
coordinate obtain” and “target source indicate htatitude longitude obtain,”
respectively. For simplicity, let us assume “hoygpaars sixteen times in the source
and target schemata and that the remaining worgeaaptwice each. Thus, the
wt(“how”) = 0.125 andwt(wd) = 1 otherwise. We will return to this example in
section 6.3 when we describe our bag-of-words medthr. But first we describe (in
abstract terms) our match score framework frompirspective of positive and total
evidence.

6.2. M atch Scores

Our match score framework expects that each mabthr wiill assign a single
score to each pair of source and target elemetiis. Match score is generated by
considering some collection of evidentee(for total observed evidence) of which a
subset suggests a correspondence between the fpaiensents foe for positive
observed evidence). For example, in the precediample, the total evidence
consists of the words used to descslaadt and the positive evidence consists of the
words they share. Other sources of evidence migitde the datatypes assigned to
these elements or the data values used to ingtathiem. In this section we describe
how any match voter can combitoe andpoe to generate a match score that ranges
from -1 to +1.

The intuition behind these match scores is thatoaesof 0 should indicate that,
based on the observed evidence, the likelihoodmadizh is impossible to determine.
As the ratio of positive evidence to total evidelrogreases, the match score should
increase. For a fixed evidence ratio, as the ®tmlence increases, the match score
should also increase.

Based on this intuition, we can establish some réteobounds. If there is an
infinite amount of positive evidence, the matchrecshould equal +1. However, if
there is no positive evidence, but an infinite anmaf total evidence, the match score
should equal —1. Finally, if there no evidencedifier type), the match score should
be 0.

Formally, for a given (source element, target elginpair, letpoe represent the
amount of positive observed evidence, soerepresent the total observed evidence.
However, before observing this evidence, thereommessmall probabilityk that two

20 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

Table 2. Relationship between evidence (positive and t@atfj match scores for extreme
values. The final column provides insight into dgpras (3)—(8).

pe|te| e | wer|ef|ms

O|lo|O0]] 1 |e|-1

ol
| I——

o
o
P
o

o

o
=3

=1
Lo B | —

Rlo|olo
| I

—

8
8
-
(0]
-
[EY
=

elements (chosen at random) match. Thus, we mastrfen this prior probability to
calculate the (combined) positive evidepesand total evidencte.

pe= x+kx poe ©)

te=1+kxtoe 4

In equations (3) and (4 is a scaling factor that indicates how much wetwan
weigh the observed evidence. Now, we calculateetidence ratier as the ratio of
positive evidence to total evidence.

_pe ©)
te
The weighted evidence ratiger scales the evidence ratio from the interval [0, 1]

to the interval [1, €e]. When the weighting factpris one, this is a linear
transformation. Large values of j generate a subali transformation.

wer =ert'i(e-1) +1 (6)

The evidence factoef measures the amount of evidence considered byingpp
the positive evidence from the interval §Q), to the interval [e, 1].

of = L+ pe)l/P @)

The match scoresis the natural log of the ratio betwesar andef.
[Wer J)
ms=In| —
ef

Finally, the match score is guaranteed to fall fre tinterval (-1, +1) as
demonstrated by a limit analysis (see Table 2)has positive and total evidence
approach 0 and positive infinity. All that remaiissto determine suitable values for
the parameterg k, andx. We choose such that in the absence of direct evidence, the
match score evaluates to 0. Whereas we have not fauclosed solution fax in
terms ofj, for certain values gfwe have observed the following:

The Har mony Integration Workbench 21

€)
x~e ' whenj>7

The values of the remaining two parameters depenthe match voters under
consideration. Generally speaking;ontrols how much positive evidence is required
for ms to generate a match score greater than zerokardplifies the observed
evidence. We recommend suitable values for thesergders for match—voters based
on algorithms developed for measuring the simitdottween two natural language
documents.

6.3. SampleLinguistic Match Voters

The preceding section described a match voter abatract level. We now turn our
attention to specific match voters based on natarguage processing (NLP). In this
section, we describe how to quantify the observddeace for NLP-based match
voters. We then establish reasonable values fordhstants described above.

In the domain of document retrieval, one stratemydietermining the similarity of
two documents is to determine the extent to whiehpair of documents has words in
common. We apply this approach to schema matchindrdmting each schema
element as a document. For a given schema elerentorresponding document
contains the normalized text appearing in the etglmalocumentation and nafme
This document is then reduced to a bag-of-wores @ set of words in which a given
word can appear multiple times). The evidence sspried by bag-of-wordBs is
computed as follows, where the weight function defned in equation (2), above.

ev(B) = > wt(wd) (10
wdeB
For a given (source-element, target-element) tadr positive evidence is based on
the intersection of the corresponding bags, andtdte evidence is based on the
union.

poe(s,t) = ev(B, N B,) (11)

toe(s, t) = ev(B, U B,) (12)

In our ongoing example (“How” vs. “TargetSourcethe positive observed
evidence is based on the bag {*how”, “obtain”} atié total observed evidence on
the bag {*“about”, “coordinate”, “hint”, “how”, “how “indicate”, “latitude”,
“longitude”, “obtain”, “provide”, “source”, “targe}. Given the previously assigned
word weightspog(s;t) = 1.125 andoe(s,t) = 10.125.

Harmony also supports the inclusion of evidencere to the source and target
schemata. A second match voter uses a bag-of-vemrgimented with a thesaurus. For
each word irBs, if that word appears in the thesaurus, its symangre added to the
bag. Once the bags have been augmented with symsortiie weight function in

1 Because of the importance of an element’'s nameyaiueally add that normalized text to the
document twice.

22 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

Table 3. Relationship between evidence (positive and taall match scores for three
different values of positive observed evidence.

BB poe toe pe | te er wer | ef ms
{“how”, “obtain”} |1.125 | 10.125| 3.6| 32 0.11 2.4 1/50.44
{*how"} 0.125 | 10.125| 0.59] 32 0.019 2.2 22 -0.0{19
{ 0 10.125| 0.22| 32| 0.0068 2.0 255 -0.19

equation (2) must be re-evaluated. Otherwise, thesaurus-based bag-of-words
match voter is identical to the normal bag-of-wonaich voter.

All that remains is to establish values fandk. In our experiencg=20 seems to
work well in practice. Given the trade-off betwgamecision and recall, we prefer to
err on the side of recall because it is easieafointegration engineer to reject false
matches, than to identify false non-matches. Wadda3 to work well for the basic
bag-of-words matcher, and1 to work well when using a thesaurus. The induiti
behind using a smallek is that we expect to see more total evidence with
thesaurus, and therefore do not need to amplifetfeet of the observed evidence.

To illustrate how the total and positive observedience is used to calculate a
match score, we will return to our ongoing examiplavhich the positive observed
evidence value is 1.125. Let us also consider aigitenarios in which the common
words are {*how"} and {}. (This example assumks3, butj is set to 10 because the
documentation strings are so short). Table 3 shmwsthe match scores are derived
in each of these scenarios. We have deliberatagest) andk such that the match
score will be relatively large whenever a pair lefineents share even a small number
of uncommon words. Moreover, very low scores carreogenerated without a huge
amount of total evidence. In our experience, basedeal-world schemata, positive
evidence is a much stronger indicator than negatiwdence. By incorporating this
intuition into our match scores, multiple sourcégwdence can be combined by the
vote merger.

6.4.Vote Merger

Within Harmony, several match voters are run imajpal, each of which generates a
match score for each pair of source and targetesi&snin this section we describe
how to combine these values into a single scoredch pair. We begin by describing
how to merge match scores assuming each match waer also to return an
evidence score in addition to a match score (fehgzir). We then describe how to
merge match scores without imposing this additioeqlirement.

The vote merger is responsible for combining midtimatch scores into a single
confidence value. This combination is based onipialfactors including the weight
assigned to each match voter, the amount of evidanailable to that match voter,
and the positive evidence observed by that matdbrvéor each (source element,
target element) pair, the match voter generatasgiesconfidence value.

The basic vote merging algorithm is simply a wegghaverage of the match scores
generated by each match voter. If we assume thawéight of a given match voter

The Har mony Integration Workbench 23

is wt(v), and that the weight associated with the evideslagerved by that match
voter isew, then the confidence score is the weighted aveodgeatch scores as
follows, whereV is the set of all match voters.

D wt(v) x ew, x ms, (13)

conf =¥
> wit(v) x ew,

veV

When the weights associated with each match voteegual, the confidence score
is simply the weighted average of the match scdrased orew,. Thus, we need to
determine how to compute evidence weights.

In general, the evidence weight needs to scale feeno (in the absence of
evidence), to one (given infinite evidence). Thasy function that mapte to the
interval [0, 1] fulfills this conditions. For exar&y the following function is an
analogue of equatiofT);

aw = (l+i)le (14)
te

Note that equation (14) requires that we preseruttiphe values for each match
voter. However, the match score calculated in egu#8) is close to zero when there
is little total evidence, and close to +1 when #meount of total evidence is large.
Given this observation, we use the absolute vafubeomatch score as the evidence
weight. Assuming equal match voter weights, thefidence score simplifies to the
following.

5|, [, (15)
conf =¥ —————

>Ims, |

veV

Intuitively, equation (15) uses the match scorarretd by each match voter as its
weight. This simplification works because a matchre of zero indicates insufficient
evidence to determine if the source element argktalement matéhA score close
to £1 indicates strong evidence either in suppbé match, or against a match. Thus,
by scaling each match voter as described in théqre section, we can easily merge
match scores based on the strength of each matoh. sc

In our ongoing example, the bag-of-words match vganerated a match score of
0.44. The bag-of-words with thesaurus match voegregated a match score of 0.55,
and a match voter based on the edit distance betileen” and “targetsource”
generated a match score —0.21 (the schema elemewmisrshare only the letter “0”).
Based on equation (15), the final confidence st®1@38. The bag-of-words match
voters are weighted more heavily because their matores are more decisive.
Recall that the match voters can generate largiéiy@scores more easily than large
negative scores. Given the behavior of the matdkryvas long as any match voter
suggests a match, the final confidence score Wélyt be positive.

2 As a special case, if the denominator is zeroctinfidence score generated is also zero.

24 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

We have incorporated all three match voters andiabe merger into the Harmony
integration workbench, along with the Harmony GOUr customers and colleagues
have been using this package for roughly one yeahe next section, we report on
their experiences with the tool suite.

7. User Experiences

We released the original version of Harmony (inoigdthe GUI, match engine, and
integration workbench) in November 2006. Since tivae, the package has been
used to support several government projects. Wiewiet up with a half-dozen
Harmony users to assess the extent to which Harrhasymet their needs. In this
section, we describe the lessons learned from theswiews. We first enumerate the
questions that we have asked. We then provide ansuyrof these users’ interactions
with Harmony, both in terms of the GUI and the graion workbench. We conclude
the section with a description of how the integmativorkbench has simplified the
integration of Harmony with BEA’s Aqual.ogic tool.

7.1. Background

We contacted several Harmony users, of which adwén provided feedback on the

tool suite. In each interview we asked the follagvquestions.

¢ What can you tell us about the schemata in youliagijon domain?

¢ What (if any) were the benefits of using Harmongmomanual integration or other
tools?

¢ Of which Ul features were you aware, and whichydid use?

e What issues or limitations did you experience?

¢ Did you interact with the integration workbenchadf, how difficult was it to use
this framework?

In almost all cases, the schemata in question weng large, containing several
thousand distinct schema elements. In one casesctimmata were OWL ontologies,
one of which contained nearly 100,000 concepts.

The application domains ranged widely. For examplee scenario involved
mapping XML message formats to a smaller “communftynterest vocabulary”—
i.e., a set of terms with text definitions all ditlg connected to a root node. The goal
of this project was not to create an executablepingp but instead to establish a data
dictionary describing the elements common in thenaa, including alternate
formulations of these elements. A second scenarxiolved mapping the same set of
source schemata to a collection of target schemstay just the match engine (i.e.,
without human intervention) to determine which @rgchema best covered the
source schemata. A third scenario involved aligrrsgnall highly-technical ontology
with a large general-purpose ontology. The goathi$ project was to merge the
technical ontology into the general-purpose ontpldg provide better domain
coverage. Note that none of these projects wenmgiryo generate executable

The Har mony Integration Workbench 25

transformations to generate target instances froorce instances, which is the
typical motivating application for schema integpatresearch.

7.2. Match Engine and GUI Experiences

Not surprisingly for a research prototype, the Hamgnmatch engine was unable to
handle source and target schemata containing thdes# schema elements. Because
the match engine evaluates a confidence scorevieny epossible [source element,
target element] pair, the match engine was unablgeherate a complete mapping
matrix in less than 24 hours (and in some caseddvaun out of memory). This
limitation stresses the importance of match alparg that do not need to consider all
possible pairs (e.g., [32]).

As a workaround, in all but one case, the usenstified external tools that could
partition the schemata into smaller, more manageglces. From their experiences,
we can draw two conclusions. First, new tools sthdnd added to the workbench that
can partition a schema into smaller sub-schemateor®l, the GUI should make it
clear that only the nodes currently selected (eiging the sub-tree filter) would be
fed to the match engine. Only one user was awatbisfstrategy for handling large
schemata.

The users with whom we spoke did use most of the fitdrs to explore the
mapping matrix. In particular, we heard that thbe-see filter was very helpful in
focusing one’s attention on a particular contextisTreature allowed the integration
engineer to verify the proposed matches, spedyieaithin that context because the
validity of a match depended on the context.

To identify these contexts, the integration enginesed a combination of the depth
filter and the confidence filter. The depth filteliminated the low-level details,
leaving only high-level concepts used to establisbontext. The confidence filter
identified those contexts for which good matchesldauickly be identified. Thus,
our intuition that schema matching is an iteraprecess in which the integration
engineer alternates between high-level and detaifesvs of the problem was
validated.

7.3. Integration Workbench Experiences

In three cases, the users with whom we spoke nealdHiarmony directly. In the first
case, a new match voter was created that parelfiettze generation of match scores.
This match voter also discarded any score thabfdtbw a user-defined threshold to
avoid the overhead of maintaining these scoreserbtackboard. Once implemented,
it was trivial to add this new match voter to Harmpplargely because the interactions
between a match voter and the workbench were stdbéished.

To support ontology alignment, the GUI was extenttechtroduce an additional
mapping cell annotationelationship indicates the nature of the relationship between
the source schema element and target schema elethenannotation could be used
to indicate that the source element was more spehin (a subclass of), equivalent
to, or compatible with the target element. In difehis annotation made each

26 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

mapping cell a reified relationship linking the soel to the target. It took the
integration engineer roughly 40 hours to extendGhH and to link the new tool into
the integration workbench. The integration enginmesponsible indicated that he was
quite pleased to see that the workbench correcilyed and loaded the new
annotations along with the built-in annotations.

Finally, to determine which target schema best @/¢he source schemata, the
integration engineers needed a new tool to displagpapping matrix in summary
form. This tool generates a pie chart that indedhe percentage of source elements
for which a good match (confidence scer8.75), weak matchx(0.25), or no match
was found. Implementing this tool and linking itarthe integration workbench took
an integration engineer roughly 20 hours.

Although our experiences are limited, we believat ttne integration workbench
has proven to be an effective mechanism for addieqy tools to the suite. This
capability is particularly important because mamywr users were not interested in
generating executable code. In fact, several ahtteported that they were unable to
use commercial schema integration tools becauseotiye possible end product
generated by these tools is executable code. Gus’'useeds were more varied than
could be supported by off-the-shelf tools.

However, we recognize that in many cases, the gbathema integration is to
generate an executable mapping. Towards that eadhave teamed with BEA to
integrate the Harmony match engine with BEA’s Agogic tool via the integration
workbench.

7.4. M atching + M apping

In [33] we describe our efforts to combine the Hany match engine with BEA's
Aqualogic tool, which we summarize here. Briefly,qualLogic “employs a
declarative foundation to enable a user to desigwvelop, deploy, and maintain a
framework that understands both the logical andasdim heterogeneity of data
sources.” In the context of the integration workifen AqualLogic provides a
graphical interface so that an integration engirser manually indicate semantic
correspondences. The tool automatically proposegspimg snippets (largely type-
conversions) based on the semantic corresponddhtesn assembles these snippets
into an executable transformation, optionally dgplg this transformation in a
service-oriented architecture.

Given the potential synergy between Harmony andabqgic, we have begun a
joint effort to combine these tools. In the resgtiproduct, the Harmony match
engine will propose candidate matches; AqualLogicesponsible for providing a
graphical user interface and for generating magggtrapsformations. Moreover,
given a library of source schemata and a targetrsah Harmony can suggest source
schemata that are likely to be relevant.

To make Harmony accessible to Aqualogic, we neddednplement two new
functions. The first takes, as input, a source sehelement and a target schema
element, and computes the mapping matrix for threesponding schema sub-trees.
The function returns the to [target element, confidence] pairs for each source
element such that the confidence score exceeds gueghold. (The intention is to

The Har mony Integration Workbench 27

limit the amount of information presented to theerys Implementing this
functionality using the integration workbench regdi only four lines of code:
1) invoke the Harmony match engine, 2)determindclwiconfidence scores to
compute, 3) filter out any results that do not excé¢he confidence threshold, and
4) add the tofi matches for each source element to the result.

The second new function allows Aqualogic to indécathich correspondences
have been accepted by the integration enginees. fElis Harmony which mapping
cells should not be modified by future invocaticsfsthe match engine and could
potentially be used to tune the algorithmic paramsetImplementing this method
required three lines of code: 1) iterate over thedf manually identified matches,
2) lookup the corresponding cell of the mappingriraand 3) update the confidence
score for that cell.

At this time, BEA is extending their graphical irfeee to display the results
generated by the Harmony match engine. Howeverale with which the necessary
information could be extracted from the blackbosi@ the integration workbench
offers further proof that the workbench is an dfiec mechanism for integrating
schema integration tools and that our task modeéctly captures activities common
to data integration.

8. Related Work

The data integration task model is an extensioro{dur prior work presented in [9].
The improved model includes additional subtasksresidd by real integration
systems and identified as being important by tlesgeerienced integration engineers.
A task model of schema integration also appeaféify but that work predates the
data integration industry and does not benefit ftbeninsights of practitioners.

In [34], Haas describes a task model similar tosolr her model, Haas includes
four basic tasks: First, the integration enginearstmunderstand the schemata
(subtasks 1-2, above). Second, the integration neegi must standardize the
underlying sources. This includes establishingamdsird schema that specifies the
syntax, structure and semantics of the informati@obtasks 3-9). She also
emphasizes the importance of determining how tdajtify information that pertains
to the same subject (subtask 10) and b) handlengiss inconsistent information
(subtask 11). Third, the developers must speciéyekecution engines and produce
the executable (subtask 12). Finally, the solutirst be executed (subtask 13).

Of the tasks pertaining to schema integration @sKst 1-9), most of the research,
including our own, has focused on subtask 3, schmaighing (e.g., [4, 6, 25-28]).
Overviews of the common approaches appear in [d] [@8h Based on Rahm and
Bernstein’s hierarchy [1], the match engine (ash@l®) is a composite matcher that
composes the vote merger with a structure-levetiheat The vote merger, in turn, is
a hybrid matcher that combines the match scorergtsd by a collection of
element-level linguistic matchers (the match voterowever, we are aware of only
one prior schema matching algorithm that expl@itgital definitions [35], which uses
a simple approach based on a commercial informattnieval tool. Harmony adds
more sophisticated linguistic pre-processing (estgmming), a thesaurus and scoring

28 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

algorithms that consider the amount of evidencelabdla. In [36] similar linguistic
pre-processing techniques to ours are used, bupgleed only to element names. In
addition, instead of doing bag-of-word comparis@tsoss elements of different
schemata, they use natural language techniqueartsidte each name into a logical
formula and then compare the logical formulae tdfguen match. This approach is
complementary with techniques in use in Harmony.

Harmony provides the first GUI that supports amnaitige development cycle. This
GUI is the first to allow the integration engineeffilter the match results based on a
variety of criteria.

The integration workbench is far from the first sgfa integration toolkit to adopt
a modular architecture. A similar approach is udsd both schema matching
prototypes such as COMA++ [4] and Protoplasm [2Bf1 acommercial schema
mapping tools such as those offered by IBM and BE&r example, Protoplasm
allows the integration engineer to string togetmatch voters and vote mergers in
arbitrary ways. This modularity allows the reseagthup or commercial entity to
adapt or extend their software. However, the irgtegn workbench that is proposed
in this paper is unique in that it is based on smmon blackboard using open
standards so that independently developed toolséaroperate.

9. Conclusions and Future Wor k

Data integration is a widely researched problemwéi@r, we described ways in
which enterprise data integration differs from iteations usually encountered in the
research literature (e.g., documentation is widagilable, instance data less so).
Other pragmatic comments discussed how best tegept coding schemes so they
can be leveraged by integration tools.

We also enumerated the subtasks involved in degration, partitioned to reflect
the behavior of integration engineers and the sdppovided by existing tools. This
task analysis is intended to guide tool developragatto enable comparisons across
tools and integration problems.

Based on our observations and task modeling, wifakel important design goals
for integration tools. Specifically, we articulatdie need to support all of the tasks
involved in schema integration. One approach totimgethis need is to bring
multiple tools to bear.

Unfortunately, assembling several tools to solygadicular integration problem is
daunting. Our community needs to adopt the priecgfl assembling systems from
modular components and integrating existing comptme To facilitate tool
interoperation, we proposed an open, extensiblegmtion workbench. This
architecture provides a unified view of schematd arappings so that integration
tools can more easily communicate. We believe ltiotth tool vendors and database
researchers benefit from this arrangement. We hlogtethis proposal will generate
discussion that ultimately could lead to stand&edg., for mapping matrices) for data
integration tool interoperation.

Since our overarching goal is to improve the liedsntegration engineers, our
next task is to perform a usability analysis of Hermony integration suite. We will

The Har mony Integration Workbench 29

measure the extent to which software tools savee tom each of the schema
integration subtasks.

10. Acknowledgements

We would like to thank Ken Samuel for his work depéng the Harmony match
voters and vote merger, Mike Carey and Sachin &Hatttheir input, Jeff Hoyt and
Michael Morse for their editorial comments and tb@ewers for their feedback.

11. References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]
[10]

(11]

[12]

[13]

E. Rahm and P. A. Bernstein, "A Survey of Apmbes to Automatic Schema
Matching,"The VDLB Journal, vol. 10, pp. 334-350, 2001.

P. Shvaiko and J. Euzenat, "A Survey of Sch&ased Matching Approaches,"
Journal on Data Semartics, vol. 4, pp. 146-171, 2005.

R. Miller, M. A. Hernandez, L. M. Haas, L. Ya@, T. H. Ho, R. Fagin, and L. Popa,
"The Clio Project: Managing HeterogeneitdGMOD Record, vol. 30, pp. 78-83,
2001.

D. Aumueller, H. H. Do, S. Massmann, and E. RaH'Schema and ontology
matching with COMA++," presented at Proceedings toé ACM SIGMOD
International Conference on Management of DatajBate, MD, 2005.

J. Hammer, H. Garcia-Molina, S. Nestorov, R.ri¥ai, M. M. Bruenig, and V.
Vassalos, "Template-Based Wrappers in the TSIMMi&teéSn," presented at
Proceedings ACM SIGMOD International Conference Management of Data,
Tucson, AZ, 1997.

A. Doan, P. Domingos, and A. Y. Halevy, "Leargito Match the Schemas of
Databases: A Multistrategy Approachylachine Learning, vol. 50, pp. 279-301,
2003.

P. Mork, A. Rosenthal, L. J. Seligman, J. Kordmd K. Samuel, "Integration
Workbench: Integrating Schema Integration Toolsgspnted at InterDB'06 Second
International Workshop on Database Interoperabifitjanta, GA, 2006.

J. D. Ullman, "Information Integration Using gizal Views," presented at Database
Theory—ICDT '97, 6th International Conference, De&lisreece, 1997.

L. J. Seligman, A. Rosenthal, P. E. Lehner, andmith, "Data Integration: Where
Does the Time Go?|EEE Database Engineering Bulletin, vol. 25, pp. 3—10, 2002.

N. Ashish and C. A. Knoblock, "Wrapper Gengamatfor Semi-structured Sources,"
S GMOD Record, vol. 26, pp. 8-15, 1997.

C. Batini, M. Lenzerini, and S. B. Navathe, "&omparative Analysis of
Methodologies for Database Schema Integratid@M Computing Surveys, vol. 18,
pp. 323-364, 1986.

S. Cluet, C. Delobel, J. Siméon, and K. Smatéur Mediators Need Data
Conversion!," presented at SIGMOD 1998, Proceedid§M SIGMOD
International Conference on Management of DatattiBe®/A, 1998.

D. Florescu, A. Y. Levy, and A. O. MendelzdBatabase Techniques for the World-
Wide Web: A Survey,SGMOD Record, vol. 27, pp. 59-74, 1998.

30 Peter Mork, Len Seligman, Arnon Rosenthal, Joel Korb, ChrisWolf

(14]

[15]

[16]

(7]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
(31]

A. Pan, J. Raposo, M. Alvarez, J. Hidalgo, #ndvifia, "Semi-Automatic Wrapper
Generation for Commercial Web Sources," presente@ngineering Information
Systems in the Internet Context, Kanazawa, Jajid2,. 2

Y. Papakonstantinou, A. Gupta, H. Garcia-Malirand J. D. Ullman, "A Query
Translation Scheme for Rapid Implementation of Vigeap," presented at Deductive
and Object-Oriented Databases, Fourth InternatioGanhference, DOOD'95,
Singapore, 1995.

L. Popa, Y. Velegrakis, R. Miller, M. A. Herndez, and R. Fagin, "Translating Web
Data," presented at VLDB 2002, Proceedings of 2B8thrnational Conference on
Very Large Data Bases, Hong Kong, China, 2002.

R. Fagin, P. Kolaitis, R. Miller, and L. Pog®ata Exchange: Semantics and Query
Answering," presented at Database Theory — ICDT 32089th International
Conference, Siena, ltaly, 2003.

M. F. Fernandez, W.-C. Tan, and D. Suciu,KBdute: Trading between Relations
and XML," presented at Ninth International World d&i Web Conference,
Amsterdam, The Netherlands, 2000.

M. Rys, "Bringing the Internet to Your Datakad)sing SQL Server 2000 and XML
to Build Loosely-Coupled Systems," presented atcé®dings of the 17th
International Conference on Data Engineering, He&tg, Germany, 2001.

C. M. Wyss and E. L. Robertson, "Relationahggaages for Metadata Integration,"
ACM Transactions on Database Systens, vol. 30, pp. 624-660, 2005.

C. H. Goh, S. Bressan, S. E. Madnick, and Mg8, "Context Interchange: New
Features and Formalisms for the Intelligent Integna of Information," ACM
Transactions on Information Systerrs, vol. 17, pp. 270-293, 1999.

E. Sciore, M. Siegel, and A. Rosenthal, "UsiBgmantic Values to Facilitate
Interoperability Among Heterogeneous Informatiorst®yns,"ACM Transactions on
Database Systemns, vol. 19, pp. 254—-290, 1994.

N. Koudas, S. Sarawagi, and D. Srivastava,ctiRe Linkage: Similarity Mesaures
and Algorithms," presented at Proceedings of theMASIGMOD International
Conference on Management of Data, Chicago, IL, 2006

T. Johnson and T. Dasu, "Data Quality and DZi&aning: An Overview," presented
at Proceedings of the 2003 ACM SIGMOD InternatidDahference on Management
of Data, San Diego, CA, 2003.

P. A. Bernstein, S. Melnik, M. Petropoulos,da. Quix, "Industrial-Strength
Schema Matching, 9 GMOD Record, vol. 33, pp. 3843, 2004.

H. H. Do and E. Rahm, "COMA - A System for ¥lde Combination of Schema
Matching Approaches," presented at VLDB 2002, Rrduegs of 28th International
Conference on Very Large Data Bases, Hong Konga&;12002.

J. Madhavan, P. A. Bernstein, and E. Rahmn&&e Schema Matching with Cupid,"
presented at VLDB 2001, Proceedings of 27th Inteanal Conference on Very
Large Data Bases, Roma, Italy, 2001.

S. Melnik, H. Garcia-Molina, and E. Rahm, "Slamity Flooding: A Versatile Graph
Matching Algorithm," presented at Proceedings ef i8th International Conference
on Data Engineering, San Jose, CA, 2002.

D. Brickley and R. Guha, "RDF Vocabulary Deption Language 1.0: RDF
Schema," World Wide Web Consortium (W3C®), 2003.

J. P. Stenbit, "Department of Defense Net-@eata Strategy," 2003.

I. F. llyas, V. Markl, P. J. Haas, P. BrowmdaA. Aboulnaga, "CORDS: Automatic
Discovery of Correlations and Soft Functional Dejmties," presented at
Proceedings of the ACM SIGMOD International Confi® on Management of
Data, Paris, France, 2004.

[32]

(33]

(34]

(35]

(36]

The Har mony Integration Workbench 31

P. Mork and P. A. Bernstein, "Adapting a Géme¥atch Algorithm to Align
Ontologies of Human Anatomy," presented at Procegdbf the 20th International
Conference on Data Engineering, ICDE 2004, Bodtbh, 2004.

M. J. Carey, S. Ghandeharizadeh, K. Mehtavierk, L. J. Seligman, and S. Thatte,
"AL$MONY: Exploring Semantically-Assisted Matchirig an XQuery-Based Data
Mapping Tool," presented at International WorksleopSemantic Data and Service
Integration, Vienna, Austria, 2007.

L. M. Haas, "Beauty and the Beast: The Theand Practice of Information
Integration,” presented at Database Theory—ICDT 720Q1th International
Conference, Barcelona, Spain, 2007.

C. Clifton, E. Housman, and A. Rosenthal, "Esipnce with a Combined Approach
to Attribute-Matching Across Heterogeneous Datafdgmesented at Data Mining
and Reverse Engineering: Search for Semantics, IFE2/WG2.6 Seventh
Conference on Database Semantics (DS-7), Leysiitiz&iand, 1997.

F. Giunchiglia, P. Shvaiko, and M. Yatskeviclg-Match: an Algorithm and an
Implementation of Semantic Matching," presented’lz¢ Semantic Web: Research
and Applications, First European Semantic Web Swigpo, ESWS 2004,
Heraklion, Crete, Greece, 2004.

