An Evidential Approach to Query Interface Matching on the
Deep Web

Jun Hong
School of Electronics,
Electrical Engineering and
Computer Science
Queen’s University Belfast
Belfast BT7 1NN, UK

j.-hong@qub.ac.uk

ABSTRACT

Matching query interfaces is a critical step in data integra-
tion across multiple Web databases. The problem is closely
related to schema matching that typically exploits differ-
ent features of schemas. Relying on a particular feature of
schemas is not sufficient. We propose an evidential approach
to combining multiple matchers using Dempster-Shafer the-
ory of evidence. First, our approach views the match re-
sults of an individual matcher as a source of evidence that
provides a level of confidence on the validity of each candi-
date attribute correspondence. Second, it combines multi-
ple sources of evidence to calculate the overall level of con-
fidence, reflecting the match results of different matchers.
Third, it selects the top k attribute correspondences of each
source attribute from the target schema. Finally it uses
some heuristics to resolve any conflicts between the attribute
correspondences of different source attributes. Our exper-
imental results show that our approach is highly accurate
and effective.

1. INTRODUCTION

Web databases are now pervasive, which can be accessed
via their query interfaces (usually HTML query forms) only.
Query forms provide a natural way for the user to make
queries to the underlying databases without using a partic-
ular query language. On receiving form-based queries, these
databases return query results encoded in HTML, which are
then displayed to the user.

Many E-commerce sites are supported by Web databases.
In a specific domain (e.g. flight booking, book sales), there
are many database-driven Web sites that sell similar prod-
ucts and services. It is a daunting task for the user to visit
numerous Web sites individually to search for and compare
services or products. Web data integration aims to pro-
vide single-point access to a multitude of Web databases,
where users need to fill in only a uniform query form, and

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Zhongtian He
School of Electronics,
Electrical Engineering and
Computer Science
Queen’s University Belfast
Belfast BT7 1NN, UK

zhe01@qub.ac.uk

David Bell
School of Electronics,
Electrical Engineering and
Computer Science
Queen’s University Belfast
Belfast BT7 1NN, UK

da.bell@qub.ac.uk

on receiving a user query the system will automatically make
connections to different sites, fill in the local query forms on
these sites, submit these forms, combine the query results,
and return the combined results to the user.

Matching query interfaces is a critical step in Web data
integration, which finds attribute correspondences between
the uniform query interface and a local query interface. The
problem is closely related to schema matching that takes
two schemas as input and produces a set of attribute cor-
respondences between them [1]. Schema matching has been
extensively studied (e.g. [1, 2, 3, 4, 5, 6, 7, 8]). These
approaches exploit different features of schemas, including
structural and linguistic features and data types, etc to
match attributes between schemas. Schema matching is in-
herently uncertain due to lack of complete knowledge about
schemas. Relying on a single feature of schemas is not suffi-
cient and the match results of individual matchers are often
inaccurate and uncertain. Approaches have been proposed
to combine multiple matchers taking into account different
features of schemas. A common approach is to apply dif-
ferent weight coefficients to the match results of individual
matchers reflecting their different levels of importance, and
their weighted values are then added together as the com-
bined match results. However, these weight coefficients are
often manually set for a particular domain in a trial and
error manner.

We propose an evidential approach to combining the match
results of multiple matchers using Dempster-Shafer theory
of evidence. First, this approach views the match results
of an individual matcher as a source of evidence that pro-
vides some degree of belief on the validity of each candi-
date attribute correspondence. Second, it combines degrees
of belief from multiple sources of evidence to calculate the
overall degree of belief on the validity of each candidate at-
tribute correspondence, reflecting the match results of dif-
ferent matchers. Third, it selects the top k attribute corre-
spondences of each source attribute from the target schema.
Finally it uses some heuristics to resolve any conflicts be-
tween the attribute correspondences of different source at-
tributes. Our experimental results show that our approach
is highly accurate and effective.

2. DEMPSTER-SHAFER (DS) THEORY OF
EVIDENCE

Dempster-Shafer theory of evidence, sometimes called ev-

idential reasoning [9] or belief function theory, is a mecha-
nism formalized by Shafer [10] for representing and reason-
ing with uncertain, imprecise and incomplete information.
The theory represents a set of propositional hypotheses by
a frame of discernment.

Definition 1. Frames of Discernment A frame of dis-
cernment (or simply a frame), usually denoted as O, contains
mutually exclusive and exhaustive propositional hypotheses,
one and only one of which is true.

For example, a patient has been observed having two
symptoms: “coughing” and “sniveling” and only three types
of illness could have caused these symptoms: “fu”(F),
“cold”(C) and “pneumonia”(P). We can use a frame © =
{F,C, P} to represent these types of illness.

There are three important functions in DS theory: the
Basic Probability Assignment function (bpa or m), the Belief
function (Bel), and the Plausibility function (PI).

Definition 2. Basic Probability Assignment (Mass
Function) A function, m: 2° — [0,1], is called a basic
probability assignment on a frame © if it satisfies the fol-
lowing two conditions:

m(¢) =0 (1)

> mA) =1 (2)

ACO

where ¢ is an empty set and A is any subset of O.

The Basic Probability Assignment function (mass func-
tion thereafter) is a primitive function. Given a frame, O,
for each source of evidence, a mass function assigns a mass to
every subset of ©, which represents the degree of belief that
one of the hypotheses in the subset is true, given the source
of evidence. For example, when the patient has been ob-
served having the symptom “coughing”, the degree of belief
that the patient has “flu” or “cold” is 0.6 and the degree of
belief that the patient has “pneumonia” is 0.4. We then have
a mass function: m;({C,F}) = 0.6 and mi({P}) = 0.4.
Similarly, with the symptom of “sniveling”, we have an-
other mass function: mo({F}) = 0.7, m2({C}) = 0.2 and
mo({P}) =0.1.

From the mass function, the Belief function (Bel), and the
Plausibility function (PI) can be derived, which represent
the upper and lower bounds of an interval for every subset
of ©, which contains the precise probability that one of the
hypotheses in the subset is true, given the source of evidence.

Given two mass functions m; and msz, DS theory also
provides Dempster’s combination rule for combining them,
which is defined as follows:

_ ZA(] p—c M1(A)ma(B)
MO =TS ey i (Ayma(B)

In the above example, we combine two mass functions, m1
and ma, to get a combined mass function: m(C) = 0.207,
m(F) = 0.724 and m(P) = 0.069. Therefore given the two
symptoms the patient has, it is more likely that he is having
“ﬂuﬂ A

®3)

3. COMBINING MULTIPLE MATCHERS
USING DS THEORY

Based on DS theory, we propose an evidential approach to
combining multiple matchers that exploit different features
of schemas. Given a source schema and a target schema,
for every source attribute, each target attribute is one of its
candidate correspondences. An individual matcher provides
a different measure on the validity of each candidate corre-
spondence of the source attribute. Applying this measure
to all the candidate correspondences provides a source of
evidence on the validity of each candidate correspondence.
Based on this source of evidence, we can generate a mass
function that assigns a mass to every subset of the given
frame, reflecting the degree of belief that the valid corre-
spondence of the source attribute belongs to the subset. A
set of different matchers provide multiple measures and ap-
plying these measures to all the candidate correspondences
provides multiple sources of evidence on the validity of each
candidate correspondence, based on which we can generate
multiple mass functions. These mass functions can then be
combined using Dempster’s combination rule to decide on
the top k attribute correspondences of each source attribute.

3.1 Individual Matchers

We use four individual matchers, the first three matchers
are based on different linguistic features of attribute names
and the last matcher uses the data types of attributes.

We use WordNet', an ontology database, to compute se-
mantic similarity between two words. We use the traditional
edge counting approach to measure word similarity. We de-
fine semantic similarity between two words, w; and w2, as
Simse(w1,w2) = 1/L, where L is the shortest path in Word-
Net between wi and ws.

Edit distance between two strings is measured by the num-
ber of edit operations necessary to transform one string into
another [11]. We define the edit distance-based string simi-
larity between two words, wi and wa, as follows:

1
1+ ed(s1,s2)

where s; and ss are two strings in w; and wsz respectively
and ed(s1, s2) is the edit distance between s; and ss.

Jaro distance between two strings is measured by the num-
ber and order of the common characters in them. The Jaro
distance-based string similarity Sim;q (w1, w2) between two
words, wi and ws is defined as the Jaro distance Jaro(s1, s2)
[12] between two strings s1 and sz in w; and wo.

Assume that two attribute names, A; and A2, contain two
sets of words, A1 = {w1, w2, ..., wn } and As = {w], wh, ..., w;, }.
For each word, w; for i = 1,2,...m, in A;, we calculate its
similarity with every word in A2 and find the maximum sim-
ilarity value v;. We then get a similarity value set for A;p:
Simq = {v1,v2,...,vm}. Similarly, we get a similarity value
set for Ap: Sima = {v1,v3,...,v, }. We calculate similarity
between two attribute names A; and A, as follows:

D vit Y v;

m-+n

Simea(wi, w2)

(4)

Sim(Al, AQ) =

()

where m is the number of words in Ai, n is the number of
words in As.

We define that two data types are compatible if they are
the same or one subsumes another (is-a relationship). The
similarity value between two attribute names is 1, if their
data types are the same. Otherwise it is 0.

"http:/ /wordnet.princeton.edu/

3.2 Interpreting Match Results of Individual
Matchers

Assume that we have a source schema, S = {a1, az, ..., am},
where a;, for i = 1,2, ..., m, is a source attribute, and a tar-
get schema, T' = {b1, ba, ..., bn }, where b;, for j = 1,2,...,n,
is a target attribute. For each source attribute, a;, we have
a set of candidate correspondences in the target schema
{< ai,b1 >,< a;,ba >,...,< a;,b, >}. It is also possible
that a; may have no correspondence in the target schema
at all. We therefore have a frame of discernment for a;,
0 = {< ai,b1 >, < ai,ba >,...,< a;,bp >,< as,null >},
where < a;,null > represents that there is no correspon-
dence of a; in the target schema.

3.2.1 Generating Indistinguishable Subsets of
Attribute Correspondences

For some matchers we cluster © into a set of indistin-
guishable subsets. For example, if the data type of a source
attribute is compatible with the data types of two candidate
correspondences in the target schema, then the two corre-
spondences cannot be distinguished from each other. So we
cluster these indistinguishable correspondences into a sub-
set.

3.2.2 Generating Mass Distributions on
Indistinguishable Subsets

Given a matcher, for each indistinguishable subset of at-
tribute correspondences, we have a similarity value for each
correspondence in the set, which represents how well the
two attributes in the correspondence match according to
the measure used by the matcher. Suppose the subset is
{< ai,bi1 >, < ai,biz >, ..., < ai,bin, >}, a mass assigned to
the subset is calculated based on the similarity values for all
the attribute correspondences in the subset as follows:

m'(A) =1 117, (1 — Sim(as, bij)) (6)

where Sim(as, b;j) is similarity value for the correspondence
< aj,b;; > in the subset. For the special singleton subset,
{< a;,null >}, since we do not have a similarity value for it
by any matcher, the mass assigned to the subset is calculated
as follows:

m'({< as, null >}) =5, (1 — Sim(ai, bij)) (7

The mass assigned to {< a;, null >}, therefore, represents
the degree of belief that none of the target attributes is the
attribute correspondence of source attribute, a;.

We scale the mass distribution, m’, by the following for-
mula so that the sum of all masses assigned to every indis-
tinguishable subset equals to 1:

_ m'(4)
ZBg@ m/(B)
where A and B are subsets of ©.

m(A) (8)

3.3 Combining Mass Functions from Multiple
Matchers

We now have a mass function by each of the individual
matchers, which assigns a mass to every indistinguishable
subset of ©. Using Dempster’s combination rule, we can
take into account different sources of evidence witnessed by
different matchers by combining the appropriate mass func-
tions by these matchers. The mass function produced after

this is used to select the top k attribute correspondences of
each source attribute.

4. RESOLVING CONFLICTS BETWEEN
ATTRIBUTE CORRESPONDENCES

We have now the top k attribute correspondences of each
source attribute, which have been selected for an individ-
ual source attribute only. There might be conflicts between
attribute correspondences of two source attributes (ie. the
best correspondences of two different source attributes are
the same target attribute). To resolve any conflicts, the at-
tribute correspondences of source attributes are collectively
selected to maximize the sum of all the masses on the at-
tribute correspondence of every source attribute. The algo-
rithm is given in Algorithm 1.

Algorithm 1 Resolving Conflicts

Input: A set of all the possible combinations of attribute corre-
spondences for each source attribute Q = {C|C = {< a1, V| >
,< ag, by > ... < am,by, >}},where < a;, b, >€ {< a;,bi1 >
,< @, big >, ..., < ai,bjr >} (the top k correspondences of
a;)

Output: A collection of attribute correspondences with the
maximum sum of the mass values of the correspondences for
every source attribute

1: Mazx « 0; Best «— null.

2: for each Ce Q do

3 Sum = X m(< a;, b, >), where m(< a;,b; >) is the

mass function value of < a;, b} >

4: if Sum > Max then

5: Maz < Sum; Best «+ C;

6: return Best

For example, assume that the source schema has three
attributes: {Author, Publisher, Published Date}, and the
target schema has three attributes: {Author, Keywords,
Release Date}. We have the top k (k = 3) correspondences
of each source attribute as follows:

{m(< Author, Author >) = 0.88,

m(< Author,null >) = 0.11,

(< Author, Keywords >) = 0.01},

{m(< Publisher, Author >) = 0.47,
(< Publisher,null >) = 0.40,
(< Publisher, Keywords >) = 0.13},
(< Published Date, Release Date >) = 0.87,
(< Published Date,null >) = 0.13,
(

< Published Date, Author >) = 0.0}

{

3333383

Source attributes Author and Publisher both have target
attribute Author as their top correspondence and hence are
in conflict. Using Algorithm 1, we get {< Author, Author >,<
Publisher,null >,< Published Date, ReleaseDate >} that
has the maximum sum of mass values.

S. EXPERIMENTAL RESULTS

We use a set of 88 query interfaces selected from the ICQ
Query Interfaces data set at UIUC, which contains manu-
ally extracted schemas of interfaces in 5 different domains,
which involve 1:1 matching only (as we have focused on 1:1
matching in this paper). We use three performance metrics:
precision, recall, and F-measure. Precision is the percentage
of correct matches over all the matches by a matcher. Recall
is the percentage of correct matches by a matcher over all

Table 1: Precisions of individual matchers

Edit distance Jaro distance Semantic similarity Ours
Airfares 83.3% 56.8% 86.4% 92.0%
Autos 84.4% 48.1% 93.1% 96.3%
Books 87.0% 48.8% 92.0% 94.4%
Jobs 68.5% 50.0% 71.0% 91.9%
Estates 86.8% 52.9% 81.6% 93.8%
Average 82.1% 51.3% 84.8% 93.7%
asg
9B
a4
az mPrecision
mRecall
a0 —
OF-rmeasure

ag 1 —

84 |

automatic with learned with all user our matcher
matching thresholds interactions

Figure 1: Precision, recall and F-measure of differ-
ent matchers

the matches by domain experts. F-measure is the incorpo-
ration of precision and recall. In our approach, precision,
recall and F-measure turn out to be the same. First, in each
domain we perform four experiments. We use three indi-
vidual matchers: edit distance, Jaro distance and semantic
similarity (the data type matcher cannot be used alone), and
compare their results with our new approach. As shown in
Table 1, our matcher gets much higher precision than the
individual matchers.

Second, we compare our results with the work in [4], which
uses a similar data set for their experiments, covering the
same five domains as ours. However, they also handle 1:m
matching. In their experiments and a 1:m match is counted
as m 1:1 matches. They did three experiments, the first is
on automatic matching which uses a weighted strategy to
combine multiple matchers and all the thresholds for select-
ing the combined match results are set to 0. The second uses
thresholds learned by user interactions. The last also uses
user interactions for resolving uncertainties in match results.
As shown in Figure 1, without using learned thresholds, the
results of our approach are better. When the learned thresh-
olds are used, their precision is better than ours, but we have
higher recall and F-measure. Finally, when user interactions
are also used to resolve uncertainties in match results, their
results are better than ours. Our approach is effective and
accurate for automatic schema matching across query inter-
faces without automated learning and user interaction.

6. RELATED WORK

Cupid [5] exploits linguistic and structural similarity be-
tween elements and uses a weighted formula to combine
these two similarities together. However, weights have to
be manually generated and are domain dependent.

COMA [7] allows users to tailor match strategies by select-
ing a combination of match algorithms for a given problem,
including Max, Min, Average and Weighted strategies. It
also allows users to provide feedback for improving match
results. These strategies are effective in some situations
while sometimes they cannot combine results effectively, and
choosing strategies by users involves human efforts.

In [4], weight coefficients are also used to combine mul-

tiple matchers, which are set to some domain-independent
empirical values. However, clustering is used to find at-
tribute correspondences across multiple interfaces, in which
thresholds are required for merging clusters. These thresh-
olds need to be either manually set or learned from user
interactions and are domain dependent. So this approach
also involves human effort.

Some approaches [2, 3] use attribute distribution rather
than linguistic or domain information. Superior to other
schema matching approaches, these approaches can discover
synonyms by analyzing attribute distributions in the given
schemas. However, they work well only when a large training
data set is available, but this is not always the case.

7. CONCLUSIONS

We proposed a new approach to combining multiple match-
ers using DS theory and presented an algorithm for resolving
conflicts among the correspondences of different source at-
tributes. Applying different matchers to a set of candidate
correspondences provides different sources of evidence, and
mass distributions are defined on the basis of the match re-
sults from these matchers. We use Dempster’s combination
rule to combine these mass distributions, and choose the top
k correspondences of each source attribute. Conflicts be-
tween the correspondences of different source attributes are
finally resolved. We implemented a prototype and tested
it using a large data set that contains real-world query in-
terfaces in five different domains. The experimental results
demonstrate the feasibility and accuracy of our approach.

8. REFERENCES

(1] Rahm, E., Bernstein, P.A.: A survey of approaches to
automatic schema matching. VLDB Journal. 10(4) (2001),
334-350.

[2] He, B., Chang, K.C.C.: Statistical schema matching across
web query interfaces. SIGMOD’03, 217-228.

(3] He, B., Chang, K.C.C., Han, J.: Discovering complex
matchings across web query interfaces: a correlation
mining approach. KDD’04, 148-157.

[4] Wu, W., Yu, C.T., Doan, A., Meng, W.: An interactive
clustering-based approach to integrating source query
interfaces on the deep Web. SIGMOD’04, 95-106.

[5] Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema
matching with cupid. VLDB’01, 49-58.

(6] Wang, J., Wen, J.R., Lochovsky, F.H., Ma, W.Y

Instance-based schema matching for web databases by

domain-specific query probing. VLDB’04, 408-419.

Do, H.H., Rahm, E.: Coma - a system for flexible

combination of schema matching approaches. VLDB’02,

610-621.

Doan, A., Domingos, P., Halevy, A.Y.: Reconciling

schemas of disparate data sources: A machine-learning

approach. SIGMOD’01, 509-520.

Lowrance, J.D., Garvey, T.D.: Evidential reasoning: An

developing concept. ICCS’81, 6-9.

[10] Shafer, G.: A Mathematical Theory of Evidence. Princeton

University Press.(1976)
[11] Hall, P., Dowling, G.: Approximate string matching.
Computing Surveys. (1980) 381-402.

7

8

9

[12] Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of

string distance metrics for name-matching tasks. IIWeb’03, 73—
78.

