A Generalization of the Winkler Extension and its
Application for Ontology Mapping

Maurice Hermans Frederik C. Schadd
Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Abstract

Mapping ontologies is a crucial process when facilitating system interoperability and information ex-
change. Ontology Mapping systems commonly utilize string metrics in the mapping process to compare
concept names. String metrics can be extended using the Winkler method, which increases the similarity
value of two strings if these have a common prefix. A common occurrence for two corresponding ontology
concepts is that the name of the first concept is a non-prefix sub-string of the name of the second concept.
The Winkler extension does not allocate a higher similarity value to these pairs of strings, however intu-
itively this indicates that the two names have a similar meaning. This paper proposes a generalization of
the Winkler extension, such that pairs of names with large common non-prefix sub-strings receive a higher
similarity value as well. The proposed metric is evaluated on a record-matching dataset and a dataset from
the Ontology Alignment Evaluation Initiative. The experiments reveal that metrics applying our proposed
generalization outperform the same metrics when applying the Winkler extension.

1 Introduction

Ontologies commonly form the basis of modern knowledge systems. These ontologies are created by do-
main experts to suit the needs of the specific knowledge system. Hence, it is likely that two ontologies
describing the same domain, but originating from different knowledge systems, will contain differences
such as heterogeneous concept names, structure or granularity. Facilitating information exchange between
knowledge systems which are based on heterogeneous ontologies is a challenging, but crucial task. In order
to exchange information between two ontologies, a mapping is required which identifies the correspon-
dences between the ontology concepts. The task of matching is a critical operation in many fields, such as
semantic web, schema/ontology integration, data warehouses, e-commerce etc. While contemporary knowl-
edge systems are commonly based on ontologies, the problem of mapping conceptualizations of knowledge
domains originates from the field of databases, which utilize schemas to encode meta data.

The task of matching takes as input two ontologies, each consisting of a set of concepts and determines
as output the relationship. There are multiple relationships possible e.g. equivalence, subsumption but in
this article we only deal with equivalence. To match two concepts there are numerous characteristics to
consider which, when all added together, will determine whether they match or not. One such characteristic
is the name of a concept which is exploited by string-based approaches. The task of matching entity names
has been explored by a number of communities, including statistics, databases, and artificial intelligence. A
matching system uses several similarity measures which exploit different ontology characteristics in order
to produce an alignment between ontologies. One of these characteristics are the names of the concepts in
an ontology, which are exploited with syntactic similarities, more specifically string similarities, which are
the focus of this paper. This paper will also make an extension to already existing techniques by taking into
account the longest common substring when comparing two strings. All techniques discussed in this paper
will be evaluated using the datasets by Cohen et al. [1] and the conference dataset originating from the 2010
Ontology Alignment Evaluation Initiative (OAEI) [4].

The rest of this paper is structured as follows. Section 2 will provide the reader with the necessary back-
ground information of this domain. Section 3 will detail the proposed extension of contemporary methods
in this field. In section 4 the experiments performed with the results obtained will be presented. Section
5 will discuss the results obtained in chapter 4 and also propose future research. Section 6 will report the
conclusions of the research performed.



2 Background information

2.1 Schemas and ontologies

The use of schemas originates from the field of databases, they are used to encode meta data, which is
very useful to retrieve relevant data from a database. Later ontologies were developed which add more
expressive ways to encode the meta data. Both methods are widely used in knowledge systems. There are
some important differences and commonalities between schemas and ontologies as described by Shvaiko et
al. [13], of which the keypoints are:

1. Database schemas often do not provide explicit semantics for their data. Semantics is usually specified
explicitly at design-time, and frequently is not becoming a part of a database specification, therefore
it is not available [11]. Ontologies are logical systems that themselves obey some formal semantics,
e.g., we can interpret ontology definitions as a set of logical axioms.

2. Ontologies and schemas are similar in the sense that (i) they both provide a vocabulary of terms that
describes a domain of interest and (ii) they both constrain the meaning of terms used in the vocabulary
[6, 15].

3. Schemas and ontologies are found in such environments as the Semantic Web, and quite often in
practice, it is the case that we need to match them.

Ontology mapping frameworks provide knowledge systems with the capacity to exchange information with
other knowledge systems which use different ontologies. But before a framework can map ontologies, the
system needs to ensure the interoperability of representations through transformations. There are several
levels at which interoperability can be accounted for as described by Euzenat et al. [3].

1. Encoding: being able to segment the representation in characters.

2. Lexical: being able to segment the representation in words (or symbols).

3. Syntactic: being able to structure the representation in structured sentences (or formulas or assertions).
4. Semantic: being able to construct the propositional meaning of the representation.

5. Semiotic: being able to construct the pragmatic meaning of the representation (or its meaning in
context).

2.2 Matching techniques categorization

Ontology mapping frameworks exploit multiple ontology characteristics during the matching process [13].
Matching techniques can compare two ontology concepts by utilizing information which describe the con-
cepts themselves, or by investigating other related concepts, thus also exploiting the structure of an ontology.
Techniques which utilize the structure of the ontology can be categorized as follows:

1. Graph-based techniques are graph algorithms which consider the input as labelled graphs. The consid-
ered ontologies are viewed as graph like structures containing terms and their inter-relationships. The
comparison of a pair of nodes within the graph is usually based on their position within the graphs.
The intuition behind is that, if two nodes are similar their adjacent nodes might also be similar.

2. Taxonomy-based techniques are also graph algorithms which consider only the specialization relation.
The intuition behind this is that is-a links connect already similar terms, therefore their neighbouring
nodes may also be somehow similar.

3. Repository of structures stores schemas/ontologies and their fragments together with pairwise simi-
larities between them. When new structures are to be matched, they are first checked for similarity to
the structures which are already available in the repository. The goal is to identify structures which
are sufficiently similar to be worth matching in more detail, or reusing already existing alignments.

4. Model-based algorithms handle the input based on its semantic interpretation (e.g., model-theoretic
semantics). Thus, they are well grounded deductive methods.



Matching techniques which do not use the structure of the ontologies can use different types of information
about the concepts themselves. The techniques which use these different types of information can be divided
into several categories:

1. String-based techniques are often used in order to match names and name descriptions of schema/ontology
concepts. These techniques consider strings as sequences of letters in an alphabet. They are typically
based on the following intuition: two concepts can be similar if their names are similar. Section 2.3
will go into further details about the string matching techniques.

2. Language-based techniques consider names as words in a natural language. They are based on Natural
Language Processing techniques exploiting morphological properties of the input words.

3. Constraint-based techniques are algorithms which deal with the internal constraints being applied to
the definitions of entities, such as types, cardinality of attributes, and keys.

4. Linguistic resources such as common knowledge or domain specific thesauri are used in order to
match words based on linguistic relations between them (e.g., synonyms, hyponyms) [12]. In this
case names of schema/ontology entities are considered as words of a natural language.

5. Alignment reuse techniques represent an alternative way of exploiting external resources, which con-
tain in this case alignments of previously matched schemas/ontologies.

6. Upper level formal ontologies can be also used as external sources of common knowledge. The
key characteristic of these ontologies is that they are logic-based systems, and therefore, matching
techniques exploiting them can be based on the analysis of interpretations.

The listed techniques all have strengths and weaknesses with regard to the different heterogeneities which
can exist between two ontology concepts. For instance a technique which uses linguistic resources can
easily detect synonymous concepts but will be unable to handle concepts whose names contain spelling
errors. Thus a combination of different techniques will be required to cope with all types of heterogeneities.

2.3 String similarities

The focus of this paper lies on the use of string similarities when applied to ontology mapping. Typically,
these are applied to the names of concepts in order to produce a similarity matrix of correspondences. These
can then be combined with similarity matrices stemming from difference measures, such that a alignment
can be extracted.

String distance functions map a pair of strings s and ¢ to a real number r where smaller values indicate a
higher similarity between s and ¢. Similarity functions are analogues except that higher values of r indicate
a higher similarity. To avoid confusion to the reader the value r is the one defined by similarity functions.
The algorithms used to determine string similarities can be split up in multiple categories depending on their
underlying logic to compare strings. First there are algorithms which look at the number of edit operations
needed to transform one string into another for example the Levenshtein similarity [10]. Then there are
algorithms which look at the number of matching characters in both strings for example the Jaro similarity
[8]. Commonly, the Winkler extension [16], which increases the similarity of pairs of strings that have a
common prefix, is applied to the Jaro similarity. Another category of algorithms are token based, strings
are split up into tokens, like the Jaccard similarity [7]. There are also algorithms which combine multiple
similarities to assign scores to pairs of strings, these are called hybrid similarity functions.

2.3.1 Levenshtein

One important subclass of distance functions are Edit-distance functions, which use the number of edit
operations required to convert string s to string ¢t. The most considered operations are character insertion,
deletion, and substitution. Each of these operations will have a cost assigned to them. The costs assigned
to an operation can be static or trained. We will consider the Levenshtein distance [10] which assigns a unit
cost to each of the edit operations. Given strings s and ¢, the cost of an operation c;, where i identifies the
type of performed operation, and the quantity x; which indicates how often an operation of type ¢ needs to be



performed to convert s into ¢, the Levenshtein distance, which utilizes the three above mentioned operation,
can be computed as follows:

Levenshtein(s, t) ZCZ xT; €))]

2.3.2 Jaro

The Jaro algorithm [8] is not based on edit operations but determines its similarity by looking at the number
of matching characters between two strings and their relative position. Given two strings s = a1, as...ax
and £ = by, by...by, define a character a; in s to be common with ¢ when there is a b; = a; in ¢ such that
1— H < j<i+ H,where H= % Let s’ = af, ab...a’x, be the characters in s which are common
with ¢ (in the same order they appear in s) and let t' = b}, b5...b", be analogous; now define a transposition
for s', ' to be a position 7 such that a} # b}. Let Ty ;+ be half the number of transpositions for s” and ¢’. The
Jaro similarity is defined as:
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2.3.3 Jaro-Winkler

A very well known extension to the Jaro algorithm is the Winkler extension [16]. This extension uses the
length of the of the longest common prefix of s and ¢ to assign more favourable ratings to pairs of strings
which contain identical prefixes. This extension can be used in combination with any similarity but it is
most commonly applied to the Jaro similarity. Let P be the length of longest common prefix, then define
P’ = max(P, 4) then the Jaro-Winkler similarity is defined as:

Jaro-Winkler(s,t) =
P’ 3)

Jaro(s,t) + 0 (1= Jaro(s,t))

2.3.4 Jaccard

This algorithm is a token-based distance measure, which can be applied to strings which have been prepro-
cessed into tokens, called tokenization. Tokenization is the process of demarcating and possibly classifying
sections of a string of input characters. The strings to be compared are considered to be multisets of words
(or tokens). The Jaccard similarity [7] between two word sets .S and T" which is defined as:

|SNT|

Jaccard(S,T) = SUT|
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2.3.5 SoftTFIDF

Some background information is required in order to fully detail the SoftTFIDF similarity. The TFIDF [9]
weighting scheme for document vectors, to which the cosine similarity is commonly applied, is a measure
that is widely used in the information retrieval community for document retrieval. This measure depends,
like the Jaccard similarity, on common elements between the two sets of tokens, but here the elements are
weighted. The weights assigned to tokens w are larger when those tokens are rare in the collection of strings
from which s and ¢ are drawn. The similarity can then be defined as:

TFIDF(S.T)= Y V(w,8) V(w,T)

weSNT

where V' (w, S) is defined as the TF-IDF weight of the token w in the token vector of .S and the function
V(w,S) =V'(w,S)/Y>,, V'(w,S)) is defined as the TF-IDF weight of token w related by the mag-
nitude of the token vector of .S. The SoftTFIDF algorithm, proposed by Cohen et al.[2], extends the notion
of S N T such that it includes tokens which are similar according to a secondary similarity function. Since
it utilizes a secondary similarity function denoted as sim’ the SoftTFIDF can be categorized as a hybrid
similarity function. Let CLOSE(6, S, T') be the set of words w € S such that there is some v € T' such



that dist’'(w,v) > 6, and for w € CLOSE(9,S,T) and let D(w,T) = max,ecr dist’'(w,v). Then the
SoftTFIDF similarity is defined as:

SoftTFIDF(S,T) =

> V(w,S) - V(w,T) - D(w,T) ©)
weCLOSE(6,8,T)

3 Proposed extension

The proposed extension is mainly focused on ontology mapping but will also be benchmarked on other
datasets containing real world data. This extension came to mind when studying the datasets in the field
of ontologies, since concepts defined there are very likely to have high similarity because of the intuition
when naming the concepts. To clarify this see the figure below, which is a small part of two ontologies in
the OAEI dataset.

Conference Conference_volume

Document Conference_document

PaperAbstract Conference_contribution

Abstract

Figure 1: Two partial ontologies from the OAEI-conference dataset

These two example ontologies are part of the matching task using the OAEI dataset. A human inspecting
these two example ontologies would quickly realize that the Conference and Conference_volume denote the
same meaning as well as the Document concept is the same as the Conference_document concept. Like-
wise, the concepts PaperAbstract and Abstract also denote the same meaning. The Winkler extension to
an algorithm only takes into account prefixes when comparing two strings, thus the corresponding concepts
PaperAbstract-Abstract and Document-Conference_document do not receive an increase of their similarity
value when applying this extension. Intuitively, given that these pairs of names share a substring of con-
siderable size, in this example at the suffix position, one would want allocate these pairs a higher similarity
value opposed to their edit-distance based similarity. Hence, an extension is desired which also increases
the similarity of strings if these share a non-prefix substring.

The extension researched in this paper utilizes the measure of the longest common substring between
two strings, referred to as the LCS-Extension (Longest Common Substring). On its own this measure can
be utilized as a string similarity as well, as evidenced by the reasearch of Stoilos et al. [14] performed on
a benchmark dataset, making it a suitable candidate for combination with an edit distance. Whereas the
Winkler extension is limited to the length of a common substring that is also a prefix of both strings, the
proposed extension utilizes the length of the longest common substring regardless of its position in any of
the two input strings. Let sim denote the similarity used as basis for the extension, LC'S(s, t) be the length
of the longest common substring of s and ¢ and S a scaling factor such that 0 < S < 1, the proposed LCS
extension can then be defined as follows:

LCS(s,t)

LCS-Extension(s,t) = sim(s,t) + (s, 1)

-8 (1= sim(s,t)) (6)

The Winkler extension utilizes the length of the common prefix up to the length of 4 characters for
the similarity adjustment. However, intuitively one could argue that the longer a common substring of two
arbitrary strings is, the more likely it is that the meanings of these two strings correspond with each other.
Hence, the proposed extension does not impose a limit on the computed substring length, but contrasts this
length with the longest possible substring length, being the total length of the smaller of the two input strings.
The proposed extension will be evaluated using different similarities as a basis.



4 Experiments

To compare the proposed extension with the other algorithms discussed in section 2.3, two datasets are
used. The first dataset, stemming from the OAEI 2010 competition [4], contains a series of matching tasks
between ontologies describing the conference domain, where the string metrics are applied to the names
of the ontology concepts. The second dataset is a record-matching dataset, stemming from the research by
Cohen et al. [2]. It contains a series of record matching tasks describing various domain, such as the names
of animals and businesses.

4.1 Blocking method

When evaluating a similarity measure it is preferred to compute all pairwise similarities between two on-
tologies. This can result in large lists which are not computationally feasible. It is desired to pre-process the
data, using so called blocking methods. For this research the same blocking method has been applied as in
the evaluation by Cohen et al. [2] An example illustrating the intuition behind blocking; in statistical record
linkage, it is common to group records by some variable which is known a priori to be usually the same for
matching pairs. For example when matching records containing address information it is common to only
consider pairs which have the same zip code.

The data used in this paper does not contain individuals for each concept, so there is little prior infor-
mation available for pre-processing purposes. However the data is already partitioned into two mutually
exclusive lists which reduces the number of pairs to be considered. To block this data, knowledge-free
approaches are needed to reduce the number of considered pairs. The blocking task of two sets A and B
selects all pairs of strings (s,¢) € A x B such that s and ¢ share some substring v which appears in at most
a fraction f of all names. This method is called the token blocker. Another method for blocking the data
is using n-grams to only consider strings which share an n-gram. For the moderate-size test sets considered
here, we used f = 1. On the datasets which have been used in this research, the token blocker finds between
93.3% and 100.00% of the correct pairs for the different matching tasks, with an average of 98.9%.

4.2 Evaluation

The algorithms will all be evaluated using precision and recall values. These values are defined, in terms of
true positives, false positives and false negatives of a retrieved list with regard to a reference list, as follows:

tp ) Recall = —P (8)

tp+ fp tp+ fn

Precision and recall are set-based measures, stemming from the field of information retrieval [5]. These
evaluate the quality of an unordered set of retrieved ontology concepts according to their correctness and
completeness. The investigated metrics will be evaluated using interpolated precision values at recall levels
of 0.0, 0.1, ..., 0.9, 1.0, which are obtained by analysing the ranked list of retrieved correspondences. The
rule to obtain the precision value at recall level 7 is to use the maximum precision obtained from the concept
for any actual recall level greater than or equal to 7. Note that the non-interpolated precision is not defined
for recall values of 0, as opposed to the interpolated precision at recall level 7 = 0.

Before any of the similarities are evaluated on the datasets, these are blocked using the token blocker. All
pairwise combinations of concepts are evaluated using the blocking method, after which the tested metrics
are applied on the remaining pairs of concept names. The interpolated precision values for each mapping
task are combined using the average interpolated precision.

Precision =

4.3 Comparison with the Winkler extension

This experiment will compare the Winkler extension with the proposed LCS extension. This will show
whether the intuition behind the proposed extension leads to a better performance than the more specific
Winkler extension. Preliminary experiments revealed that a scaling factor of S = 0.8 produced the highest
performance for the LCS extension, with significant sub-par performances only observable at low values of
S and S = 1 The extensions were compared using both the Jaro and Levenshtein metric as base similarity.
The first comparison, seen in Figure 2, has been performed on the conference dataset. In the recall
interval from 0 to 0.4 there is a minimal difference in the performance of the tested metrics, neither showing
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Figure 2: Comparison of the Winkler extension against the LCS extension when applied to two different
base similarities on the Conference dataset (left) and Cohen dataset (right).

an advantage. The recall interval of 0.4 and 0.6 displays more pronounced differences, of which the most
notable is that the Jaro-LCS metric performed slightly worse than the remaining metrics.

From a recall values of 0.6 and higher it appears that the proposed extension displays a superior perfor-
mance with regard to the Winkler extension applied to the same base similarity.

When comparing the metrics on the Cohen data set, see Figure 2, the proposed LCS extension outper-
forms both Winkler extension based metrics by a substantial percentage. The Levenshtein-Winkler metric
performs worse at a recall of 0.1 whereas the Jaro-Winkler performs almost similar up until a recall of 0.2.
At the remaining recall values the LCS extension outperforms the Winkler extension by a significant margin,
peaking at recall values of 0.8 and 0.9 with an increase of precision of at least 0.1.

4.4 Comparison with other measures

In this experiment, the best performing configuration of our proposed extension is compared to other estab-
lished methods from this field. The LCS extension will be applied to the Levenshtein similarity, due to its
superior performance as seen in sub-section 4.3.

The performed evaluation on the conference data set, see figure 3, reveals that the token based Jaccard
similarity displays the worst performance of the tested metrics. The hybrid SoftTFIDF metric is performing
slightly worse than the edit based distances on lower recall values, but displays a superior performance on
higher recall values. The edit-based distances all display a similar performance curve, with some of them
performing strictly better, of which the Levenshtein-LCS performs best considering all the recall values.

The comparison shown in figure 3 is obtained by comparing all the algorithms on the Cohen dataset.
It is evident that on this data set token-based distance functions outperform the majority of the edit-based
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Figure 3: Comparison of all tested similarity measures on the Conference dataset (left) and Cohen dataset
(right)
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distance functions, especially at lower recall values. Since the SoftTFIDF combines a token-based approach
with an edit-distance based approach, by using an edit-distance metric as secondary distance function, it
outperforms all tested metrics by a significant margin. The Jaccard similarity outperforms all tested edit-
distance based metrics for recall values up to 0.3. However, for recall values of 0.3 and higher, the proposed
extension applied to the Levenshtein metric significantly outperforms the tested edit-distance based metrics
as well as the Jaccard metric.

5 Conclusion

In this paper, we proposed a generalization of the Winkler extension using the measure of the longest com-
mon sub-string. We used the Jaro and Levenshtein similarity as base in order to compare our generalization
with the Winkler extension. The experiments show that our extension outperforms the Winkler extension
for either base similarity on both datasets, the differences being more pronounced when evaluating the
record-matching dataset. Contrasting the proposed extension with contemporary metrics revealed that it
outperforms all tested metrics, except for the hybrid SoftTFIDF metric.

The proposed extension has been applied to edit-distance based functions in the performed experiments.
Future research could investigate the potential improvements of the extension when being incorporated into
a hybrid distance function. Also, it is possible that a performance gain can be achieved by analysing the
input strings for stop-words, such that concept names for which the common substring is a stop word do not
receive an increased similarity value.
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