Holistic Schema Matching for Web Query Interface

Weifeng Sd, Jiying Wand, and Frederick LochovsRy

1 Hong Kong University of Science & Technology, Hong Kong
{weifeng,fred }@cs.ust.hk
2 City University, Hong Kong
wangjy@cityu.edu.hk

Abstract. One significant part of today’s Web is Web databases, which can dy-
namically provide information in response to user queries. To help users submit
queries to and collect query results from different Web databases, the query inter-
face matching problem needs to be addressed. To solve this problem, we propose
a new complex schema matching approach, Holistic Schema Matching (HSM).
By examining the query interfaces of real Web databases, we observe that at-
tribute matchings can be discovered from attribute-occurrence patterns. For ex-
ample,First Name often appears together wittast Name while it is rarely
co-present withAuthor in the Books domain. Thus, we design a count-based
greedy algorithm to identify which attributes are more likely to be matched in
the query interfaces. In particular, HSM can identify bstinple matchingand
complex matchingwhere the former refers to 1:1 matching between attributes
and the latter refers to 1:n or m:n matching between attributes. Our experiments
show that HSM can discover both simple and complex matchings accurately and
efficiently on real data sets.

1 INTRODUCTION

Today, more and more databases that dynamically generate Web pages in response to
user queries are available on the Web. These Web databases compdseph#eb

which is estimated to contain a much larger amount of high quality information and

to have a faster growth than the static Web [1, 3]. Moreover, data in the deep Web are
usually structured, which make them much easier to query using database techniques
compared to the unstructured data in the static Web.

While each static Web page has a unique URL by which a user can access the page,
mostWeb databaseare only accessible through a query interface. Once a user submits a
query describing the information that he/she is interested in through the query interface,
the Web server will retrieve the corresponding results from the back-end database and
return them to the user.

To build a system/tool that helps users locate information in numerous Web databases,
the very first task is to understand the query interfaces and help dispatch user queries
to suitable fields of those interfaces. The main challenge of such a task is that different
databases may use different fields or terms to represent the same concept. For example,
to describe the genre of a CD in the MusicRecords don@ategory is used in some
databases whilStyle is used in other databases. In the Books dontédist Name and
Last Name are used in some databases wilghor is used in others to denote the
writer of a book.

In this paper, we specifically focus on the problem of matching across query inter-
faces of structured Web databases. The query interface matching problem is related to
a classic problem in the database literatsdema matchingf we define an entry or
field in a query interface as aattribute and all attributes in the query interface form
a schemaof the interfacé. Schema matching maps semantically related attributes be-
tween pairs of schemas in the same domain. When matching the attributes, we calla 1:1
matching, such a€ategory with Style, asimple matchingnd a 1:n or m:n matching,
such agrirst Name, Last Name with Author, acomplex matchingn the latter case,
attributesFirst Name andLast Name form a concept group before they are matched
to attributeAuthor. We call attributes that are in the same concept gigropping at-
tributesand attributes that are semantically identical or similar to each sthenym
attributes For example, attributdsirst Name andLast Name are grouping attributes,
andFirst Name with Author or Last Name with Author are synonym attributes.

Discovering grouping attributes and synonym attributes in the query interfaces of
relevant Web databases is an indispensable step to dispatch user queries to various Web
databases and integrate their results. Considering that millions of databases are available
on the Web [3], computer-aided interface schema matching is definitely necessary to
avoid tedious and expensive human labor.

Although many solutions have been proposed to solve the schema matching prob-
lem, current solutions still suffer from the following limitations:

1. simple matchingmost schema matching methods to date only focus on discovering
simple matchings between schemas [2, 6, 9, 16].

2. low accuracy on complex matchirgjthough there are some methods that can iden-
tify complex matchings, their accuracy is practically unsatisfactory [5, 12].

3. time consumingsome methods employ machine-learning techniques that need a
lot of training time and some have time complexity exponential to the number of
attributes [8, 10].

4. domain knowledge requiredome methods require domain knowledge, instance
data or user interactions before or during the matching process [2, 5, 8,14, 16, 17].

In this paper, we propose a new interface schema matching appidatistic
SchemaMatching (HSM), to find matching attributes across a set of Web database
schemas of the same domain. HSM takes advantage of the term occurrence pattern
within a domain and can discover both simple and complex matchings efficiently with-
out any domain knowledge.

The rest of the paper is organized as follows. Section 2 reviews related work and
compares our approach to previous approaches. In section 3, we introduce our obser-
vations on Web database query interfaces and give an example that motivates our ap-
proach. Section 4, the main section of the paper, presents the holistic schema matching
approach HSM. Our experiments on two datasets and the results are reported in section
5. Section 6 concludes the paper and discusses several further open research issues.

2 RELATED WORK

Being an important step for data integration, schema matching has attracted much atten-
tion [2,5-10, 12, 14, 16, 17]. However, most previous work either focuses on discover-

3 The terms “schema” and “interface” will be used in this paper interchangeably.

ing simple matchings only or has un-satisfactory performance on discovering complex
matchings. This is because complex matching discovery is fundamentally harder than
simple matching discovery. While the number of simple matching candidates between
two schemas is bounded by the product of the sizes of the two schemas, the number of
complex matching candidates is exponential with respect to the size of the two schemas.

As a result, the performance of some existing complex matching discovery algo-
rithms is not satisfactory. [5] tries to convert the problem of matching discovery into the
problem ofsearchingin the space of possible matches. [12] views the input schemas
as graphs and designs a matching algorithm based on a fixpoint computation using the
fact that two nodes are similar when their adjacent nodes are similar. Both approaches
can handle simple matchings well (average accuracy around 78% in [5] and 58% in
[12]), but their accuracy drops dramatically for complex matchings (around 55% in [5]
and negative accuracy in [12]). [17] out performs [5, 12] by utilizing different kinds of
information, such as linguistic similarity, type similarity and domain similarity between
attributes. However, it also needs user interaction during the matching process to tune
system parameters.

Different from most existing approaches, [2] and [16] are notable in that they focus
on exploiting instance-level information, such as instance-value overlapping, instead
of employing schema-level information, like attribute label/name or schema structures.
However, these two approaches can only handle simple matchings. In addition, data
instances are very hard to obtain in the Web database environment.

[14, 10] are similar approaches in that they manage to combine multiple algorithms
and reuse their matching results. [14] proposes several domain-independent combina-
tion methods, such asaxandaverage and [10] employs a weighted sum and adapts
machine learning techniques to learn the importance of each individual component for
a particular domain. Although the approach in [10] is able to learn domain-specific
knowledge and statistics, it requires a lot of human efforts to manually identify correct
matchings as training data.

In contrast to the above works, our approach is capable of discovering simple and
complex matchings at the same time without using any domain knowledge, data in-
stances or user involvement. The HSM approach proposed in this paper can be con-
sidered as a singlmatcherthat only focuses on exploiting domain-specific attribute
occurrence statistics. HSM is specifically designed, and is thus more suitable, for the
hidden Web environment where there are a large number of online interfaces to match
whose attributes are usually informative in order to be understood by ordinary users.
Compared with the above works, HSM is not suitable for a traditional database envi-
ronment, where there are often only two schemas involved in the matching process and
the attribute names could be very non-informative, suchta$ andattr2, depending
on the database designers.

Our HSM approach is very close to DCM developed in [7], which discovers com-
plex matchings holistically using data mining techniques. In fact, HSM and DCM are
based on similar observations that frequent attribute co-presence indicates a synonym
relationship and rare attribute co-presence indicates a grouping relationship. However,
HSM has two major differences (advantages) compared to DCM:

1. measurementDCM defines a H-measuré] = % to measure the negative
correlation between two attributes by which synonym attributes are discovered.

Such a measure may give a high score for rare attributes, while HSM’s matching

score measure does not have this problem. Suppose there are 50 input schemas,
where 25 schemas afel;, A3}, 24 schemas argA;, A4} and the remaining one
is {41, A, A4}. In these schemasl; and A4 are actual synonym attributes ap-
pearing a similar number of times anf is a rare and “noisy” attribute that only
appears once. According to the negative measure of DCM, the matching score
Hos = 1222 = 1, and the matching scoigs, = 22X22 also 1. In contrast, HSM
measures the matching scores’ag = 0.96 and X34 = 12.5 (see section 4.1). In
this extreme case, DCM cannot differentiate frequent attributes from rare attributes,
which affects its performance.

2. matching discovery algorithmThe time complexity of HSM’s matching discov-
ery algorithm is polynomial with respect to the number of attributesyhile the
time complexity of DCM is exponential with respecttoDCM tries to first iden-
tify all possible groups and then discover the matchings between them. To discover
grouping attributes, it calculates the positive correlation between all combinations
of groups, from size 2 to size (the worst case). In contrast, HSM only considers
the grouping score between every two attributes, and the complex matching is dis-
covered by adding each newly found group member into the corresponding group
incrementally. Consequently, HSM discovers the matchings much faster than DCM
does.

Our experimental results in section 5.2 show that HSM not only has a higher accuracy
than DCM, but is also much more efficient in real Web databases.

3 INTUITION: PARALLEL SCHEMAS

In this section, we first present our observations about interface schemas and interface
attributes of Web databases in a domain, on which the HSM approach is based. Then,
examples are given to motivate the intuition of HSM.

3.1 Observations

In Web databases, query interfaces are not designed arbitrarily. Web database designers
try to design the interfaces to be easily understandable and usable for querying impor-
tant attributes of the back-end databases. For Web databases in the same domain that
are about a specific kind of product or a specific topic, their query interfaces usually
share many characteristics:

1. Terms describing or labeling attributes are usually unambiguous in a domain al-
though they may have more than one meaning in an ordinary, comprehensive dic-
tionary. For example, the wottitle has ten meanings as a noun and two meanings
as a verb in WordNet [13]. However it always stands for “the name of a book” when
it appears in query interfaces of the Books domain. In particular, because we are
dealing with query interfaces, an ambiguous term is usually accompanied by other
words to make it unambiguous.

2. According to [8], vocabulary of interfaces in the same domain tends to converge at
a relatively small size. It indicates that the same concepts in a domain are usually
described by the same set of terms.

3. Synonym attributes are rarely co-present in the same interface. For exdmple,
thor andLast Name never appeared together in any query interface that we inves-
tigate in the Books domain.

4. Grouping attributes are usually co-present in the same interface to form a “larger”
concept. For example, in the Airfares domdtngm is usually paired withlo to
form a concept, which is the same as the concept formed by another frequently
co-present attribute paiDeparture city andArrival city. This phenomenon is rec-
ognized a%ollocationin natural language [11] and is very common in daily life.

Author: |
Title: |
KEYWDI‘d' Last Name:

First Name:

(a) AddAll.com Author: | .
Title: | | b i
Last Mame First Name (Optional) Subject: T 1 18BN |
Title: ISBN: | KehionE)|
Eeyword Publisher: | Category: |—All- e
(b) hwg.org (c) Amazon.com (d) Randomhouse.com

Fig. 1. Examples of query interfaces.

3.2 Motivating Examples

We use the query interfaces shown in Figure 1 to illustrate the main idea of HSM. Let
us first consider the schemas in Figure 1(a) and 1(b). The two schemas are semantically
equat, i.e., any single attribute or set of grouping attributes in one of them semantically
corresponds to a single attribute or set of grouping attributes in the other. If we com-
pare the two schemas by putting them in parallel and deleting the attributes that appear
in both of them (according to observation 1), we get the matching correspondence be-
tween the grouping attributd$irst Name, Last Name} and the attributéuthor.

Definition 1 Given two schemas$; and Ss, each of which are comprised of a set of
attributes, the two schemas fornmparallel schema(, which comprises two attribute
SetS{{Sl - 51 ﬂSQ} and{Sg -5 mSQ}}

Amazon.conjRandomHouse.con
AddAll.com| hwg.org Author First Name
Author [First Name Subject Last Name
Last Name Publisher Keyword
(@) Category

(b)
Table 1. Examples of parallel schemas.

Table 1(a) shows the parallel schema formed by the schemas in Figure 1(a) and
1(b). The complex matchingFirst Name, Last Name}={Author} is directly avail-
able from this parallel schema. However, in most cases, matching is not so easy because

4 We ignore the word “(Optional)” that appears in Figure 1(b) because it will be discarded during
query interface preprocessing [7].

two target schemas may not be semantically equal, such as the schemas in Figure 1(c)
and 1(d). After putting these two schemas in parallel and deleting common attributes,
the parallel schema in Table 1(b) is obtained. Unfortunately, correct matchings are not
directly available from this parallel schema.

To address this problem, we consider any two attributes cross-copresent in a parallel
schema to be potential synonym attributes. For exarptaor with First Name and
Author with Last Name in Table1(b) are potential synonym attributes. As a result, if
two attributes are potential synonym attributes appearing in many parallel schemas, we
may be statistically confident to find the synonym relationship between them (observa-
tion 3).

Furthermore, we also notice thHaitst Name andLast Name are always co-present
in the same query interface, which indicates that they are very likely to be grouping
attributes that form a concept group (observation 4). Suppose we also kndtuthat
with First Name andAuthor with Last Name are synonym attributes. We can compose
an attribute group byrirst Name and Last Name, with both of the two members
matched toAuthor. That is,{First Name, Last Name}={Author} is discovered as a
complex matching.

4 HOLISTIC SCHEMA MATCHING ALGORITHM

We formalize the schema matching problem as the same problem described in [7]. The
input is a set of schemas = {Si,..., S}, in which each schem&; (1 < i < u)
contains a set of attributes extracted from a query interface and the set of attdbutes
U, S; = {A41,...,A,} includes all attributes i5. We assume that these schemas
come from the same domain. The schema matching problem is to find all matchings
M = {M, ..., M,} including both simple and complex matchings. A matchidg
(1 <j<wv)isrepresented 85,1 = Gjo = ... = Gj,, WhereG;;, (1 <k <w)isa
group of attribute3andG ;, is a subset of4, i.e., G, C .A. Each matching/; should
represent the semantic synonym relationship between two attribute gigup®IdG ;;
(I # k), and each grougr;; should represent the grouping relationship between the
attributes within it. More specifically, we restrict each attribute to appear no more than
one time inM (observation 1 and 4).

A matching example i§First Name, Last Name} = {Author} in the Books do-
main, where attributeBirst Name and Last Name form an attribute group and at-
tribute Author forms another group and the two groups are semantically synonymous.
Besides this matching, suppose another matckifghor} = {Writer} is found. Ac-
cording to our restriction, we will not directly include the latter matching in the match-
ing setM. Instead, we may adjust the original matchind Farst Name, Last Name}
= {Author} = {Writer} or {First Name, Last Name, Writer} = {Author}, depending
on whether the relationship found betwe&fiter and{First Name, Last Name} is a
grouping or a synonym relationship.

The workflow of the schema matching algorithm is shown in Figure 2. Before the
schema matching discovery, two scom@stching scor@ndgrouping scoreare calcu-
lated between every two attributes. The matching score is used to evaluate the possibility
that two attributes are synonym attributes and the grouping score is used to evaluate the
possibility that two attributes are in the same group in a matching.

5 An attribute group can have just one attribute.

i Synonym Attribute
Candidate Generation

Candidates|

Synonym i
Matching Score i

Matching
Schemas—1—— Calculation Scores
Grouping Score Grouping Schema Matching Complex
Calculation Scores Discovery Matching

Fig. 2. Holistic Schema Matching Workflow.

The matching score is calculated in two steps. F8ghonym Attribute Candidate
Generationtakes all schemas as input and generates all candidates for synonym at-
tributes based on the observation that synonym attributes rarely co-occur in the same
interface schema. TheMatching Score Calculatioralculates matching scores be-
tween the candidates based on their cross-copresence count (see section 4.1) in the
parallel schemas.

Grouping Score Calculatiotakes all schemas as input and calculates the grouping
score between every two attributes based on the observation that grouping attributes
frequently co-occur in the same schema.

After calculating the grouping and matching score between every two attributes,
we use a greedy algorithm Bchema Matching Discovethat iteratively chooses the
highest matching score to discover synonym matchings between pairs of attributes. At
the same time, the grouping score is used to decide whether two attributes that match to
the same set of other attributes belong to the same group. At the end, a matching list is
outputted, including both simple and complex matchings. The overall time complexity
of HSM is O (un? +n?) wheren is the number of attributes ands the number of input
schemas. We will explain the time complexity of HSM in detail later in this section.

The rest of this section is organized according to the workflow shown in Figure
2. Subsection 4.1 presents how to calculate the matching score between every two at-
tributes. Subsection 4.2 shows how to calculate the grouping score between every two
attributes, and finally subsection 4.3 describes how the matchings can be identified us-
ing the grouping and matching scores. In these subsections, the schemas in Table 2 will
be used as examples of input schemas.

Table 2. Examples of input schemas.

S1 Sa Ss3 Sy Ss
Title Title Title Title Title
First Name Author | Author |First Name Author
Last Name Subject |Category Last Namg Category
Category | Publishe Publishe
Publisher

4.1 Matching Score Calculation

As discussed above, in HSM the matching scores between two attributes are calculated
in two steps: Synonym attribute candidate generation and matching score calculation.

Synonym Attribute Candidate Generation A synonym attribute candidate is a pair of
attributes that are possibly synonyms. If theresagdtributes in the input schemas, the
maximum number of synonym attribute candidate§is= @ However, not ev-

ery two attributes fromd can be actual candidates for synonym attributes. For example

in the Books domain, attributdstle andAuthor should not be considered as synonym
attribute candidates, whilduthor andFirst Name should. Recall that, in section 3.1,

we observed that synonym attributes are rarely co-present in the same schema. In fact,
Author andFirst Name do seldom co-occur in the same interface, while andAu-

thor appear together very often. This observation can be used to reduce the number of
synonym attribute candidates dramatically.

Example 1 For the four input schemas in Table 2, if we make a strict restriction that
any two attributes co-present in the same schema cannot be candidates for synonym
attributes, the number of synonym attribute candidates becomes 5 (shown in Table 3),
instead of 21 when there is no restriction at all.

Table 3. Synonym attribute candidates.

First Name, Autho
First Name, Subje
Last Name, Autho
Last Name, Subje
Category, Subjec

—-

O B W N
—-

In HSM, we assume that two attributes,(A,) are synonym attribute candidates
if A, and A, are co-present in less thaf), schemas. Intuitively7,, should be in
proportion to the normalized frequency4f, andA, in the input schemas st Hence,
in our experiments, we set the co-presence threshalt}, aind 4, as

7, = A% *C))
u
whereq is determined empirically;,, andC, are the count of attributd,, andA, in S,
respectively, and is the number of input schemas. In out experimedis,empirically
set to be 38

Suppose there are 50 input schemas and two attriblitesid A, that occur 20 and
25 times, respectively, theR, = 2.7. This means thatl; and A, should be co-present
in no more than two schemas to be synonym attribute candidates.

We usel = {(A4,,4,),p=1..n,g=1..n,p # ¢q,Cpq < Tp} to represent the set
of synonym attribute candidates, whefg, is the count of the co-occurrences 4f
andA, in the same schema.

Matching Score Calculation For any two attributest,, andA,, a matching scoré(,,
measures the possibility that, and A, are synonym attributes. The bigger the score,
the more likely that the two attributes are synonym attributes.

Definition 2 Given a parallel schemg), we call 4, and A, to becross-copresenn
QIpr €5 _SlnSQ anqu € Sy —SlﬂSQ.

5 Experiments have best performance whendhe [2,4]. We select a middle value of [2,4]
here.

If we compare every two schemas, we canBg} = (C), — C}q)(Cq — C)q) parallel
schemas in whicld, and 4, are cross-copresent. The biggey, is, i.e., the more
often A, and A, are cross-copresent in a parallel schema, the more likely4dhaind
A, are synonym attributes. HowevBy,, itself is not able to distinguish the scenario as
in Example 2:

Example 2 Suppose there are 50 input schemas, where 15 schemdsiarels}, 15
schemas ar¢A;, A,}, 15 schemas argA;, A5} and the rest 5 arg A, }. Our intuition

is that the matchingl; = A4 = As should be more preferred than matchidg = A,
because itis highly like that, is a noise attribute and occur random#,,, alone is not
able to correctly catch this case becau3e, = D3y = D35 = D45 = 225. Meanwhile,

we also naotice thaf’; + Cy = 50 andCs + Cy = C3 + C5 = Cy + C5 = 30. Hence if

we divideD,,, by C}, + C,, we can reduce the problem caused by noise attributes, such
as A, above.

Hence, we formulate the matching score betwdgrand 4, as:

X/q:{o if (A,,4,) ¢ L

p (©=Cpa)(Ca=Cha) gtherwise @

(Cp+Cy)

Specifically designed for the schema matching problem, this matching score has the
following important properties:

1. null invariance[15]. For any two attributes, adding more schemas that do not con-
tain the attributes does not affect their matching score. That is, we are more inter-
ested in how frequently attribute$, and A, are cross co-present in the parallel
schemas than how frequently they are co-absent in the parallel schemas.

2. rareness differentiationThe matching score between rare attributes and the other
attributes is usually low. That is, we consider it is more likely that a rare attribute
is cross co-present with other attributes by accident. Example 2 shows the score’s
penalty over noise attributes.

Example 3 Matching scores between the attributes from the schemas in Table 2 are
shown in Table 4, given the synonym attribute candidates in Table 3.

Table 4. Matching scores.

Title| First | Last |Cate{Publi-| Au-|Sub-
Name Name gory | sher |thor| ject
Title 0 0 0 0 0| O
First Name 0 0 0 [1.2]0.67|
Last Name 0 0 |1.2]0.67|
Category 0 0 |0.75]
Publisher 0|0
Author 0
Subject

In this example, we can see that the matching scores between all the actual synonym
attributes are non-zero and high, such as the score befwesttName andAuthor and
the score betweeBategory andSubject, which is desirable. The matching scores be-
tween some non-synonym attributes are zero, such as the score b&itleandCat-
egory and the score betwedtublisher andAuthor, which is also desirable. However,

10

the matching scores between some non-synonym attributes are also non-zero yet low,
such as the score betwelinst Name andSubject, which is undesirable. To tackle this
problem, our matching discovery algorithm is designed to be greedy such that it always
considers the matchings with higher scores first when discovering synonym attributes
(see section 4.3).

We uset = {X,,,p = 1..n,q = 1..n,p # ¢} to denote the set of matching scores
between any two different attributes.

The time complexity for matching score calculatio®igun?), as there are schemas
to go through and it takes a maximum@®@fn?) time to get the co-occurrence count be-
tween any two attributes to generate the synonym candidates and calculate the matching
scores.

4.2 Grouping Score Calculation

As mentioned before, a grouping score between two attributes aims to evaluate the
possibility that the two attributes are grouping attributes. Recall observation 4 in section
3.1 that grouping attributes are usually co-present in the same interface schema to form
a‘“larger” concept. That s, attributel, and A, are more liable to be grouping attributes

if Cpq is big. However using’,, only is not sufficient in many cases. Suppose there
are 50 input schemas, where 8 schemas{arg A,}, 10 schemas argA,, As}, 10
schemas arA;, A4}, and the rest ar€A, }. In this example(;, = 8 andC5 = 10.

Note thatA, always appears together withy and A3 does not co-occur witll; half

of the time, which indicates that; and A, are more possible to be a group thépand

As. Given cases like that, we consider two attributes to be grouping attributes if the less
frequent one is usually co-occur with the more frequent one. We propose the following
grouping score measure between two attributgsind A,:

_ Chq
Yoo = min(Cp, Cy)’ @)

We need to set a grouping score threshfjdsuch that attributest,, and A, will
be considered as grouping attributes only whgn > 7,. Practically,7, should be
close to 1 as the grouping attributes are expected to co-occur most of the time. In our
experimentZ, is an empirical parameter and the experimental results show that it has
similar performance in a wide range (see section 5.2).

Example 4 Grouping scores between the attributes from the schemas in Table 2 are
shown in Table 5.

Table 5. Grouping scores between every two different attributes.

Title| First | Last |Cateq{Publi-| Au- | Sub4

Name Name gory | sher |thor| ject
Title 1 1 1 1 1171
First Name 1 05[{05| 0| 0
Last Name 05[{05| 0|0
Category 0.67(0.67| 0
Publisher 0.67] 1
Author 1

Subject

11

In this example, we can see that the actual grouping attrilstitesName andLast
Name have a large grouping score, which is desirable. However, it is not very ideal
that some non-grouping attributes also have large grouping score®wubisher and
Subject. This is not a problem in our matching discovery algorithm, which is designed
to be matching score centric and always consider the grouping scores together with the
matching scores when discovering grouping attributes (see section 4.3).

We useY = {Y,q,p = L..n,q = 1..n,p # ¢} to denote the set of grouping scores
between any two different attributes. The time complexity of grouping score calculation
is O(un?) as there are schemas to go through and it takes a maximur@ @f?) time
to go through each schema to obtain the co-occurrence counts for any two attributes.

4.3 Schema Matching Discovery

Algorithm 1 Schema Matching Discovery

Input

A ={A,;,i = 1...n}: the set of attributes from input schemas

X ={Xpq,p=1...n,q=1...n,p# ¢}: the set of matching scores between two attributes
Y={Y,y,p=1...n,q=1...n,p # ¢}: the set of grouping scores between two attributes
7, the threshold of grouping score

Output
M = {M;,j = 1...v}: the set of complex matchings where each matchifigs represented as
Gj1 =...= Gjw, andG,x, k = 1...w stands for a group of grouping attributes4n

1: begin

2: M — (Z)

3: while X # () do
4 choose the highest matching scofg, in X
5: if Xpq = 0 then break;

6: end if

7: if neitherA, nor A, appears in\ then

8 M= M+ {4} = {A.}}

9: else ifonly one ofA, and A, appears inM then

10: [*Supposed,, appears inV/; and A, does not appear inM*/

11: if For each attributel; in M;, X, > 0then

12: Mj <—M]+(: {Aq})

13: else ifthere exists a matching groug;, in M; such that for any attributel; in
Gk, Yq > 14, and for any attributed,,, in other groups;., x # k, Xgm > 0
then

14: ij — G]'k + {Aq}

15: end if

16: end if

17: X — X — X,

18: end while

19: returnM

20: end

With the matching score and grouping score between any two attributes, we propose
an iterative matching discovery algorithm, as shown in Algorithm 1. In each iteration,

12

a greedy selection strategy is used to choose the synonym attribute candidates with the
highest matching score (Line 4) until there is no synonym attribute candidate available
(Line 5). SupposeX,, is the highest matching score in the current iteration. We will
insert its corresponding attribute, and 4, into the matching seM depending on

how they appear itM:

1. IfneitherA4, nor A, has appeared iM (Line 7 - 8),{A, } = {A,} will be inserted
as a new matching intd1.

2. If only one of 4, and A, has appeared iM (Line 9 - 16), suppose it isl, that
has appeared if/; (the j-th matching ofM), then A, will be added into)/; too
if:

— A, has non-zero matching scores between all existing attributks; idn this
case{A,} is added as a new matching group idt§ (Line 11 - 12).

— there exists a grou@';;, in M; where the grouping score betwedg and any
attribute inGy, is larger than the given thresholfj, and A, has non-zero
matching score between any attribute in the rest of the groupg;ofin this
case{A,} is added as a member into the graslp, in 1/; (Line 13 - 15).

— If both A, and A, have appeared iM, X, will be ignored because each
attribute is not allowed to appear more than one timg4inThe reason for this
constraint is that ifd,, and A, have been added intbt already, they must have
had higher matching scores in a previous iteration.

Finally, we deleteX,,, from X (Line 17) at the end of each iteration.

One thing that is not mentioned in the algorithm is how to select the matching score
if there is more than one highest scoréinOur approach is to select a scdfg, where
one ofA4, and A, has appeared iV but not both. This way of selection makes full use
of previously discovered matchings that have higher scores. If there is still more than
one score that fits the condition, the selection will be random

Example 4 illustrates the matching discovery iterations using the attributes from the
schemas in Table 2.

Example 5 Before the iteration starts, there is no matching among attributes (Figure
3(a)). In the first iterationFirst Name with Author andLast Name with Author have

the highest matching score from Table 4. As the matching set is empty now, we ran-
domly select one of the above two pairs, J&yst Name with Author. Hence {First
Name}={Author} is added taM (Figure 3(b)) and the matching score betwdgrst
Name and Author is deleted fromX. In the second iteration.ast Name with Au-

thor has the highest matching score. Becadsghor has already appeared i,
Last Name can only be added into the matching in whiththor appears, i.e.{First
Name}={Author}. Suppose the grouping threshdlg is set to 0.9. We then léfast
Name form a group withFirst Name as their grouping score is above the thresh-
old (Table 5). Hence, the matchidgrirst Name}={Author} is modified to bgFirst
Name, Last Name}={Author} in M (Figure 3(c)). After the group is formed, the
matching score ofast Name with Author is deleted fromY'. In the third iteration,
Category and Subject have the highest matching score. Accordingly, the matching
{Category}={Subject} is added taM (Figure 3(d)) and the matching score between
them is deleted front’. In the fourth and fifth iterations, no more attributes are added

7 Actually tie occurs very seldom in our experiments.

13

to M because all attributes associated with the current highest matching score, such as
First Name with Subject, have already appeared iM, i.e., they have been matched
already. After that, no matching candidates are available and the iteration stops with
the final matching results shown in Figure 3(d).

Title Title Title Title

First Q First ° First ° First o
Narne Author Marne Author Mam Author Narmn Author
[} o o——20 V V
e} el
Last © Subject Last O susject Last O Subjert Last Subject
Narne Marne Name Name
Q el o o o [+] e}
Cat
Categary Publisher Fategary Publisher Category Publisher stegany Publisher
@) (b) (©) (d)

Fig. 3. Matching discovery iterations.

The greediness of this matching discovery algorithm has the benefit of filtering bad
matchings in favor of good ones. For instance, in the above example, even though the
matching score betwedfirst Name and Subject is non-zero, the algorithm will not
wrongly match these two attributes because their matching score is lower than the score
betweerFirst Name andAuthor, and also lower than the score betw&ategory and
Subject.

Another interesting and beneficial characteristic of this algorithm is that it is match-
ing score centric, i.e., the matching score plays a much more important role than the
grouping score. In fact, the grouping score is never considered alone without the match-
ing score. For instance in the above example, even though the grouping score between
Publisher andSubiject is 1, they are not considered by the algorithm as grouping at-
tributes. Recall that a matchiq@ategory }={Subject} is found in the early iterations.

In order forPublisher to form a group withSubject, it must have a non-zero matching
score withSubject’s matching opponent, i.eCategory. Obviously, this condition is

not satisfied in the example. Similarly, althougitle has high grouping scores with all

the other attributes, it forms no groups as its matching score with all the other attributes
is zero.

The time complexity of the matching discovery algorithn®ig) because a max-
imum of n2 (i.e., the number of scores i) iterations are needed, and within each
iteration a maximum of, comparisons (i.e., the number of attributes\it) are needed.

To conclude, the overall time complexity of HSM @&(un? + n?) since the time
complexity of its three steps, matching score calculation, grouping score calculation
and schema matching discovery &réun?), O(un?) andO(n?), respectively.

5 EXPERIMENTS

We choose two datasets, TEL-8 and BAMM, from the UIUC Web integration reposi-
tory [4], as the testsets for our HSM matching approach. The TEL-8 dataset contains
query interface schemas extracted from 447 deep Web sources of eight representative
domains: Airfares, Hotels, Car Rentals, Books, Movies, Music Records, Jobs and Auto-
mobiles. Each domain contains about 20-70 schemas and each schema contains 3.6-7.2

14

attributes on average depending on the domain. The BAMM dataset contains query
interface schemas extracted from four domains: Automobiles, Books, Movies and Mu-
sic Records. Each domain has about 50 schemas and each schema contains 3.6-4.7
attributes on average depending on the domain.

In TEL-8 and BAMM, Web databases’ query interfaces are manually extracted
and their attribute names are preprocessed to remove some irrelevant information, e.g.,
“search for book titles” is cleaned and simplified to “title”. In addition, the data type of
each attribute is also recognized in TEL-8 which can be string, integer or datetime. For
details of the preprocessing and type recognition, interested readers can refer to [4].

5.1 Metrics

We evaluate the set of matchings automatically discovered by HSM, denofet], bpy
comparing it with the set of matchings manually collected by a domain expert, denoted
by M..

To facilitate comparison, we adopt the metric in [[@rget accuracywhich eval-
uates how similatM,, is to M.. Given a matching set and an attributed,,, a
Closenym sef'ls(A,|M) is used to refer to all synonym attributes4f in M.

Example 6 For a matching se{{A4;, As}={A3}={A4}}, the closenym set o is
{43, A4}, the closenym set of, is also {43, A4}, the closenym set A3 is {A;,
Ay, A4} and the closenym set afy is {Aq, Aa, As}. If two attributes have the same
closesym set, they are grouping attributes, suchdasvith A,. If two attribute have
each other in their closenym sets, they are synonym attributes, suthwagh A3 and
Ag with A4.

The target accuracy metric includisget precisionrandtarget recall For each at-
tribute 4, the target precision and target recall of its closesym satinwith respect
to M. are:

_ [Cls(Ap| M) N Cls(Ap| M)

P M 7MC ’
A, (M) |Cls(Ap|Mp)]

|Cls(Ap|M.) N Cls(Ap| M)

R ¢) = '
4, (M, M) Cls(A, | M.)]

According to [7], thetarget precisionandtarget recall of M, (the matching set
discovered by a matching approach) with respecttp (the correct matching set) are
the weighted average of all the attributes’ target precision and target recall (See equ. (4)
and (5)). The weight of an attributé, is set asz% in which C,, denotes the count

of A, in S. The reason for calculating the weig]ﬁt in this way is that a frequently used
attribute is more likely to be used in a query submitted by a user.

Cp

Pr(Mu, M.) = ; AL (M, M), (4)
Rr(Mi, Mo) = 3 <22 Ry (Myy, M), (5)

A, 21 Ok

15

5.2 Experimental Results

Similar to [7], in our experiment we only consider attributes that occur more than an
occurrence-percentage thresh@jdin the input schema set, where7,. is the ratio of

the count of an attribute to the total number of input schemas. This is because occur-
rence patterns of the attributes may not be observable with only a few occurrences. In
order to illustrate the influence of such a threshold on the performance of HSM, we run
experiments with/, set at 20%, 10% and 5%, and show the results below.

Result on the TEL-8 dataset:Table 6 shows the matchings discovered by HSM in the
Airfares and CarRentals domains, whenis set at 10%. In this table, the third column
indicates whether the matching is correétmeans fully correctP means partially
correct andN means incorrect. We see that HSM can identify very complex match-
ings among attributes. We note thiwstination in Airfares (the fourth row in Table 6)
should not form a group by itself to be synonymous to other groups. The reason is that
destination co-occurs with different attributes in different schemas, suctiegsrt,

origin, leave from to form the same concept, and those attributes are removed because
their occurrence-percentages are lower than 10%.

Table 6. Discovered matchings for Airfares and CarRentals whers= 10%.

Domain Discovered Matching Correct?

Airfares {departure date (datetime), return date (datetjrwe] depart (datetime), return (datetinje)
{adult (integer), children (integer), infant (integer), senior (intepedpassenger (integekr)

{destination (string) = {from (string), to (string} ={arrival city (string), departure city (strin§)

{cabin (string} = {class (string}

CarRental${drop off city (string), pick up city (string) ={drop off location (string), pick up location (string
{drop off (datetime), pick up (datetime)epick up date (datetime),

drop off date (datetime), pick up time (datetime), drop off time (datetjme)

<[4~

Table 7. Target accuracy for TEL-8.

Domain |7, = 20%[7. = 10%[7. = 5% Domain [7. = 20%[7. = 10%[7. = 5%
Pr]| Rr [Pr] Rr [Pr[Rr Pr| Rr [Pr] Rr [Pr[Rr

Airfares 1 1 1 .94 [.90| .86 Airfares 1 1 1| .71 |.56] .51
Automobiles| 1 1 1 1 76| .88 Automobiles| 1 1 93] 1 .67| .78
Books 1 1 1 1 67 1 Books 1 1 1 1 A5 .77
CarRentals| 1 1 .89 91 |[.64] .78 CarRentals [.72] 1 72| .60 |.46] .53
Hotels 1 1 72 1 60| .88 Hotels .86 1 .86] .87 |.38] .34
Jobs 1 1 1 1 [.70] .72 Jobs 1 86 |.78] .87 [.36] .46
Movies 1 1 1 1 72 1 Movies 1 1 1 1 48| .65
MusicRecord$ 1 1 [.74] 1 1.62] .88 MusicRecord$ 1 1 [.76] 1 1.48] .56

[Aerage [1] 1 [.92] 98 [.70] .88 | [Average [.95] .98 [.88] .88 [.48] .58]

(@ HSMwithZ, = 0.9 (b) DCM

Table 7(a) presents the performance of HSM on TEL-8 when the grouping score
threshold7, is set to 0.9. As expected, the performance of HSM decreases when we
loose the occurrence-percentage threshldfrom 20% to 5%), meaning that more
rare attributes are taken into consideration. The phenomenon is because the occurrence
pattern of the rare attributes is not obvious with only a few occurrences. Nevertheless,
we can see that the performance of HSM is almost always better than the performance of
DCM, which was implemented with the optimal parameters reported in [7], especially
for a small occurrence percentage threshold such as 5%, as shown in Table 7(b).

16

We note that the target recall is always higher than the target precision because we
do not remove the less likely matchings, which are discovered in later iterations with
small matching scores. These less likely matchings will affect the target precision, while
they are likely to improve the target recall. One reason that we do not set a threshold to
filter lower score matchings is that the threshold is domain dependent. We also consider
that it is much easier for a user to check whether a matching is correct than to discover
a matching by himself/herself.

Table 8. Target accuracy for BAMM-8

’ Domain [7. = 20%][7. = 10%[7. = 5% ’ Domain [7. = 20%[7. = 10%[7. = 5%

Pr[Rr [Pr] Rr |Pr[Rr |Pr] Rr |Pr[Rt [Pr[Rr|
Automobiles| 1 1 56] 1 75 1 Automobiles| 1 1 56] 1 45 1
Books 1 1 .86 1 82 1 Books 1 1 .63 1 A7] .78
Movies 1 1 1 1 90| .86 Movies 1 1 1 1 45 | .53
MusicRecords 1 1 [81] 1 [.72] 1 MusicRecords 1 1 [52] 1 .36 | .55

[Aerage [1] 1 [81] 1 [.80].97] [Aerage [1] 1 [B8I] 1 [433.72]

(@ HSMwithZ, = 0.9 (b) DCM

Result on the BAMM dataset: The performance of HSM on BAMM is shown in Table
8(a), when the grouping score thresh@]ds set to 0.9 and the target accuracy of DCM
on BAMM is listed in Table 8(b). Again, HSM always outperforms DCM.

We note that the target precision in the Automobiles domain is low Whea 10%.
Again, the reason is that we do not remove the matchings with low matching scores,
which are less likely to be correct matchings. We also note an exception that, in the
Automobiles domain, the precision whé@p = 5% is much better than the precision
when7. = 10%. This is because there are some incorrect matchings identified when
7. = 10%, while most newly discovered matchings when= 5% are correct.

Table 9. Target accuracy of HSM on TEL-8 dataset with different grouping score thresholds when
7. = 10%.

’ Domain [7, = .7[7, = 8[7, = .9]7, = .95
T T T T T T T T

Airfares 1[]94] 17.94]1[.94] 17 .94
Automobiles| 1 [1 [1| 1 |1 |1 |1 1
Books 11111171 1
CarRentals|.69] .71|.75] .81|.89| .91|.86] .88
Hotels 2l 172172l 172 1
Jobs 1111111 1
Movies 1111111 1
MusicRecords.74| 1 |.74| 1 |.74] 1 |.74] 1

[Average [.89].96].90[.97].92].98].92] .98 |

Table 10.Target accuracy of HSM on BAMM dataset with different grouping score thresholds
when7, = 10%.

T T
Automobiles|.55] 1 |[.55] 1 1 1
Books 86] 1 [.86] 1 1 1
Movies I[1[1l1]1]1]1 1
1 1 1 1
1 1 1 1

’ Domain [7, = .7[7, = .8][7, = .9[7, = .95
T

MusicRecords 1 1
[Average [.85] [.85]

17

Influence of grouping score threshold:The performance of HSM with differeff, on

TEL-8 is shown in Table 9. We can see tfgtactually does not affect the performance

of HSM much in a wide range. The target accuracy of HSM is stable with different
7,, except for the target accuracy in domain CarRentals. A similar phenomenon can be
observed when we run experiments on BAMM using differgptas shown in Table

10. The explanation is as follows:

1. We use a greedy algorithm to always consider high matching scores first and the
grouping score plays a minor role in the algorithm. Therefore, the change of group-
ing score threshold does not make much difference.

2. As we observed, an attribute usually co-occurs with the same set of attributes to
form a larger concept. Hence, most grouping attributes have a grouping score equal
to 1. This makes the grouping attribute discovery robust to the chang@g dhe
reason why the target accuracy in domain CarRentals change$ wilthat some
attributes in this domain co-occur with different sets of attributes to form the same
concept, which makes their grouping scores less than 1 and thus the accuracy is
affected by the threshold.

Actual Execution Time: As we have pointed out, HSM discovers matchings in time
polynomial to the number of attributes while DCM discovers matchings in time expo-
nential to the number of attributes. In our experiments, both HSM and DCM are imple-
mented in C++ and were run on a PC with an Intel 3.0G CPU and 1G RAM. Table 11
shows the actual execution time accumulated on TEL-8 and BAMM with difféferit

can be seen that HSM is always order of magnitude faster than DCM. The time needed
by DCM grows faster whefi, is smaller, i.e., when more attributes are considered for
matching. It should be noted that DCM takes more than three hours to generate all the
matchings when the occurrence-percentage threshold 5%.

Table 11.Actual execution time in seconds.

Dataset BAMM TEL —8
%[10%][5% %] 10% | 5%

% DCM__ [0.8615.171]12.7492.33215.813 12624 5
l

HSM__ [0.0630.202 0.297]0.207 0.781| 2.313 |
speedup ratip13.7] 25.6] 42.9 [11.3] 20.2 | 5458 |

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a holistic schema matching approach, HSM, to holistically
discover attribute matchings across Web query interfaces. The approach employs sev-
eral steps, including matching score calculation that measures the possibility of two
attributes being synonym attributes, grouping score calculation that evaluates whether
two attributes are grouping attributes, and finally a matching discovery algorithm that
is greedy and matching score centric. HSM is purely based on the occurrence patterns
of attributes and requires neither domain-knowledge nor user interaction. Experimental
results show that HSM discovers both simple and complex matchings with very high
accuracy in time polynomial to the number of attributes and the number of schemas.

However, we also notice that HSM suffers from some limitations that will be the
focus of our future work. In Airfares domain in Table 6, although the matckirgm,

18

to}={arrival city, departure city has been correctly discovered, HSM is not able to
identify the finer matchinggfrom}={arrival city} and {to}={departure city. To ad-
dress this problem, we can consider to employ some auxiliary semantic information
(i.e., an ontology) to identify the finer matchings.

We also plan to focus on matching the rare attributes for which HSM's performance
is not stable. One promising direction may be to exploit other type of information, such
as attribute types, linguistic similarity between attribute names, instance overlapping,
and/or schema structures.

Acknowledgment: This research was supported by the Research Grants Council of
Hong Kong under grant HKUST6172/04E.

References

1. M. K. Bergman. The deep Web: Surfacing hidden value.
http://www.brightplanet.com/technology/deepweb.asp, Dec. 2000.

2. A. Bilke and F. Naumann. Schema matching using duplicate21$t Int. Conf. on Data
Engineering pages 69 — 80, 2005.

3. K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured databases on the Web: Observations
and implications. Technical Report UIUCDCS-R-2003-2321, CS Department, University of
lllinois at Urbana-Champaign, February 2003.

4, K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC Web integration repos-
itory. Computer Science Department, University of lllinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

5. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discovering complex
semantic matches between database schema&Chh SIGMOD Conferenggages 383 —

394, 2004.

6. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. ACM SIGMOD Conferencgages 509 — 520, 2001.

7. B. He and K. C.-C. Chang. Discovering complex matchings across Web query interfaces: A
correlation mining approach. BCM SIGKDD Conferencgages 147 — 158, 2004.

8. B.He, K. C.-C. Chang, and J. Han. Statistical schema matching across Web query interfaces.
In ACM SIGMOD Conferenc@ages 217 — 228, 2003.

9. W. Li, C. Clifton, and S. Liu. Database Integration using Neural Network: Implementation
and Experience. liKnowledge and Information Systems,2{3gges 73-96, 2000.

10. J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matcRirgj. In
Int. Conf. on Data Engineeringrages 5768, 2005.

11. C. Manning and H. Schutz€oundations of Statistical Natural Language ProcessiNgT
Press, May, 1999.

12. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm. In18th Int. Conf. on Data Engineeringages 117-128, 2002.

13. G. Miller. WordNet: An on-line lexical databasdnternational Journal of Lexicography,
1990.

14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema mafdteng.
VLDB Journal 10:334-350, 2001.

15. P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for associa-
tion patterns. I'PACM SIGKDD Conferenggpages 32 — 41, 2002.

16. J. Wang, J. Wen, F. Lochovsky, and W. Ma. Instance-based schema matching for Web
databased by domain-specific query probing.3Mth Int. Conf. Very Large Data Bases
pages 408-419, 2004.

17. W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach to integrat-
ing source query interfaces on the deep WebA@M SIGMOD Conferenggages 95-106,
2004.

