
Data Mapping as Search�

George H.L. Fletcher and Catharine M. Wyss

Computer Science Department, School of Informatics,
Indiana University, Bloomington, USA

{gefletch, cmw}@cs.indiana.edu

Abstract. In this paper, we describe and situate the TUPELO system for data
mapping in relational databases. Automating the discovery of mappings between
structured data sources is a long standing and important problem in data manage-
ment. Starting from user provided example instances of the source and target
schemas, TUPELO approaches mapping discovery as search within the trans-
formation space of these instances based on a set of mapping operators. TU-
PELO mapping expressions incorporate not only data-metadata transformations,
but also simple and complex semantic transformations, resulting in significantly
wider applicability than previous systems. Extensive empirical validation of TU-
PELO, both on synthetic and real world datasets, indicates that the approach is
both viable and effective.

1 Introduction

The data mapping problem, automating the discovery of effective mappings between
structured data sources, is one of the longest standing problems in data management
[17, 24]. Data mappings are fundamental in data cleaning [4, 32], data integration [19],
and semantic integration [8, 29]. Furthermore, they are the basic glue for constructing
large-scale semantic web and peer-to-peer information systems which facilitate coop-
eration of autonomous data sources [15]. Consequently, the data mapping problem has
a wide variety of manifestations such as schema matching [31, 34], schema mapping
[17, 26], ontology alignment [10], and model matching [24, 25].

Fully automating the discovery of data mappings is an “AI-complete” problem in
the sense that it is as hard as the hardest problems in Artificial Intelligence [24]. Con-
sequently, solutions have typically focused on discovering restricted mappings such
as one-to-one schema matching [31]. More robust solutions to the problem must not
only discover such simple mappings, but also facilitate the discovery of the structural
transformations [18, 39] and complex (many-to-one) semantic mappings [8, 14, 29, 31]
which inevitably arise in coordinating heterogeneous information systems. We illustrate
such mappings in the following scenario.

Example 1. Consider the three relational databases Flights A, B, and C maintain-
ing cost information for airline routes as shown in Fig. 1. These databases, which ex-
hibit three different natural representations of the same information, could be managed
by independent travel agencies that wish to share data.

� The current paper is a continuation of work first explored in poster/demo presentations (IHIS05
and SIGMOD05) and a short workshop paper [11].

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 95–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 G.H.L. Fletcher and C.M. Wyss

FlightsA

Flights:
Carrier Fee ATL29 ORD17
AirEast 15 100 110
JetWest 16 200 220

FlightsB

Prices:
Carrier Route Cost AgentFee
AirEast ATL29 100 15
JetWest ATL29 200 16
AirEast ORD17 110 15
JetWest ORD17 220 16

FlightsC

AirEast:
Route BaseCost TotalCost
ATL29 100 115
ORD17 110 125

JetWest:
Route BaseCost TotalCost
ATL29 200 216
ORD17 220 236

Fig. 1. Three airline flight price databases, each with the same information content

Note that mapping between the databases in Fig. 1 requires (1) matching schema el-
ements, (2) dynamic data-metadata restructuring, and (3) complex semantic mapping.
For example, mapping data from FlightsB to FlightsA involves (1) matching the
Flights andPrices table names and (2) promoting data values in theRoutecolumn
to attribute names. Promoting these values will dynamically create as many new attribute
names as there are Route values in the instance of FlightsB. Mapping the data in
FlightsB to FlightsC requires (3) a complex semantic function mapping the sum
of Cost and AgentFee to the TotalCost column in the relations of FlightsC.

1.1 Contributions and Outline

In this paper we present the TUPELO data mapping system for semi-automating the
discovery of data mapping expressions between relational data sources (Section 2). TU-
PELO is an example driven system, generating mapping expressions for interoperation
of heterogeneous information systems which involve schema matching, dynamic data-
metadata restructuring (Section 2.1), and complex (many-to-one) semantic functions
(Section 4). For example, TUPELO can generate the expressions for mapping between
instances of the three airline databases in Fig. 1.

Data mapping in TUPELO is built on the novel perspective of mapping discovery
as an example driven search problem. We discuss how TUPELO leverages Artificial
Intelligence search techniques to generate mapping expressions (Sections 2 and 3). We
also present experimental validation of the system on a variety of synthetic and real
world scenarios (Section 5) which indicates that the TUPELO approach to data mapping
is both viable and effective. We conclude the paper with a discussion of related research
(Section 6) and directions for future work (Section 7).

2 Dynamic Relational Data Mapping with TUPELO

In this section we outline the architecture and implementation of the TUPELO system,
illustrated in Fig. 2. TUPELO generates an effective mapping from a source relational

Data Mapping as Search 97

Mapping

Complex

 Instances

 Critical

Expressions

Input/Output

Data Mapping

Discovery

Input Output

Functions

Fig. 2. Data Mapping in the TUPELO System

schema S to a target relational schema T . The system discovers this mapping using
(1) example instances s of S and t of T and (2) illustrations of any complex semantic
mappings between the schemas. Mapping discovery in TUPELO is a completely syn-
tactic and structurally driven process which does not make use of a global schema or
any explicit domain knowledge [2, 16].

We first introduce the mapping language L used in TUPELO. This language focuses
on simple schema matching and structural transformations. We then discuss the Rosetta
Stone principle which states that examples of the same information under two different
schemas can be used to discover an effective mapping between the schemas. We close
the section by describing the idea that drives data mapping in the TUPELO system,
namely that data mapping is fundamentally a search problem.

2.1 Dynamic Relational Transformations

TUPELO generates expressions in the transformation language L, a fragment of the
Federated Interoperable Relational Algebra (FIRA) [39]. FIRA is a query algebra for
the interoperation of federated relational databases. The operators in L (Table 1) ex-
tend the relational algebra with dynamic structural transformations [18, 32, 39]. These
include operators for dynamically promoting data to attribute and relation names, a
simple merge operator [40], and an operator for demoting metadata to data values. The
operators, for example, can express the transformations in Fig. 1 such as mapping the
data from FlightsB to FlightsA.

Example 2. Consider in detail the transformation from FlightsB to FlightsA.
This mapping is expressed in L as:

R1 :=↑CostRoute (FlightsB)
Promote Route values to attribute names with
corresponding Cost values.

R2 := π

Route(π

Cost(R1))
Drop attributes Route and Cost.

R3 := µCarrier(R2)
Merge tuples on Carrier values.

R4 := ρattAgentFee→Fee(ρrelPrices→Flights(R3))
Rename attribute AgentFee to Fee and relation Prices to Flights
(i.e., match schema elements).

The output relation R4 is exactly FlightsA.

98 G.H.L. Fletcher and C.M. Wyss

Table 1. Operators for dynamic relational data mapping

Operation Effect

→B
A (R)

Dereference Column A on B. ∀t ∈ R, append a new column named B with
value t[t[A]].

↑A
B (R)

Promote Column A to Metadata. ∀t ∈ R, append a new column named t[A]
with value t[B].

↓ (R)
Demote Metadata. Cartesian product of relation R with a binary table contain-
ing the metadata of R.

℘A(R) Partition on Column A. ∀v ∈ πA(R), create a new relation named v, where
t ∈ v iff t ∈ R and t[A] = v.

×(R,S) Cartesian Product of relation R and relation S.

π

A(R) Drop column A from relation R.

µA(R) Merge tuples in relation R based on compatible values in column A [40].

ρ
att/rel
X→X′ (R) Rename attribute/relation X to X ′ in relation R.

FIRA is complete for the full data-metadata mapping space for relational data
sources [39]. The language L maintains the full data-metadata restructuring power of
FIRA. The operators in L focus on bulk structural transformations (via the →, ↑, ↓,
℘, ×, π, and µ operators) and schema matching (via the rename operator ρ). We view
application of selections (σ) as a post-processing step to filter mapping results accord-
ing to external criteria, since it is known that generalizing selection conditions is a
nontrivial problem. Hence, TUPELO does not consider applications of the relational σ
operator. Note that using a language such as L for data mapping blurs the distinction
between schema matching and schema mapping since L has simple schema matching
(i.e., finding appropriate renamings via ρ) as a special case.

2.2 The Rosetta Stone Principle

An integral component of the TUPELO system is the notion of “critical” instances s
and t which succinctly characterize the structure of the source and target schemas S
and T , respectively. These instances illustrate the same information structured under
both schemas. The Rosetta Stone principle states that such critical instances can be used
to drive the search for data mappings in the space of transformations delineated by the
operators in L on the source instance s. Guided by this principle, TUPELO takes as input
critical source and target instances which illustrate all of the appropriate restructurings
between the source and target schemas.

Example 3. The instances of the three airline databases presented in Fig. 1 illustrate
the same information under each of the three schemas, and are examples of succinct
critical instances sufficient for data mapping discovery.

Critical Instance Input and Encoding. Critical instances can be easily elicited from
a user via a visual interface akin to the Lixto data extraction system [13] or visual
interfaces developed for interactive schema mapping [1, 3, 26, 37]. In TUPELO, critical

Data Mapping as Search 99

Fig. 3. TUPELO GUI

instances are articulated by a user via a front-end GUI that has been developed for the
system (Figure 3). Since critical instances essentially illustrate one entity under different
schemas, we also envision that much of the process of generating critical instances can
be semi-automated using techniques developed for entity/duplicate identification and
record linkage [2, 38].

Critical instances are encoded internally in Tuple Normal Form (TNF). This nor-
mal form, which encodes databases in single tables of fixed schema, was introduced
by Litwin et al. as a standardized data format for database interoperability [23]. TU-
PELO makes full use of this normal form as an internal data representation format.
Given a relation R, the TNF of R is computed by first assigning each tuple in R a
unique ID and then building a four column relation with attributes TID, REL, ATT,
VALUE, corresponding to tuple ID, relation name, attribute name, and attribute value,
respectively. The table is populated by placing each tuple in R into the new table in a
piecemeal fashion. The TNF of a database is the single table consisting of the union of
the TNF of each relation in the database.

Example 4. We illustrate TNF with the encoding of database FlightsC:

TID REL ATT VALUE
t1 AirEast Route ATL29
t1 AirEast BaseCost 100
t1 AirEast TotalCost 115
t2 AirEast Route ORD17
t2 AirEast BaseCost 110
t2 AirEast TotalCost 125
t3 JetWest Route ATL29
t3 JetWest BaseCost 200
t3 JetWest TotalCost 216
t4 JetWest Route ORD17
t4 JetWest BaseCost 220
t4 JetWest TotalCost 236

The TNF of a relation can be built in SQL using the system tables. The benefits of
normalizing the input instances in this manner with a fixed schema include (1) ease and

100 G.H.L. Fletcher and C.M. Wyss

uniformity of handling of the data, (2) both metadata and data can be handled directly
in SQL, and (3) sets of relations are encoded as single tables, allowing natural multi-
relational data mapping from databases to databases.

2.3 Data Mapping as a Search Problem

In TUPELO the data mapping problem is seen fundamentally as a search problem. Given
critical instances s and t of the source and target schemas, data mapping is an explo-
ration of the transformation space of L on the source instance s. Search successfully
terminates when the target instance t is located in this space. Upon success, the trans-
formation path from the source to the target is returned. This search process is illustrated
in Figure 4. The branching factor of this space is proportional to |s| + |t|; however in-
telligent exploration of the search space greatly reduces the number of states visited, as
we discuss next.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

������
������
������
������
������
������

������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

. . . .
. . . .

. . . .

Target State

Source State

Fig. 4. Search space for data mapping discovery

Heuristic Search Algorithms. Due to their simplicity and effectiveness, we chose to
implement the heuristic based Iterative Deepening A* (IDA) and Recursive Best-First
Search (RBFS) search algorithms from the Artificial Intelligence literature [28]. In the
heuristic exploration of a state space, both of these algorithms use a heuristic function
to rank states and selectively search the space based on the rankings. The evaluation
function f for ranking a search state x is calculated as f(x) = g(x)+h(x), where g(x)
is the number of transformations applied to the start state to get to state x and h(x) is
an educated guess of the distance of x from the target state. Search begins at the source
critical instance s and continues until the current search state is a structurally identical
superset of the target critical instance t (i.e., the current state contains t). The transfor-
mation path from s to t gives a basic mapping expression in L. After this expression
has been discovered, filtering operations (via relational selections σ) must be applied if
necessary according to external criteria, as discussed in Section 2.1. The final output of
TUPELO is an expression for mapping instances of the source schema to corresponding
instances of the target schema.

Data Mapping as Search 101

The two search algorithms used in TUPELO operate as follows. IDA performs a
depth-bounded depth-first search of the state space using the f -rankings of states as
the depth bound, iteratively increasing this bound until the target state is reached [28].
RBFS performs a localized, recursive best-first exploration of the state space, keep-
ing track of a locally optimal f -value and backtracking if this value is exceeded [28].
Each of these algorithms uses memory linear in the depth of search; although they
both perform redundant explorations, they do not suffer from the exponential mem-
ory use of basic A* best-first search which led to the ineffectiveness of early im-
plementations of TUPELO. Furthermore, they both achieve performance asymptotic
to A*.

Simple Enhancements to Search. To further improve performance of the search al-
gorithms, we also employed the simple rule of thumb that “obviously inapplicable”
transformations should be disregarded during search. For example if the current search
state has all attribute names occurring in the target state, there is no need to explore ap-
plications of the attribute renaming operator. We incorporated several such simple rules
in TUPELO.

3 Search Heuristics

Heuristics are used to intelligently explore a search space, as discussed in Section 2.3.
A search heuristics h(x) estimates the distance, in terms of number of intermediate
search states, of a given database x from a target database t. A variety of heuristics
were implemented and evaluated. This section briefly describes each heuristic used in
TUPELO.

Set Based Similarity Heuristics. Three simple heuristics measure the overlap of val-
ues in database states. Heuristic h1 measures the number of relation, column, and data
values in the target state which are missing in state x:

h1(x) = |πREL(t) − πREL(x)|
+ |πATT(t) − πATT(x)|
+ |πVALUE(t) − πVALUE(x)|.

Here, π is relational projection on the TNF of x and t, and |x| is the cardinality of
relation x. Heuristic h2 measures the minimum number of data promotions (↑) and
metadata demotions (↓) needed to transform x into the target t:

h2(x) = |πREL(t) ∩ πATT(x)|
+ |πREL(t) ∩ πVALUE(x)|
+ |πATT(t) ∩ πREL(x)|
+ |πATT(t) ∩ πVALUE(x)|
+ |πVALUE(t) ∩ πREL(x)|
+ |πVALUE(t) ∩ πATT(x)|.

Heuristic h3 takes the maximum of h1 and h2 on x:

h3(x) = max{h1(x), h2(x)}.

102 G.H.L. Fletcher and C.M. Wyss

Databases as Strings: The Levenshtein Heuristic. Viewing a database as a string
leads to another heuristic. Suppose d is a database in TNF with tuples

〈k1, r1, a1, v1〉 , . . . , 〈kn, rn, an, vn〉 .

For each tuple, let si = ri � ai � vi, where � is string concatenation. Define string(d)
to be the string d1 � · · ·� dn, where d1, . . . , dn is a lexicographic ordering of the strings
si, potentially with repetitions. The Levenshtein distance between string x and string y,
L(x, y), is defined as the least number of single character insertions, deletions, and sub-
stitutions required to transform x into y [20]. Using this metric, we define the following
normalized Levenshtein heuristic:

hL(x) = round

(
k

L(string(x),string(t))
max{|string(x)|, |string(t)|}

)

where |w| is the length of string w, k � 1 is a scaling constant (scaling the interval
[0, 1] to [0, k]), and round(y) is the integer closest to y.

Databases as Term Vectors: Euclidean Distance. Another perspective on a database
is to view it as a document vector over a set of terms [36]. Let A = {a1, . . . , an} be
the set of tokens occurring in the source and target critical instances (including attribute
and relation names), and let

D = {〈a1, a1, a1〉 , . . . , 〈an, an an〉}

be the set of all n3 triples over the tokens in A. Given a search database d in TNF with
tuples 〈k1, r1, a1, v1〉 , . . . , 〈km, rm, am, vm〉, define d̄ to be the n3-vector 〈d1,. . ., dn3〉
where di equals the number of occurrences of the ith triple of D in the list

〈r1, a1, v1〉 , . . . , 〈rm, am, vm〉 .

This term vector view on databases leads to several natural search heuristics. The
standard Euclidean distance in term vector space from state x to target state t gives us
a Euclidean heuristic measure:

hE(x) = round

(√√√√ n∑
i=1

(xi − ti)2
)

where xi is the ith element of the database vector x̄.
Normalizing the vectors for state x and target t gives a normalized Euclidean heuris-

tic for the distance between x and t:

h|E|(x) = round

(
k

√√√√ n∑
i=1

[
xi

|x̄| − ti
|t̄|

]2
)

where k � 1 is a scaling constant and |x̄| =
√∑n

i=1 x2
i , as usual.

Data Mapping as Search 103

Databases as Term Vectors: Cosine Similarity. Viewing databases as vectors, we can
also define a cosine similarity heuristic measure, with scaling constant k � 1:

hcos(x) = round

(
k

[
1 −

∑n
i=1 xiti
|x̄||t̄|

])

Cosine similarity measures the cosine of the angle between two vectors in the database
vector space. If x is very similar to the target t, hcos returns a low estimate of the
distance between them.

4 Supporting Complex Semantic Mappings

The mapping operators in the language L (Table 1) accommodate dynamic
data-metadata structural transformations and simple one-to-one schema matchings.
However, as mentioned in Section 1, many mappings involve complex semantic trans-
formations [8, 14, 29, 31]. As examples of such mappings, consider several basic com-
plex mappings for bridging semantic differences between two tables.

Example 5. A semantic mapping f1 from airline names to airline ID numbers:

Carrier
AirEast
JetWest

f1�−→
CID
123
456

A complex function f2 which returns the concatenation of passenger first and last
names:

Last First
Smith John
Doe Jane

f2�−→
Passenger
John Smith
Jane Doe

The complex function f3 between FlightsB and FlightsCwhich maps AgentFee
and Cost to TotalCost:

CID Route Cost AgentFee
123 ATL29 100 15
456 ATL29 200 16
123 ORD17 110 15
456 ORD17 220 16

f3�−→

CID Route TotalCost
123 ATL29 115
456 ATL29 216
123 ORD17 125
456 ORD17 236

Other examples include functions such as date format, weight, and international finan-
cial conversions, and semantic functions such as the mapping from employee name to
social security number (which can not be generalized from examples), and so on.

Support for Semantic Mapping Expressions. Any complex semantic function is
unique to a particular information sharing scenario. Incorporating such functions in
a non-ad hoc manner is essential for any general data mapping solution. Although
there has been research on discovering specific complex semantic functions [6, 14],
no general approach has been proposed which accommodates these functions in larger
mapping expressions.

104 G.H.L. Fletcher and C.M. Wyss

TUPELO supports discovery of mapping expressions with such complex semantic
mappings in a straight-forward manner without introducing any specialized domain
knowledge. We can cleanly accommodate these mappings in the system by extending
L with a new operator λ which is parameterized by a complex function f and its input-
output signature:

λB
f,Ā(R).

Example 6. As an illustration of the operator, the mapping expression to apply function
f3 in Example 5 to the values in theCost and AgentFee attributes, placing the output
in attribute TotalCost:

λTotalCostf3,Cost, AgentFee(FlightsB).

The semantics of λ is as follows: for each tuple T in relation R, apply the mapping f to
the values of T on attributes Ā = 〈A1, . . . , An〉 and place the output in attribute B. The
operator is well defined for any tuple T of appropriate schema (and is the identity map-
ping on T otherwise). Note that this semantics is independent of the actual mechanics
of the function f . Function symbols are assumed to come from a countably infinite set
F = {fi}i=∞

i=0 .

Discovery of Semantic Mapping Expressions. TUPELO generates data mapping ex-
pressions in L. Extending L with the λ operator allows for the discovery of mapping
expressions with arbitrary complex semantic mappings. Given critical input/output in-
stances and indications of complex semantic correspondences f between attributes Ā
in the source and attribute B in the target, the search is extended to generate appropriate
mapping expressions which also include the λ operator (Figure 4).

For the purpose of searching for mapping expressions, λ expressions are treated just
like any of the other operators. During search all that needs to be checked is that the
applications of functions are well-typed. The system does not need any special semantic
knowledge about the symbols in F; they are treated simply as “black boxes” during
search. The actual “meaning” of a function f is retrieved during the execution of the
mapping expression on a particular database instance, perhaps maintained as a stored
procedure. Apart from what can be captured in search heuristics, this is probably the
best that can be hoped for in general semantic integration. That is, all data semantics
from some external sources of domain knowledge must be either encapsulated in the
functions f or somehow introduced into the search mechanism, for example via search
heuristics.

This highlights a clear separation between semantic functions which interpret the
symbols in the database, such as during the application of functions in F, and syntactic,
structural transformations, such as those supported by generic languages like L. This
separation also extends to a separation of labor in data mapping discovery: discovering
particular complex semantic functions and generating executable data mapping expres-
sions are treated as two separate issues in TUPELO.

Discovering complex semantic functions is a difficult research challenge. Some re-
cent efforts have been successful in automating the discovery of restricted classes of
complex functions [6, 14]. There has also been some initial research on optimization of
mapping expressions which contain executable semantic functions [4].

Data Mapping as Search 105

Focusing on the discovery of data mapping expressions, TUPELO assumes that the
necessary complex functions between the source and target schemas have been discov-
ered and that these correspondences are articulated on the critical instance inputs to the
system (Fig. 2). These correspondences can be easily indicated by a user via a visual
interface, such as those discussed in Section 2.2. Internally, complex semantic maps
are just encoded as strings in the VALUE column of the TNF relation. This string indi-
cates the input/output type of the function, the function name, and the example function
values articulated in the input critical instance.

5 Empirical Evaluation

The TUPELO system has been fully implemented in Scheme. In this section we dis-
cuss extensive experimental evaluations of the system on a variety of synthetic and
real world data sets. Our aim in these experiments was to explore the interplay of the
IDA and RBFS algorithms with the seven heuristics described in Section 3. We found
that overall RBFS had better performance than IDA. We also found that heuristics h1,
h3, normalized Euclidean, and Cosine Similarity were the best performers on the test
data sets.

Experimental Setup. All evaluations were performed on a Pentium 4 (2.8 GHz) with
1.0 GB main memory running Gentoo Linux (kernel 2.6.11-gentoo-r9) and Chez
Scheme (v6.9c). In all experiments, the performance measure is the number of states
examined during search. We also included the performance of heuristic h0 for compar-
ison with the other heuristics. This heuristic is constant on all values (∀x, h0(x) = 0)
and hence induces brute-force blind search. Through extensive empirical evaluation of
the heuristics and search algorithms on the data sets described below, we found that the
following values for the heuristic scaling constants k give overall optimal performance:

Norm. Euclidean Cosine Sim. Levenshtein
IDA k = 7 k = 5 k = 11
RBFS k = 20 k = 24 k = 15

These constant k values were used in all experiments presented below.

5.1 Experiment 1: Schema Matching on Synthetic Data

In the first experiment, we measured the performance of IDA and RBFS using all seven
heuristics on a simple schema matching task.

Data Set. Pairs of schemas with n = 2, . . . , 32 attributes were synthetically generated
and populated with one tuple each illustrating correspondences between each schema:

〈
A1
a1

,
B1
a1

〉 〈
A1 A2
a1 a2

,
B1 B2
a1 a2

〉
· · ·

〈
A1 · · · A32
a1 · · · a32 ,

B1 · · · B32
a1 · · · a32

〉

Each algorithm/heuristic combination was evaluated on generating the correct match-
ings between the schemas in each pair (i.e., A1↔B1, A2↔B2, etc.).

106 G.H.L. Fletcher and C.M. Wyss

 1

 10

 100

 1000

 10000

 100000

 1000000

 5 10 15 20 25 30

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

Schema Size

Synthetic Schema Matching, IDA

Heuristic 0
Heuristic 1

 1

 10

 100

 1000

 10000

 100000

 1000000

 1 2 3 4 5 6 7 8

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

Schema Size

Synthetic Schema Matching, IDA

Euclid
Euclid Norm

Cosine
Levenshtein

Fig. 5. Number of states examined using IDA for schema matching on synthetic schemas

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

Schema Size

Synthetic Schema Matching, RBFS

Heuristic 0
Heuristic 1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

Schema Size

Synthetic Schema Matching, RBFS

Euclid
Euclid Norm

Cosine
Levenshtein

Fig. 6. Number of states examined using RBFS for schema matching on synthetic schemas. Note
that the number of states examined using the normalized Euclidean and Cosine Similarity heuris-
tics were identical.

Results. The performance of IDA on this data set is presented in Fig. 5, and the per-
formance of RBFS is presented in Fig. 6. Heuristic h2 performed identically to h0, and
heuristic h3’s performance was identical to h1. Hence they are omitted in Figs 5 and 6.
RBFS had performance superior to IDA on these schemas, with the h1, Levenshtein,
normalized Euclidean, and Cosine Similarity heuristics having best performance.

5.2 Experiment 2: Schema Matching on the Deep Web

In the second experiment we measured the performance of IDA and RBFS using all
seven heuristics on a set of over 200 real-world query schemas extracted from deep
web data sources [5].

Data Set. The Books, Automobiles, Music, and Movies (BAMM) data set from the
UIUC Web Integration Repository1 contains 55, 55, 49, and 52 schemas from deep web
query interfaces in the Books, Automobiles, Music, and Movies domains, respectively.
The schemes each have between 1 and 8 attributes. In this experiment, we populated

1 http://metaquerier.cs.uiuc.edu/repository, last viewed 26 Sept 2005.

Data Mapping as Search 107

the schemas of each domain with critical instances. We then measured the average cost
of mapping from a fixed schema in each domain to each of the other schemas in that
domain.

 1

 10

 100

 1000

MoviesMusicAutoBooks

A
ve

ra
ge

 N
um

be
r

of
 S

ta
te

s
E

xa
m

in
ed

 (
lo

gs
ca

le
)

Domain

BAMM Schemas, IDA

Heuristic 0
Heuristic 1
Heuristic 2
Heuristic 3

Euclid
Euclid Norm

Cosine
Levenshtein

(a)

 1

 10

 100

 1000

MoviesMusicAutoBooks
A

ve
ra

ge
 N

um
be

r
of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)
Domain

BAMM Schemas, RBFS

Heuristic 0
Heuristic 1
Heuristic 2
Heuristic 3

Euclid
Euclid Norm

Cosine
Levenshtein

(b)

Fig. 7. Average number of states examined for mapping discovery in the four BAMM Domains
using (a) IDA and (b) RBFS

 1

 10

 100

 1000

RBFSIDA

A
ve

ra
ge

 N
um

be
r

of
 S

ta
te

s
E

xa
m

in
ed

 (
lo

gs
ca

le
)

Search Method

BAMM Schemas

Heuristic 0
Heuristic 1
Heuristic 2
Heuristic 3

Euclid
Euclid Norm

Cosine
Levenshtein

Fig. 8. Average number of states examined for mapping discovery across all BAMM domains

Results. The average performance of IDA on each of the BAMM domains is presented
in Fig. 7 (a). Average RBFS performance on each of the BAMM domains is given in
Fig. 7 (b). The average performance of both algorithms across all BAMM domains
is given in Fig. 8. We found that RBFS typically examined fewer states on these do-
mains than did IDA. Overall, we also found that the Cosine Similarity and normalized
Euclidean heuristics had the best performance.

5.3 Experiment 3: Real World Complex Semantic Mapping

In the third experiment we evaluated the performance of TUPELO on discovering com-
plex semantic mapping expressions for real world data sets in the real estate and
business inventory domains.

108 G.H.L. Fletcher and C.M. Wyss

Data Set. We measured performance of complex semantic mapping with the schemas
for the Inventory and Real Estate II data sets from the Illinois Semantic Integration
Archive.2 In the Inventory domain there are 10 complex semantic mappings between the
source and target schemas, and in the Real Estate II domain there are 12. We populated
each source-target schema pair with critical instances built from the provided datasets.

Results. The performance on both domains was essentially the same, so we present the
results for the Inventory schemas. The number of states examined for mapping discovery
in this domain for increasing numbers of complex semantic functions is given in Fig. 9.
On this data, we found that RBFS and IDA had similar performance. For the heuristics,
the best performance was obtained by the h1, h3 and cosine similarity heuristics.

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

of Complex Functions

Inventory, IDA

Heuristic 0, 2
Heuristic 1, 3, Cosine

Euclid
Euclid Norm
Levenshtein

(a)

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8

of

 S
ta

te
s

E
xa

m
in

ed
 (

lo
gs

ca
le

)

of Complex Functions

Inventory, RBFS

Heuristic 0, 2
Heuristic 1, 3, Cosine

Euclid
Euclid Norm
Levenshtein

(b)

Fig. 9. Number of states for complex semantic mapping discovery in the Inventory domain using
(a) IDA and (b) RBFS

5.4 Discussion of Results

The goal of the experiments discussed in this section was to measure the performance
of TUPELO on a wide variety of schemas. We found that TUPELO was effective for dis-
covering mapping expressions in each of these domains, even with the simple heuristic
search algorithms IDA and RBFS. It is clear from these experiments that RBFS is in
general a more effective search algorithm than IDA. Although we found that heuristic
h1 exhibited consistently good performance, it is also clear that there was no perfect
all-purpose search heuristic. TUPELO has also been validated and shown effective for
examples involving the data-metadata restructurings illustrated in Fig. 1 [11]. It was
found in that domain that no particular heuristic had consistently superior performance.
We can conclude from these observations that work still needs to be done on developing
more intelligent search heuristics.

6 Related Work

The problem of overcoming structural and semantic heterogeneity has a long history
in the database [8] and Artificial Intelligence [29] research communities. In Section 1

2 http://anhai.cs.uiuc.edu/archive/, last viewed 26 Sept 2005.

Data Mapping as Search 109

we have already situated TUPELO in the general research landscape of the data map-
ping problem. We now briefly highlight related research not discussed elsewhere in the
paper:

– Schema Matching. A wide variety of existing systems have leveraged Artificial
Intelligence techniques for solving different aspects of schema matching and map-
ping. These include neural networks, Bayesian learning, and genetic programming
approaches [7, 22, 27, 33]. The TUPELO view on data mapping as search comple-
ments this body of research; this view also complements the characterization of
schema matching as constraint satisfaction proposed by Smiljanic et al. [35].

– Data-Metadata Transformations. Few data mapping systems have considered the
data-metadata structural transformations used in the TUPELO mapping language
L. Systems that have considered some aspects of these transformations include
[6, 9, 26].

– Example-Driven Data Mapping. The notion of example-based data mapping is
an ancient idea, by some accounts dating back to the 4th century [30]. Recent
work most closely related to the example driven approach of TUPELO include
[21, 30, 33].

– Executable Mapping Expressions. Most schema matching systems do not address
the issue of generating executable mapping expressions, which is in general con-
sidered to be an open hard problem [24]. Several notable systems that do generate
such expressions include [1, 25, 26, 33].

TUPELO complements and extends this research by (1) attacking the data mapping
problem as a basic search problem in a state space and by (2) addressing a broader class
of mapping expressions including data-metadata transformations and complex seman-
tics functions. We have also initiated a formal investigation of various aspects of the
data mapping problem for relational data sources [12].

7 Conclusions and Future Work

In this paper we presented and illustrated the effectiveness of the TUPELO system for
discovering data mapping expressions between relational data sources. Novel aspects
of the system include (1) example-driven generation of mapping expressions which in-
clude data-metadata structural transformations and complex semantic mappings and (2)
viewing the data mapping problem as fundamentally a sarch problem in a well de-
fined search space. Mapping discovery is performed in TUPELO using only the syntax
and structure of the input examples without recourse to any domain-specific seman-
tic knowledge. The implementation of TUPELO was described and the viability of the
approach illustrated on a variety of synthetic and real world schemas.

There are several promising avenues for future work on TUPELO. As is evident from
the empirical evaluation presented in Section 5, further research remains on developing
more sophisticated search heuristics. The Levenshtein, Euclidean, and Cosine Simi-
larity based search heuristics mostly focus on the content of database states. Successful
heuristics must measure both content and structure. Is there a good multi-purpose search
heuristic? Also, we have only applied straightforward approaches to search with the

110 G.H.L. Fletcher and C.M. Wyss

IDA and RBFS algorithms. Further investigation of search techniques developed in the
AI literature is warranted. Finally, the perspective of data mapping as search is not lim-
ited to relational data sources. In particular, the architecture of the TUPELO system can
be applied to the generation of mapping expressions in other mapping languages and
for other data models. Based on the viability of the system for relational data sources,
this is a very promising area for future research.

Acknowledgments. We thank the Indiana University database group, Alexander Bilke,
Jan Van den Bussche, and Robert Warren for their helpful feedback and support.

References

1. Bernstein, Philip A., et al. Interactive Schema Translation with Instance-Level Mappings
(System Demo). Proc. VLDB Conf., pp. 1283-1286, Trondheim, Norway, 2005.

2. Bilke, Alexander and Felix Naumann. Schema Matching using Duplicates. Proc. IEEE
ICDE, pp. 69-80, Tokyo, Japan, 2005.

3. Bossung, Sebastian, et al. Automated Data Mapping Specification via Schema Heuristics and
User Interaction. Proc. IEEE/ACM ASE, pp. 208-217, Linz, Austria, 2004.

4. Carreira, Paulo and Helena Galhardas. Execution of Data Mappers. Proc. ACM SIGMOD
Workshop IQIS, pp. 2-9, Paris, France, 2004.

5. Chang, K. C.-C., B. He, C. Li, M. Patel, and Z. Zhang. Structured Databases on the Web:
Observations and Implications. SIGMOD Record, 33(3):61-70, 2004.

6. Dhamankar, Robin, et al. iMAP: Discovering Complex Semantic Matches between Database
Schemas. Proc. ACM SIGMOD, pp. 383-394, Paris, France, 2004.

7. Doan, AnHai, Pedro Domingos, and Alon Halevy. Learning to Match the Schemas of Data-
bases: A Multistrategy Approach. Machine Learning 50(3):279-301, 2003.

8. Doan, A., N. Noy, and A. Halevy (Eds). Special Section on Semantic Integration. SIGMOD
Record 33(4), 2004.

9. Embley, D. W., L. Xu, and Y. Ding. Automatic Direct and Indirect Schema Mapping: Expe-
riences and Lessons Learned. In [8], pp.14-19.

10. Euzenat, Jérôme et al. State of the Art on Ontology Alignment. Tech. Report D2.2.3, IST
Knowledge Web NoE, 2004.

11. Fletcher, George H.L. and Catharine M. Wyss. Mapping Between Data Sources on the Web.
Proc. IEEE ICDE Workshop WIRI, Tokyo, Japan, 2005.

12. Fletcher, George H.L., et al. A Calculus for Data Mapping. Proc. COORDINATION Work-
shop InterDB, Namur, Belgium, 2005.

13. Gottlob, Georg, et al. The Lixto Data Extraction Project – Back and Forth between Theory
and Practice. Proc. ACM PODS, pp. 1-12, Paris, France, 2004.

14. He, Bin, et al. Discovering Complex Matchings Across Web Query Interfaces: A Correlation
Mining Approach. Proc. ACM KDD, 2004.

15. Ives, Zachary G., Alon Y. Halevy, Peter Mork, and Igor Tatarinov. Piazza: Mediation and
Integration Infrastructure for Semantic Web Data. J. Web Sem. 1(2):155-175, 2004.

16. Kang, Jaewoo and Jeffrey F. Naughton. On Schema Matching with Opaque Column Names
and Data Values. Proc. ACM SIGMOD, pp. 205-216, San Diego, CA, 2003.

17. Kolaitis, Phokion G. Schema Mappings, Data Exchange, and Metadata Management.
Proc. ACM PODS, pp. 61-75, Baltimore, MD, USA, 2005.

18. Krishnamurthy, Ravi, et al. Language Features for Interoperability of Databases with
Schematic Discrepancies. Proc. ACM SIGMOD, pp. 40-49, Denver, CO, USA, 1991.

Data Mapping as Search 111

19. Lenzerini, Maurizio. Data Integration: A Theoretical Perspective. Proc. ACM PODS,
pp. 233-246, Madison, WI, 2002.

20. Levenshtein, Vladimir I. Binary codes capable of correcting deletions, insertions, and rever-
sals. Doklady Akademii Nauk SSSR 163(4):845-848, 1965.

21. Levy, A.Y., and J.J. Ordille. An Experiment in Integrating Internet Information Sources.
Proc. AAAI Fall Symp. AI Apps. Knowl. Nav. Ret., pp. 92-96, Cambridge, MA, USA, 1995.

22. Li, Wen-Syan and Chris Clifton. SEMINT: A Tool for Identifying Attribute Correspondences
in Heterogeneous Databases Using Neural Networks. Data Knowl. Eng. 33(1):49-84, 2000.

23. Litwin, Witold, Mohammad A. Ketabchi, and Ravi Krishnamurthy. First Order Normal Form
for Relational Databases and Multidatabases. SIGMOD Record 20(4):74-76, 1991.

24. Melnik, Sergey. Generic Model Management: Concepts and Algorithms, LNCS 2967.
Springer Verlag, Berlin, 2004.

25. Melnik, Sergey, et al. Supporting Executable Mappings in Model Management. Proc. ACM
SIGMOD, Baltimore, MD, USA, 2005.

26. Miller, Renée J., Laura M. Haas, and Mauricio A. Hernández. Schema Mapping as Query
Discovery, Proc. VLDB Conf., pp. 77-88, Cairo, Egypt, 2000.

27. Morishima, Atsuyuki, et al. A Machine Learning Approach to Rapid Development of XML
Mapping Queries. Proc. IEEE ICDE, pp.276-287, Boston, MA, USA, 2004.

28. Nilsson, Nils J. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco,
1998.

29. Noy, N.F., A. Doan, and A.Y. Halevy (Eds). Special Issue on Semantic Integration. AI Mag-
azine 26(1), 2005.

30. Perkowitz, Mike and Oren Etzioni. Category Translation: Learning to Understand Informa-
tion on the Internet. Proc. IJCAI, pp. 930-938, Montréal, Canada, 1995.

31. Rahm, Erhard and Philip A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB J. 10(4):334-350, 2001.

32. Raman, Vijayshankar, and Joseph M. Hellerstein. Potter’s Wheel: An Interactive Data Clean-
ing System. Proc. VLDB Conf., pp. 381-390, Roma, Italy, 2001.

33. Schmid, Ute and Jens Waltermann. Automatic Synthesis of XSL-Transformations from Ex-
ample Documents. Proc. IASTED AIA, Innsbruck, Austria, 2004.

34. Shvaiko, Pavel and Jérôme Euzenat. A Survey of Schema-Based Matching Approaches.
J. Data Semantics IV, 2005 (to appear).

35. Smiljanic, Marko, et al. Formalizing the XML Schema Matching Problem as a Constraint
Optimization Problem. Proc. DEXA, Copenhagen, Denmark, 2005.

36. Stephens, D. Ryan. Information Retrieval and Computational Geometry. Dr. Dobb’s Journal
29(12):42-45, Dec. 2004.

37. Wang, G., J. Goguen, Y.-K. Nam, and K. Lin. Critical Points for Interactive Schema Match-
ing. Proc. APWeb, Springer LNCS 3007, pp. 654-664, Hangzhou, China, 2004.

38. Winkler, William E. The State of Record Linkage and Current Research Problems. U.S. Bu-
reau of the Census, Statistical Research Division, Technical Report RR99/04, 1999.

39. Wyss, Catharine M. and Edward L. Robertson. Relational Languages for Metadata Integra-
tion. ACM TODS 30(2):624-660, 2005.

40. Wyss, Catharine M. and Edward L. Robertson. A Formal Characterization of PIVOT / UN-
PIVOT. Proc. ACM CIKM, Bremen, Germany, 2005.

	Introduction
	Contributions and Outline

	Dynamic Relational Data Mapping with $\textsc{\textsf{Tupelo}}$
	Dynamic Relational Transformations
	The Rosetta Stone Principle
	Data Mapping as a Search Problem

	Search Heuristics
	Supporting Complex Semantic Mappings
	Empirical Evaluation
	Experiment 1: Schema Matching on Synthetic Data
	Experiment 2: Schema Matching on the Deep Web
	Experiment 3: Real World Complex Semantic Mapping
	Discussion of Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

