
Local semantic context analysis for automatic ontology matching

Giuseppe Fenza, Vincenzo Loia and Sabrina Senatore

Dipartimento di Matematica e Informatica,
Università degli Studi di Salerno,

via ponte don Melillo, 84084 - Fisciano (SA), Italy
E-mails: {gfenza, loia, ssenatore}@unisa.it.

Abstract—This paper proposes an algorithm for concept matching,
applied in the ontology mapping domain. Basic idea is to seek the
effective semantics embedded in the concept name by analyzing
the context in which it appears. Through simple interactions with
the known lexicon WordNet, the right meaning associated to a
concept is unequivocally elicited by exploring their local semantic
context, viz. the surrounding concepts.

This approach reveals interesting results for the word sense
disambiguation, when polysemy problems requires a semantic
interpretation.

Keywords— Semantic Web, concept matching, ontology

mapping, WordNet, concept similarity.

1 Introduction
The Web comprises huge and disparate collections of
information, whose size is estimated to overcome 11.5
billion web pages [1], though the search engines do not seem
to cover the whole size (for instance, Google indexes
approximately 9 billion pages). The diffusion of the
Semantic Web has promised new models to support
integrated access to web resources and services as well as
intelligent applications for information processing on the
Web.
Ontologies represents a conceivable solution for data
representation as well as the knowledge sharing, aimed at the
integration of the Web content in a unique and coherent
view. Nevertheless, due to the decentralized nature of the
Web, a plethora of ontologies has been defined and
disseminated on the net; often they describe overlapped
application domains; sometimes are specialized for specific
domain.
It is evident the exigency to find some semantic
correspondence among concepts which refer to different
ontologies in order to get a "semantic reconciliation", aimed
at establishing interoperability between semantic Web
applications and a more homogeneous integration of
information [22].
Ontology mapping has been proposed as an effective way of
handling the semantic heterogeneity problem. It plays a
central role in many application domains, such as e-
commerce, semantic web services matchmaking [22],
information integration, query mediation [23], etc..
It is the process that discovers a set of semantic
correspondence between some entities of different
ontologies. Many research studies have yield approaches and
tools for (semi) automatic ontology matching [2], [3];
structural and linguistic matching has been taken into

account; often combined approaches for the matching
valuation provide efficient results too.
This paper presents a simple approach to concept matching,
based on the linguistic similarity. The main idea is to
discriminate the effective meaning of a word by analyzing
the context in which it appears, in order to overcome the
polysemy problems and the lexical ambiguity.
The approach achieves a primitive ontology mapping, by
discovering semantic correspondences between concepts of
two ontologies (implemented as graph-like structures). A
graphical interface presents the discovered mapping.
The paper is organized as follows. Section 2 sketches a state
of art in the ontology matching domain. Section 3 introduces
our approach, describing the basic algorithm and then in
Section 4, implementation details and some relevant case
studies are presented in order to validate its applicability.
Finally, conclusions close the paper.

2 Related works

In the last years, ontologies are increasingly being used to
support the integration of information. Yet, their diffusion in
many Web areas emphasizes impressive heterogeneity
among information sources and in particular in the formal
model exploited to encode the domain conceptualizations.

In literature, different types of heterogeneity have been
identified, mainly split in the following classes.

- Syntactic heterogeneity: represents the heterogeneity
due to differences at the language level; for instance,
when two ontologies are defined by using different
knowledge representation formalisms even though
the meaning is the same [4].

- Terminological heterogeneity: occurs when different
names are given to similar ontology entities [6].

- Semantic heterogeneity: is often called conceptual
heterogeneity. It occurs when the same domain of
interest is modelled in different way, for instance,
exploiting different types of axioms for defining
concepts or just giving diverse expressive values to
them [5].

Many efforts have been done from the research communities
to find a solution to the matching problem by developing a
variety of tools and mostly providing a well-founded
formalization [7, 8, 9]. Matching ontologies (or schemas)
has been recognized as a critical operation in many

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1315

application domains. It takes as input two ontologies, each
one consisting of a set of entities and produces as output the
“connections” (which may represent equivalences or just
relations such as consequence, subsumption, or disjointness)
holding between these entities.
Systems for ontology matching such as Cupid [11],
OntoBuilder [10], Similarity Flooding [2], Clio [12], Glue
[13], S-Match [3], OLA [14] and Prompt [15] aim at
providing an alignment, namely a set of correspondences
between semantically related entities of different ontologies.
Finding the correspondences which are effective from the
user’s viewpoint is often not easy.
In [17] a tree-based classification of elementary matching
approaches is given. At granularity level, matching
techniques can be distinguished into the following
classification criteria:
– Element-level vs. structure-level: Element-level matching
techniques discover correspondences by analyzing entities or
their relative instances, without considering their relations
with other entities or their instances. Structure-level
techniques instead compute correspondences by studying the
structure in which the concepts or their instances appear
[16].
– Syntactic vs. external vs. semantic: The syntactic
techniques consider the input with regard to its sole
structure, according to some well stated algorithm. On the
other hand, external techniques exploit external resources
(such as human support, thesaurus, etc.) and common
knowledge in order to interpret the input [17]. Finally,
semantic techniques use some formal semantics (i.e. model-
theoretic approaches) to interpret the input and justify their
results. Semantic matching [3] is based on the idea that
labels at concept nodes, which are written in natural
language, are translated into propositional formulas which
codify the intended meaning of the labels themselves. This
way the matching problem becomes a propositional
unsatisfiability problem, which can then be efficiently
implemented through propositional satisfiability (SAT)
solvers [18].
Although many advances in the ontology matching research
topic have been addressed, nevertheless, there are still open
issues to investigate in order to get a more efficient and
effective integration of ontology matching tools in the web
applications domain.

3 Ontology Matching
The ontology matching problem can be seen as a problem of
concept matching. Two concepts match, if they are similar.
In this section some formal notions are given to delineate a
common background, useful to describe our ontology
matching approach. Then the ontology matching method is
detailed.

3.1 Scope of a concept into an ontology

Concept matching requires the evaluation of the similarity
between two concepts. This approach aims at discovering
linguistic similarities between the involved entities. In

general, linguistic similarities are based on morphology and
semantics, which are associated to the words that describe
the relative entities. Thus, in this approach the similarity
between two entities of different ontologies is evaluated not
only by investigating the semantics of the entities names, but
also taking into account the local context, through which the
effective meaning is described.
Often the same word placed in different textual contexts
assumes completely different meanings. In addition, lexicons
are not able to disambiguate situations in which homonyms
occur.
In order to deal with lexical ambiguity, this approach
introduces the notion of “scope” of a concept which
represents the context where the concept is placed.

Definition 1: Let O be ontology and c is a concept in O. The
scope of c, with radius r, scope(c, r) is a set of all the
concepts outgoing from c included in a path of length r, with
centre c. More formally:

�������� �	
 ���
��� � ��� ������� ��	 � �����

where ������� ��	 is the number of edges that are in the path
from concept c to concept c’. Let us note that ������� ��	

�������
 �� .

 Figure 1 sketches the idea. The scope defines a round area
composed of all concepts that are connected directly or
indirectly to the central node. This area represents the
context. Increasing the radius means to enlarge the scope
(i.e. this area) and, consequently, the set of neighbour
concepts that intervene in the description of the context.
Fixed the radius of the scope of two concepts � and �,
belonging to different ontologies, our goal is to find out a
semantic relationship exist between them.

Definition 2. Let � be a concept in the ontology O. The
concept name of �, a= label(�) is the linguistic label
associated to the concept �.

Definition 3. Given two concepts � , � belonging
respectively to ontologies O and O’, let L be a lexicon and
a= label(�) and b= label(�). Then, let lex (a, b) � [0, 1] be
a lexical similarity associated to the pair of concept names
(�, �), with ��O , ��O’. The set L is composed of all pairs,
defined as follows:

�
 ��� ����� ��	
��� � ��������� �	����������
� ��������� �	������ �!���� "	 # �	����

WordNet is the lexicon exploited in this approach. It is one
of the most common lexical databases, used for research
studies in computational linguistics, text analysis, etc. The
function lex(a, b) is the similarity metric.
Many similarity functions have been implemented in the
WordNet package. In particular, a measure specifically
developed for WordNet is the similarity proposed by Wu
and Palmer [19]. It is simple to compute and results an
efficacy metric for ontology matching.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1316

Figure 1: Intuitive idea of concept matching, exploiting the scope and the effective sense of the concept names

The Wu-Palmer similarity is based on the observation that
although two concepts near the root of a hierarchy are close
to each other in terms of edges, they can be very different
semantically; conversely, two classes under one concept that
are distant as number of edges, could be more similar
conceptually. The idea is to find a common closest
hyperonym in the path from them to the root.
The principle of similarity computation between two nodes
is based on the distance which separates these two nodes
from the root node and the distance which separates their
closest common ancestor from the root too.
Let us assume that the arcs in ontology represent uniform
distances (i.e. all the semantic edges have the same weight).

Definition 4. Let c1 and c2 be two ontology elements in the
ontology O. The distance between two nodes �(c1, c2) is
represented by the minimum number of edges that connect
them.

Definition 5. Given an ontology O formed by a set of nodes
and a root node R. Let c1 and c2 be two ontology concepts of
which we will calculate the similarity. Then, g is the common
ancestor of c and c’. The Wu–Palmer similarity is defined by
the following expression[19]:

��$��%� �&	
 �
'� (�)��*� +	��

)��%� +	 ,)��&� +	
�

3.2 Concept Sense Discrimination

Through the given definitions, it is possible to individuate
the meaning of a name associated to an ontology concept.
Given a word, WordNet provides a list of all the synsets and
word senses, related to that word. Just to give an example,

submitting the word “table” to WordNet, the result is the
following list.

The noun table has 6 sense (first 3 form tagged
texts)

1. (57) table, tabular array -- (a set of data
arranged in rows and columns; "see table 1")

2. (25) table -- (a piece of furniture having a
smooth flat top that is usually supported by
one or more vertical legs; "it was a sturdy
table")

3. (5) table -- (a piece of furniture with
tableware for a meal laid out on it; "I
reserved a table at my favorite restaurant")

4. mesa, table -- (flat tableland with steep
edges; "the tribe was relatively safe on the
mesa but they had to descend into the valley
for water")

5. table -- (a company of people assembled at a
table for a meal or game; "he entertained the
whole table with his witty remarks")

6. board, table -- (food or meals in general;
"she sets a fine table"; "room and board")

Let us note all the senses are ranked with respect to the
frequency of the term (shown in the parenthesis for the first
three senses) in the reference context (according to the
spoken common sense).
The following pseudo-code details the algorithm for
discriminate the actual sense of a word associated to a given
concept. The algorithm takes as input an ontology O, a
reference concept � in that ontology and a word w. The word
w represents the name associated to the concept � (i.e.
w=label(�)).
Let us note the semantic difference between the concept (or
class) in an ontology and the label associated to that concept.
The algorithm replies to question like “I would like to know
the effective sense of the word w, placed in the context (or
scope) of the concept �”.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1317

Algorithm1___________________________________
Input: Ontology O, concept � � O, radius r and the
word w

Output: sense number of w

1: build an array N[|synset(w)|];
2: for each t1 in synset(w)
3: initialize N[senseNumber(t1)] = 0;
4: for i = 1 to r
5: set M = �;
6: for each c in scope(�,i) – scope(�,i-1)
7: set S = �; //set of similarity values
8: for each t2 in synset(label(c))
9: sim = similarity_WP(t1, t2)
10: S = S U {sim};
11: end for each
12:
13: set max = maximum in S;
14: max = max / |scope(�, i)|;
15: M = M U {max};
16: end for each
17: set Sum = summation of all the values in M
18: Sum = Sum /i;
19: N[senseNumber(t1)] += Sum;
20: end for
21: end for each
22: i1 = sense number with the highest
 frequency in N.
23: return i1
__

First step (line 1) is to declare a vector structure whose size
corresponds to the number of synsets (or senses) associated
to the given word w. Goal is to maintain in each cell of the
vector a pertinence value that represents how much the word
w is semantically related to that sense (or belongs to that
synset).
The algorithm selects all the concepts in the scope of �
(belonging to the reference ontology O) by varying the
radius (lines 4-6), in order to get different set of terms. Then
compute the Wu-Palmer similarity between two terms
coming from the concept name of � and the word w (line 9).
Just to give an idea about how the algorithm works, let us
look at Figure 2. For simplicity, let us suppose w = label(�)
= “Table”. The algorithm evaluates the similarity between
all the terms coming from both the WordNet synset of
“Table” and the scope of concept “Table” in the ontology.
In particular, Figure 2 shows the flat ring shaped areas in
different colours, by varying the radius.
For each concept c in the ring shaped area (computed as the
difference of the areas between two successive radii, see line
6), the max similarity values between the name associated to
c and a concept name in synset of � are maintained in M
(line 15).
At the end of the two loops (lines 6-11) the variable Sum
contains the sum of all the max similarity values computed
for each couple of terms coming from the fixed term t1 of
synsets of � and all the terms in the synset of w.
The Sum is “weighted” with respect to the current radius
(line 18). The final value of Sum is added to the value stored
in the cell associated to the sense of some term t1. This is
repeated for each t1 in the synset of w. At the end, in each
cell of the vector N there is a value, associated to each term
in the synset of w.

Figure 2. A sketched ontology and the scope of concept
“Table” at different radius r.

The index of the vector cell, whose value is the maximum,
represents the sense number to give as output.
Applying the algorithm on the ontology of Figure 2, the
retuned index value is 5.
Abstractly speaking, the approach helps the user to
individuate the right meaning of a word, given the context.

3.3 Ontology mapping

As said, the ontology mapping outlines correspondences or
matches between concepts coming from two different
ontology. In this approach, the concept matching is
measured by computing a similarity between concepts at
linguistic level.
The algorithm described in the previous section has been
exploited to evaluate the concept matching. More formally,
given two ontologies O e O’ and two concepts c and c’,
belonging respectively to these two ontologies, there is a
match between c and c’ if a similarity between them exists,
computed as follows:

1. Algorithm1 is invocated twice: one time it takes as
input the concept c and the ontology O and another
time, by giving the concept c’ and the ontology O’.
Outputs of these two independent executions of
Algorithm1 are two indexes, i for the synset of c
and i’ for the synset of c’. As said, they identify the
sense number associated to each concept.

2. Once discovered the sense of involved concepts, the
affinity between the concepts is computed by a
similarity measure (for instance, the Wu-Palmer
similarity defined in Section 3.1) between c and c’.

In order to obtain all the semantic correspondences among
the concepts in the two ontologies, this procedure can be
applied for each couple of concepts coming from two
reference ontologies. Final result is an ontology mapping; a
similarity value is assigned to each discovered
correspondence between concepts in the two ontologies.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1318

Figure 3. Ontology Mapping GUI

4 User interface and application details

The algorithm has been implemented in Java language. It
exploits Java WordNet Similarity Library (JWSL) [20] for
accessing the WordNet database. JSWL implements the
most commons similarity and relatedness measures between
words and get information about synsets.
A simple graphical interface has been designed for the user
interaction (see Figure 3). It has been implemented by
exploiting Graphviz library [21]. It is an open source graph
visualization software which provides several main graph
layout programs.
Let us note the ontologies have been represented (and
implemented) as graphs, whose nodes represent the concepts
whereas the edges connects two nodes when a relationship
exists between them. In this version, a restriction on just
hierarchies or taxonomies (i.e. only IS-A relationships) is
considered.
The user can load the two ontologies and the final mapping
is drafted in the Ontology Graph View panel (see Figure 3).
The correspondences discovered by the mapping are
sketched in Figure 3 as dotted lines between the concepts. A
weight (value of similarity) is associated to each arc.
Figure 3 shows on the right hand of the interface, a sliding
bar for setting the similarity threshold. Moving the cursor,
the threshold is modified, returning in the graph view panel
just the arcs whose similarity values are greater than this
threshold.
Moreover, when the user clicks on a concept (node) in the
graph view panel, all its connections with other concepts and
the relative similarity values are shown on the left of the
interface.

4.1 Some case studies
The algorithm has been applied on some sketched
ontologies. The application acquires the ontologies in OWL

format, although this prototypal version is limited to work on
hierarchical structure.
In the interface of Figure 3, a simple example of ontology
mapping is shown. The case study has been built ad-hoc; just
the relevant portions of two ontologies are shown.
The Ontology1 (in blue color in Figure 3) is described by the
concepts named “Object”, “Vehicle” and “Car” , whereas
the Ontology2 (green color) is composed of the concept with
names “Thing”, “Automobile” and “Motor”.
The application adds an arc between two concepts of
different ontologies, when a similarity value (in the range [0,
1]) is found.
Let us note there exists an arc between the concept names
“Vehicle” and “Automobile” with an high similarity (0.96),
but the arc between “Vehicle” and “Motor” is not inserted in
the graph view, because the similarity between these concept
names assumes values lower than the selected threshold.
Similar considerations can be done on the ontology mapping
shown in Figure 4 (although the GUI is not shown).
Two ontologies are drafted in different colors. Both of them
describe a similar domain (the living beings).

Figure 4: Example of Ontology Matching on the human
beings domain.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1319

Figure 5: No concept matching occurs between these two
ontologies, due to different meanings of the reference
ontology domains.

Because the ontologies present concepts with similar names
and meanings, the similarity values on the added arcs (in
red) are equal to 1 (the maximum similarity).
Finally, Figure 5 shows a case of no concept match. The two
ontologies share the same concept name “Table”, but the
reference context is completely different. In fact,
Algorithm1 returns the sense number 5 for the ontology on
the left (colored blue) and the sense number 1 for the
ontology on the right, respectively (see Section 3.2 for
details). Thus no arcs can be placed between them.
Let us note, in the example in Figure 5, the node with
concept name “Number” is disconnected by the others,
because the algorithm does not analyzes the OWL ontology
relationships that are not hierarchical.

5 Conclusions
The paper describes a study for ontology mapping based on
the discovering of linguistic similarity. A graphical interface
allows the user to see the final mapping, presenting a
similarity value for each discovered concept matching.
This algorithm represents an initial version of an ontology
matching method and needs some extension for processing
all the ontology relationships. Its efficacy would be visible if
it was exploited in combination with structure based
ontology matching. Further developments are addressed to
reach these issues. Nevertheless, its applicability may not
restricted to ontology matching problems. The basic
algorithm could be used for Information Retrieval problems,
for instance when the textual analysis requires the word
sense disambiguation. The context of a word could be
described by defining a “sliding window” on the text
surrounding the analyzed word, in order to discover its
appropriate sense. Furthermore, the algorithm could be
exploited for discriminating common sense words, in
specialized contexts where the word meaning depends on the
application domain (or the reference ontology).

References
[1] Gulli, A. and Signorini, A. 2005. The indexable web is more than 11.5

billion pages. In Special interest Tracks and Posters of the 14th
international Conference on World Wide Web (Chiba, Japan, May 10 -
14, 2005). WWW '05. ACM, New York, NY, 902-903.

[2] S. Melnik, H. G. Molina, E. Rahm, Similarity Flooding: A Versatile
Graph Matching Algorithm and Its Application to Schema Matching,
In Proceedings of the 18th International Conference on Data
Engineering, San Jose, CA, 2002, pp.117-128.

[3] F. Giunchiglia, M. Yatskevich, E. Giuchilglia, Efficient Semantic
Matching, In Proceedings of ESWC, Heraklion, Greece, 2005, pp.272-
289.

[4] J. Euzenat and H. Stuckenschmidt. The ‘family of languages’
approach to semantic interoperability. In Borys Omelayenko and
Michel Klein, editors, Knowledge transformation for the semantic
web, pages 49–63. IOS press,Amsterdam (NL), 2003.

[5] M. Klein. Combining and relating ontologies: an analysis of problems
and solutions. In Proc. IJCAI Workshop on Ontologies and
Information Sharing, Seattle (WA US), 2001.

[6] N. Noy and M. Klein. Ontology evolution: Not the same as schema
evolution. Knowledge and Information Systems, 6(4):428–440, 2004.

[7] P. Bernstein, A. Halevy, and R. Pottinger. A vision of management of
complex models. ACM SIGMOD Record, 29(4):55–63, 2000

[8] P. Bouquet, M. Ehrig, J. Euzenat, E. Franconi, P. Hitzler, M.
Krotzsch, L. Serafini, G. Stamou, Y. Sure, and S. Tessaris.
Specification of a common framework for characterizing alignment.
Deliverable D2.2.1, Knowledge web NoE, 2004

[9] A. Zimmermann, M. Krotzsch, J. Euzenat, and P. Hitzler. Formalizing
ontology alignment and its operations with category theory. In Proc.
4th International Conference on Formal Ontology in Information
Systems (FOIS),pages 277–288, Baltimore (MD US), 2006

[10] A. Gal, G. Modica, H. Jamil, and A. Eyal. Automatic ontology
matching using application semantics. AI Magazine, 26(1):21{32,
2005.

[11] J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching
with Cupid. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), pages 48-58, Rome, Italy, 2001.

[12] R. Miller, M. Hernandez, L. Haas, L.-L. Yan, C. Ho, R. Fagin, and L.
Popa. The Clio project: Managing heterogeneity. SIGMOD Record,
30(1):78-83,2001.

[13] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map
between ontologies on the semantic web. In Proceedings of the 11th
International Conference on World Wide Web (WWW), pages
662{673, Honolulu, USA, 2002.

[14] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in
OWLlite. In Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI), pages 333-337, Valencia, Spain, 2004.

[15] N. Noy and M. Musen. The PROMPT suite: interactive tools for
ontology merging and mapping. International Journal of Human-
Computer Studies, 59(6):983-1024, 2003.

[16] J. Kang and J. Naughton. On schema matching with opaque column
names and data values. In Proc. 22nd International Conference on
Management of Data (SIGMOD), pages 205–216, San Diego (CA
US), 2003.

[17] P. Shvaiko and J. Euzenat. A survey of schema-based matching
approaches. Journal on Data Semantics, IV:146–171, 2005.

[18] D. Le Berre JSAT: the java satisfiability library http://www.sat4j.org/

[19] Z. Wu and M. Palmer. Verb semantics and lexical selection. In Proc.
32nd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 133–138, Las Cruces (NM US), 1994.

[20] Java WordNet Similarity Library (JWSL) Available:
http://grid.deis.unical.it/similarity/

[21] Graphviz - Graph Visualization. Available: http://www.graphviz.org/

[22] G. Fenza, V. Loia, S. Senatore, A hybrid approach to semantic web
services matchmaking, International Journal of Approximate
Reasoning, Volume 48, Issue 3, August 2008, pp. 808-828.

[23] G. Fenza, V. Loia, S. Senatore: Improving Fuzzy Service
Matchmaking through Concept Matching Discovery. FUZZ-IEEE
2007: pp. 1-6

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1320

