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Abstract—This paper proposes an algorithm for concept matching, 
applied in the ontology mapping domain. Basic idea is to seek the 
effective semantics embedded in the concept name by analyzing 
the context in which it appears. Through simple interactions with 
the known lexicon WordNet, the right meaning associated to a 
concept is unequivocally elicited by exploring their local semantic 
context, viz. the surrounding concepts.  

This approach reveals interesting results for the word sense 
disambiguation, when polysemy problems requires a semantic 
interpretation. 
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1 Introduction 
The Web comprises huge and disparate collections of 
information, whose size is estimated to overcome 11.5 
billion web pages [1], though the search engines do not seem 
to cover the whole size (for instance, Google indexes 
approximately 9 billion pages). The diffusion of the 
Semantic Web has promised new models to support 
integrated access to web resources and services as well as 
intelligent applications for information processing on the 
Web.  
Ontologies represents a conceivable solution for data 
representation as well as the knowledge sharing, aimed at the 
integration of the Web content in a unique and coherent 
view. Nevertheless, due to the decentralized nature of the 
Web, a plethora of ontologies has been defined and 
disseminated on the net; often they describe overlapped 
application domains; sometimes are specialized for specific 
domain.  
It is evident the exigency to find some semantic 
correspondence  among concepts which refer to different 
ontologies in order to get a "semantic reconciliation", aimed 
at establishing interoperability between semantic Web 
applications and a more homogeneous integration of 
information [22]. 
Ontology mapping has been proposed as an effective way of 
handling the semantic heterogeneity problem. It plays a 
central role in many application domains, such as e-
commerce, semantic web services matchmaking [22], 
information integration, query mediation [23], etc..   
It is the process that discovers a set of semantic 
correspondence between some entities of different 
ontologies. Many research studies have yield approaches and 
tools for (semi) automatic ontology matching [2], [3]; 
structural and linguistic matching has been taken into 

account; often combined approaches for the matching 
valuation provide efficient results too.  
This paper presents a simple approach to concept matching, 
based on the linguistic similarity. The main idea is to 
discriminate the effective meaning of a word by analyzing 
the context in which it appears, in order to overcome the 
polysemy problems and the lexical ambiguity. 
The approach achieves a primitive ontology mapping, by 
discovering semantic correspondences between concepts of 
two ontologies (implemented as graph-like structures). A 
graphical interface presents the discovered mapping. 
The paper is organized as follows. Section 2 sketches a state 
of art in the ontology matching domain. Section 3 introduces 
our approach, describing the basic algorithm and then in 
Section 4, implementation details and some relevant case 
studies are presented in order to validate its applicability. 
Finally, conclusions close the paper. 

2  Related works 

In the last years, ontologies are increasingly being used to 
support the integration of information. Yet, their diffusion in 
many Web areas emphasizes impressive heterogeneity 
among information sources and in particular in the formal 
model exploited to encode the domain conceptualizations.  

In literature, different types of heterogeneity have been 
identified, mainly split in the following classes.  

- Syntactic heterogeneity: represents the heterogeneity 
due to differences at the language level; for instance, 
when two ontologies are defined by using different 
knowledge representation formalisms even though 
the meaning is the same [4]. 

- Terminological heterogeneity: occurs when different 
names are given to similar ontology entities [6]. 

- Semantic heterogeneity: is often called conceptual 
heterogeneity. It occurs when the same domain of 
interest is modelled in different way, for instance, 
exploiting different types of axioms for defining 
concepts or just giving diverse expressive values to 
them [5].  

Many efforts have been done from the research communities 
to find a solution to the matching problem by developing a 
variety of tools and mostly providing a well-founded 
formalization [7, 8, 9].  Matching ontologies (or schemas) 
has been recognized as a critical operation in many 

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1315



application domains. It takes as input two ontologies, each 
one consisting of a set of entities and produces as output the 
“connections” (which may represent equivalences or just 
relations such as consequence, subsumption, or disjointness) 
holding between these entities. 
Systems for ontology matching such as Cupid [11], 
OntoBuilder [10], Similarity Flooding [2], Clio [12], Glue 
[13], S-Match [3], OLA [14] and Prompt [15] aim at 
providing an alignment, namely a set of correspondences 
between semantically related entities of different ontologies. 
Finding the correspondences which are effective from the 
user’s viewpoint is often not easy.  
In [17] a tree-based classification of elementary matching 
approaches is given. At granularity level, matching 
techniques can be distinguished into the following 
classification criteria:  
–   Element-level vs. structure-level: Element-level matching 
techniques discover correspondences by analyzing entities or 
their relative instances, without considering their relations 
with other entities or their instances. Structure-level 
techniques instead compute correspondences by studying the 
structure in which the concepts or their instances appear 
[16]. 
– Syntactic vs. external vs. semantic: The syntactic 
techniques consider the input with regard to its sole 
structure, according to some well stated algorithm. On the 
other hand, external techniques exploit external resources 
(such as human support, thesaurus, etc.) and common 
knowledge in order to interpret the input [17]. Finally, 
semantic techniques use some formal semantics (i.e. model-
theoretic approaches) to interpret the input and justify their 
results.  Semantic matching [3] is based on the idea that 
labels at concept nodes, which are written in natural 
language, are translated into propositional formulas which 
codify the intended meaning of the labels themselves. This 
way the matching problem becomes a propositional 
unsatisfiability problem, which can then be efficiently 
implemented through propositional satisfiability (SAT) 
solvers [18]. 
Although many advances in the ontology matching research 
topic have been addressed, nevertheless, there are still open 
issues to investigate in order to get a more efficient and 
effective integration of ontology matching tools in the web 
applications domain. 

3 Ontology Matching 
The ontology matching problem can be seen as a problem of 
concept matching.  Two concepts match, if they are similar. 
In this section some formal notions are given to delineate a 
common background, useful to describe our ontology 
matching approach. Then the ontology matching method is 
detailed.  

3.1 Scope of a concept into an ontology 

Concept matching requires the evaluation of the similarity 
between two concepts. This approach aims at discovering 
linguistic similarities between the involved entities. In 

general, linguistic similarities are based on morphology and 
semantics, which are associated to the words that describe 
the relative entities. Thus, in this approach the similarity 
between two entities of different ontologies is evaluated not 
only by investigating the semantics of the entities names, but 
also taking into account the local context, through which the 
effective meaning is described. 
Often the same word placed in different textual contexts 
assumes completely different meanings. In addition, lexicons 
are not able to disambiguate situations in which homonyms 
occur.
In order to deal with lexical ambiguity, this approach 
introduces the notion of “scope” of a concept which 
represents the context where the concept is placed.  

Definition 1: Let O be ontology and c is a concept in O. The 
scope of c, with radius r, scope(c, r) is a set of all the 
concepts outgoing from c included in a path of length r, with 
centre c. More formally: 
 

�������� �	 
 ���
��� � ��� ������� ��	 � ����� 
 
where ������� ��	 is the number of edges that are in the path 
from concept c to concept c’. Let us note that ������� ��	 

������� 
 �� . 

 Figure 1 sketches the idea. The scope defines a round area 
composed of all concepts that are connected directly or 
indirectly to the central node. This area represents the 
context. Increasing the radius means to enlarge the scope 
(i.e. this area) and, consequently, the set of neighbour 
concepts that intervene in the description of the context.   
Fixed the radius of the scope of two concepts � and �,
belonging to different ontologies, our goal is to find out a 
semantic relationship exist between them.   

Definition 2. Let � be a concept in the ontology O. The 
concept name of �, a= label(�) is the linguistic label 
associated to the concept �. 

Definition 3. Given two concepts � , � belonging 
respectively to ontologies O and O’, let L be a lexicon and 
a= label(�)  and b= label(�). Then, let  lex (a, b) � [0, 1] be 
a lexical similarity associated to the pair of concept names  
(�, �), with ��O , ��O’. The set L is composed of all pairs, 
defined as follows: 
 

� 
 ��� ����� ��	
��� � ��������� �	����������
� ��������� �	������ �!���� "	 # �	����

WordNet is the lexicon exploited in this approach. It is one 
of the most common lexical databases, used for research 
studies in computational linguistics, text analysis, etc.  The 
function lex(a, b) is the similarity metric.  
Many similarity functions have been implemented in the 
WordNet package. In particular, a measure specifically 
developed for WordNet is the similarity proposed by Wu 
and Palmer [19]. It is simple to compute and results an 
efficacy metric for ontology matching.   
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Figure 1: Intuitive idea of concept matching, exploiting the scope and the effective sense of the concept names 

The Wu-Palmer similarity is based on the observation that 
although two concepts near the root of a hierarchy are close 
to each other in terms of edges,  they can be very different 
semantically; conversely, two classes under one concept that 
are distant as number of edges, could be more similar 
conceptually. The idea is to find a common closest 
hyperonym in the path from them to the root. 
The principle of similarity computation between two nodes 
is based on the distance which separates these two nodes 
from the root node and the distance which separates their 
closest common ancestor from the root too.  
Let us assume that the arcs in ontology represent uniform 
distances (i.e. all the semantic edges have the same weight). 

Definition 4. Let c1 and c2 be two ontology elements in the 
ontology O. The distance between two nodes  �(c1, c2)  is 
represented by the minimum number of edges that connect 
them. 

Definition 5. Given an ontology O formed by a set of nodes 
and a root node R. Let c1 and c2 be two ontology concepts of 
which we will calculate the similarity. Then,  g is  the common 
ancestor of c and c’. The Wu–Palmer similarity is defined by 
the following expression[19]: 

��$��%� �&	 
 �
'� ( �)��*� +	��

)��%� +	 , )��&� +	
�

3.2 Concept Sense Discrimination 

Through the given definitions, it is possible to individuate 
the meaning of a name associated to an ontology concept. 
Given a word, WordNet provides a list of all the synsets and 
word senses, related to that word. Just to give an example, 

submitting the word “table” to WordNet, the result is the 
following list. 

The noun table has 6 sense (first 3 form tagged 
texts)

1. (57) table, tabular array -- (a set of data 
arranged in rows and columns; "see table 1") 

2. (25) table -- (a piece of furniture having a 
smooth flat top that is usually supported by 
one or more vertical legs; "it was a sturdy 
table")

3. (5) table -- (a piece of furniture with 
tableware for a meal laid out on it; "I 
reserved a table at my favorite restaurant") 

4. mesa, table -- (flat tableland with steep 
edges; "the tribe was relatively safe on the 
mesa but they had to descend into the valley 
for water") 

5. table -- (a company of people assembled at a 
table for a meal or game; "he entertained the 
whole table with his witty remarks") 

6. board, table -- (food or meals in general; 
"she sets a fine table"; "room and board") 

Let us note all the senses are ranked with respect to the 
frequency of the term (shown in the parenthesis for the first 
three senses) in the reference context (according to the 
spoken common sense). 
The following pseudo-code details the algorithm for 
discriminate the actual sense of a word associated to a given 
concept.  The algorithm takes as input an ontology O, a 
reference concept � in that ontology and a word w. The word 
w represents the name associated to the concept � (i.e. 
w=label(�)).  
Let us note the semantic difference between the concept (or 
class) in an ontology and the label associated to that concept.  
The algorithm replies to question like “I would like to know 
the effective sense of the word w, placed in the context (or 
scope) of the concept �”.   
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Algorithm1___________________________________ 
Input: Ontology O, concept � � O, radius r and the 
word w 

Output: sense number of w 

1: build an array N[|synset(w)|]; 
2: for each t1 in synset(w) 
3:    initialize N[senseNumber(t1)] = 0; 
4: for i = 1 to r 
5:      set M = �;   
6: for each c in scope(�,i) – scope(�,i-1)
7:         set S = �;  //set of similarity values
8: for each t2 in synset(label(c)) 
9:            sim = similarity_WP(t1, t2) 
10:           S = S U {sim}; 
11: end for each
12:
13:        set max = maximum in S; 
14:        max = max / |scope(�, i)|; 
15:        M = M U {max}; 
16: end for each
17:     set Sum = summation of all the values in M 
18:     Sum = Sum /i; 
19:     N[senseNumber(t1)] += Sum; 
20: end for
21: end for each
22: i1 = sense number with the highest
                               frequency in N. 
23: return i1 
____________________________________________ 

First step (line 1) is to declare a vector structure whose size 
corresponds to the number of synsets (or senses) associated 
to the given word w. Goal is to maintain in each cell of the 
vector a pertinence value that represents how much the word 
w is semantically related to that sense (or belongs to that 
synset).   
The algorithm selects all the concepts in the scope of �
(belonging to the reference ontology O) by varying the 
radius (lines 4-6), in order to get different set of terms. Then 
compute the Wu-Palmer similarity between two terms 
coming from the concept name of  � and the word w (line 9).   
Just to give an idea about how the algorithm works, let us 
look at Figure 2. For simplicity, let us suppose w = label(�)
= “Table”. The algorithm evaluates the similarity between 
all the terms coming from both the WordNet synset of 
“Table” and the scope of concept “Table” in the ontology.  
In particular, Figure 2 shows the flat ring shaped areas in 
different colours, by varying the radius.  
For each concept c in the ring shaped area (computed as the 
difference of the areas between two successive radii, see line 
6), the max similarity values between the name associated to 
c and a concept name in synset of � are maintained in M 
(line 15). 
At the end of the two loops (lines 6-11) the variable Sum
contains the sum of all the max similarity values computed 
for each couple of terms coming from the fixed term t1 of 
synsets of �  and all the terms in the synset of w.
The Sum is “weighted” with respect to the current radius 
(line 18). The final value of Sum is added to the value stored 
in the cell associated to the sense of some term t1. This is 
repeated for each t1 in the synset of w.  At the end, in each 
cell of the vector N there is a value, associated to each term 
in the synset of w.

Figure 2.  A sketched ontology and the scope of concept 
“Table” at different radius r.  

The index of the vector cell, whose value is the maximum, 
represents the sense number to give as output. 
Applying the algorithm on the ontology of Figure 2, the 
retuned index value is 5. 
Abstractly speaking, the approach helps the user to 
individuate the right meaning of a word, given the context.  

3.3 Ontology mapping 

As said, the ontology mapping outlines correspondences or 
matches between concepts coming from two different 
ontology. In this approach, the concept matching is 
measured by computing a similarity between concepts at 
linguistic level.   
The algorithm described in the previous section has been 
exploited to evaluate the concept matching. More formally, 
given two ontologies O e O’ and two concepts c and c’,
belonging respectively to these two ontologies, there is a 
match between c and c’ if a similarity between them exists, 
computed as follows: 

1. Algorithm1 is invocated twice: one time it takes as 
input the concept c and the ontology O and another 
time, by giving the concept c’ and the ontology O’.
Outputs of these two independent executions of 
Algorithm1 are two indexes, i  for the synset of c
and i’ for the synset of c’. As said, they identify the 
sense number associated to each concept.  

2. Once discovered the sense of involved concepts, the 
affinity between the concepts is computed by a 
similarity measure (for instance, the Wu-Palmer 
similarity defined in Section 3.1) between c and c’.

In order to obtain all the semantic correspondences among 
the concepts in the two ontologies, this procedure can be 
applied for each couple of concepts coming from two 
reference ontologies. Final result is an ontology mapping; a 
similarity value is assigned to each discovered 
correspondence between concepts in the two ontologies. 
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Figure 3.  Ontology Mapping GUI 

4 User interface and application details  

The algorithm has been implemented in Java language. It 
exploits Java WordNet Similarity Library (JWSL) [20]  for 
accessing the WordNet database. JSWL implements the 
most commons similarity and relatedness measures between 
words and get information about synsets.
A simple graphical interface has been designed for the user 
interaction (see Figure 3).  It has been implemented by 
exploiting Graphviz library [21]. It is an open source graph 
visualization software which provides several main graph 
layout programs.  
Let us note the ontologies have been represented (and 
implemented) as graphs, whose nodes represent the concepts 
whereas the edges connects two nodes when a relationship 
exists between them. In this version, a restriction on just 
hierarchies or taxonomies (i.e. only IS-A relationships) is 
considered. 
The user can load the two ontologies and the final mapping 
is drafted in the Ontology Graph View panel (see Figure 3).  
The correspondences discovered by the mapping are 
sketched in Figure 3 as dotted lines between the concepts. A 
weight (value of similarity) is associated to each arc.  
Figure 3 shows on the right hand of the interface, a sliding 
bar for setting the similarity threshold. Moving the cursor, 
the threshold is modified, returning in the graph view panel 
just the arcs whose similarity values are greater than this 
threshold.   
Moreover, when the user clicks on a concept (node) in the 
graph view panel, all its connections with other concepts and 
the relative similarity values are shown on the left of the 
interface.  

4.1 Some case studies  
The algorithm has been applied on some sketched 
ontologies.  The application acquires the ontologies in OWL 

format, although this prototypal version is limited to work on 
hierarchical structure.  
In the interface of Figure 3, a simple example of ontology 
mapping is shown. The case study has been built ad-hoc; just 
the relevant portions of two ontologies are shown.  
The Ontology1 (in blue color in Figure 3) is described by the 
concepts named “Object”,  “Vehicle” and “Car” , whereas 
the Ontology2 (green color) is composed of the concept with 
names “Thing”, “Automobile” and “Motor”.  
The application adds an arc between two concepts of 
different ontologies, when a similarity value (in the range [0, 
1]) is found.  
Let us note there exists an arc between the concept names 
“Vehicle” and “Automobile” with an high similarity (0.96), 
but  the arc between “Vehicle” and “Motor” is not inserted in 
the graph view, because the similarity between these concept 
names assumes values lower than the selected threshold.  
Similar considerations can be done on the ontology mapping 
shown in Figure 4 (although the GUI is not shown).  
Two ontologies are drafted in different colors. Both of them 
describe a similar domain (the living beings). 

Figure 4: Example of Ontology Matching on the human 
beings domain.  

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1319



Figure 5: No concept matching occurs between these two 
ontologies, due to different meanings of the reference 
ontology domains.  

Because the ontologies present concepts with similar names 
and meanings, the similarity values on the added arcs (in 
red) are equal to 1 (the maximum similarity). 
Finally, Figure 5 shows a case of no concept match. The two 
ontologies share the same concept name “Table”, but the 
reference context is completely different.  In fact,  
Algorithm1 returns the sense number 5 for the ontology on 
the left (colored blue) and the sense number 1 for the 
ontology on the right, respectively (see Section 3.2 for 
details). Thus no arcs can be placed between them. 
Let us note, in the example in Figure 5, the node with 
concept name “Number” is disconnected by the others, 
because the algorithm does not analyzes the OWL ontology 
relationships that are not hierarchical. 

5 Conclusions
The paper describes a study for ontology mapping based on 
the discovering of linguistic similarity. A graphical interface 
allows the user to see the final mapping, presenting a 
similarity value for each discovered concept matching.  
This algorithm represents an initial version of an ontology 
matching method and needs some extension for processing 
all the ontology relationships. Its efficacy would be visible if 
it was exploited in combination with structure based 
ontology matching. Further developments are addressed to 
reach these issues. Nevertheless, its applicability may not 
restricted to ontology matching problems. The basic 
algorithm could be used for Information Retrieval problems, 
for instance when the textual analysis requires the word 
sense disambiguation. The context of a word could be 
described by defining a “sliding window” on the text 
surrounding the analyzed word, in order to discover its 
appropriate sense.  Furthermore, the algorithm could be 
exploited for discriminating common sense words, in 
specialized contexts where the word meaning depends on the 
application domain (or the reference ontology). 
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