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Abstract AN el I G

In a variety of emerging applications one needs to decide whether books  audio books  sports  digital

a graphG matchesanotherG,, i.e., whetherG has a topological \ l i /l\
structure similar to that of7,. The traditional notions of graph ~ ©ooks  abooks albums categories bookséts pvps ~ CDs
homomorphism and isomorphism often fall short of capturing the et Shres
structural similarity in these applications. This paper studies revi- arts school - audiobooks 9
sions of these notions, providing a full treatment from complexity abims

to algorithms. (1) We proposg-homomorphisnfp-hom) and 1-1 Figure 1: Graphs representing online stores

p-hom, which extend graph homomorphism and subgraph isomor-

phism, respectively, by mappiregigesirom one graph tgathsin are also carried by the stor@, andG and G, can be navigated

another, and by measurirtge similarity of nodes. (2) We intro-  similarly, i.e., if a site for selling itemu can be reached from a site
duce metrics to measure graph similarity, and several optimization for item b in GG,, by following hyperlinks, then the site for itew
problems forp-hom and 1-1p-hom. (3) We show that the deci- can also be reached from the site fdn G.

sion problems fop-hom and 1-1p-hom arenp-complete even for When graph homomorphism or subgraph isomorphism is used to
DAGS, and that the optimization problems are approximation-hard. measure graph similarity; doesnotmatchG,. Indeed, (a) nodes
(4) Nevertheless, we provide approximation algorithms pithv- in G may not find a node id: with the same labek.g.,audio; and

able guarantee®n match quality. We experimentally verify the  worse still, (b) there exists no sensible mapping frépto V' that
effectiveness of the revised notions and the efficiency of our algo- maps edges i, to edges irGG accordingly.

rithms in Web site matching, using real-life and synthetic data. However, a page checkee.§.,[8, 29]) may find connections
between pages iy, and those inG based on their functionality:
1. Introduction A — B, books — books, audio +— digital, textbooks — school,

abooks — audiobooks, albums — albums

The notions of graph homomorphism and subgraph isomorphism That is, the store? indeed has the capability @,. While the

E\?\}OC[?Q dgﬁaft?glg?j g]raagnrgalst:e\(/‘efzy gi?gmérgfz t(e‘;;tbg;; ' th(;wen edges in, are not preserved by the similarity relation, each edge
problem of graph homomorphism (resp. subgraph isomorphism) is In Gy IS mapped to gathin G, e.g. the e_dge l(OOKS’. tethOOkS.)
to find a (resp. 1-1) mapping froi, to V> such that each node in in G, is mapped to the pathoo'.(S/C?tegOr'eS/SChO()l in . This
V1 is mapped to a (resp. distinct) nodelin with the same label, tells us that preserves the navigational structure(ef. HenceGG

and each edge if; is mapped to an edge if. should logically be considered as a matchGof. a

These conventional notions are, however, often too restrictive  These highlight the need for revising the conventional notions
for graph matching in emerging applications. In a nutshell, graph of graph matching. In response to these, several extensions of the
matching is to decide whether a gragphmatches another graph  conventional notions have been studied for graph matching [10, 11,
Gy, i.e.,whetherG has a structure similar to that 6f,, although 14, 24, 32]. However, a formal analysis of these extensions is not
not necessarily identical. The need for this is evideneig, ,Web yet in place, from complexity bounds to approximation algorithms.
anomaly detection [23], search result classification [25], plagiarism o )
detection [20] and spam detection [3]. In these contexts, identi- Contributions. We propose several notions to capture graph struc-
cal label matching is often an overkill, and edge-to-edge mappings tgral similarity that encompass Fhe previous extenspns, and pro-
only allow strikingly similar graphs to be matched. vide a full treatment of these notions for graph matching.

(1) We introducep-homomorphisnfp-hom) andl-1 p-homin Sec-

tion 3. These notions extend graph homomorphism and subgraph
isomorphism, respectively, by (a) incorporates similarity metrics to
measurethe similarity of nodes, as opposed to node label equal-
ity; and (b) mapping edges in a graphgathsin another, rather
than edge-to-edge mappings. In contrast to previous extensions,
one can use node similarity to assuee.,that two Web pages are
Permission to make digital or hard copies of all or part of this work for matched only when they have similar contents [29] or play a simi-
personal or cl_assroom use is g_ranted Withou_t fee provided that copies are|ar role (as a hub or authority [6]). Edge-to-path mappings allow us
not made or distributed for profit or commercial advantage and that Copies v, atch graphs that have similar navigational structures but can-
bear this notice and the full citation on the first page. To copy otherwise, to - o . g .
republish, to post on servers or to redistribute to lists, requires prior specific not be identified bY the Conventlonall notions of graph mgtchlng. In
permission and/or a fee. Articles from this volume were presented at The addition, these notions can be readily extended to deciding whether
36th International Conference on Very Large Data Bases, September 13-17,two graphs are similar to each other isyanmetridashion.

I%?gge’;:?nggngfr;e VLDB Endowmev). 3, No. 1 (2) To provide a quantitative measure of graph similarity, we de-

Copyright 2010 VLDB Endowment 2150-8097/10/0%5.10.00. velop two metrics, also in Section 3, based on (a) the maximum

Example 1.1: Consider two online stores depicted in Fig. 1 as
graphsG, = (V,,Ep) andG = (V, E). In these graphs, each
node denotes a Web page for sale of certain items, as indicated
by its label; and the edges denote hyperlinks. One wants to know
whetherG matches7,, i.e.,whether all the items specified liy,,
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number of nodes matched, and (b) the maximum overall similar- graphs based on simulation [17, 12], subgraph isomorphism (com-
ity when the weights of nodes are taken into account, respectively. mon maximum subgraph) [27, 30], or edit distance [31] (see [9,
These metrics give rise to two natural optimization problems, re- 26] for surveys). Graph simulation considers edge-preserving re-
ferred to as themaximum cardinalityproblem and themaximum lations instead of functions from one graph to another. Graph edit
similarity problem, respectively, for each pfhom and 1-Ip-hom. distance is essentially based on subgraph isomorphism/e(tx

In particular, the maximum common subgraph problem [19] is a similarity: it builds a matrix of node similarity based on fixpoint
special case of the maximum cardinality problem for g-iom. computation [6, 21] and the roles of nodes in the structures of the
graphs é.g.,hubs or authorities [6]). As pointed out by [25, 30], the
feature-based approach does not observe global structural connec-
tivity, and is often less accurate than the structure-based measure.
As observed by [4, 23], vertex similarity alone daest suffice to
identify accurate matches since it ignores the topology of graphs
by and large. For Web site matching in particular, it is essential
to consider how pages are linked to each other. One cannot match
two sites with different navigational structures even if most of their
pages can be matched pairwise. Further, vertex similarity requires
fixpoint operations and is often too expensive to compute on large
graphs. As opposed to previous approaches, we introduce (1-1)
p-hom to capture both structural similarity by enforcing edge-to-
path mappings, and the contents of individual nodes by incorporat-
ing node similarity. In addition, we provide maximum cardinality
and maximum overall similarity metrics to quantitatively measure

(3) We establish complexity bounds of the decision problems and
optimization problems fop-hom and 1-Ip-hom, in Section 4. We
show that the problems for determininghom and 1-1p-hom,

as well as the maximum cardinality problem and the maximum
similarity problem, are alNP-complete, even for directed acyclic
graphs DAGs). Worse still, the optimization problems are hard to
approximate: unless = NP, it is beyond reach in practice to ap-
proximate the problems withi@(1/n"'~*) of the optimal solutions

for any constante. All proofs are given in the appendix.

(4) Nevertheless, we provide in Section 5 approximation algo-
rithms for finding mappings with the maximum cardinality or the
maximum similarity, forp-hom and 1-I1p-hom. These algorithms
possesperformance guaranteem match quality: for any graphs
G andG2, the solutions found by the algorithms are provable to be

within a polynomial O(log®(n17n2) /(nin2)) of the optimal solu-  graph similarity, which have not been studied by previous work.
tions, wheren; (resp.n2) is the number of nodes i@ (resp.G2). A number of graph matching algorithms have been developed

(5) Using Web site matching as a testbed, we experimentally evalu- (€€ [9] for a survey). Our algorithms extend the algorithms of [7,
ate our similarity measures in Section 6. We compah®m and 1- 16] for computing maximum (weighted) independent sets.

1 p-hom with three other methods: graph simulation [17], subgraph

isomorphism [9] and vertex similarity matrix [21]. Using real-life 3. Revisions of Graph Homomorphism

Web sites and synthetic graphs, we show that our methods outper- |, ihis section we first introduce-homomorphism and 1-i-

form those three methods in both match quality and efficiency.  omomorphism. We then present metrics to quantitatively measure
We expect thap-hom and 1-1p-hom will find applications in  graph similarity, and formulate related optimization problems.
Web site classification [5, 12], complex object identification, pla-
giarism [20] and spam detection [3], among other things. 3.1 Graphs and Node Similarity
A node-labeled, directedraphis defined as7 = (V, E, L),
where (1)V is a set of nodes; (2F C V x V is a set of edges, in
Related Work which (v, v') denotes an edge from nodeo v’; and (3) for eachy
There have been extensions of graph matching by allowing edgesin V, L(v) is thelabel of v. The labelL(v) may indicatee.qg.,the
to map to paths, for trees [24)AGs [10] or graphs [11, 14, 32]. An  content oiuRL of a Web page [4, 5].
approximate retrieval method is proposed for matching trees [24], Consider graph&/y = (V1, E1, L1) andGs = (V2, Eo, L2).
which identifies and merges regionsafiL data that are similar We assume aimilarity matrix mat(). For each paif(v, u) of
to a given pattern, by using an inverted index. Stack-based algo-nodes inV; x Va, mat(v, ) is a number in0, 1], indicating how
rithms are studied for matchinpacs [10], by leveraging filtering close the labels of andu are.
for early pruning. Exponential-time algorithms for matching gen- ~ The matrixmat() can be generated in a variety of ways. In Web
eral graphs are developed in [11], based on join operations over site matching, for instancesat (v, u) for each pair(u, v) of pages
graphs encoded as tables. A notionxafL schema embedding is ~ may be computed in terms of commshinglesthatw andv share.
studied in [14], which is a special case @hom with two extra Here a shingle [8] is a meaningful region contained in a Web page,
conditions. A form of graph pattern matching is considered in [32], andmat(v, u) indicates the textual similarity af andv. One may
in which edges denote paths with a fixed length. Algorithms for also treat vertex similarity matrix [6, 21] asat(), which measures
approximate graph matching can also be found in [27, 30]. Most the hub-authority structural similarity of two nodes [6] and incor-
prior work does not consider node similarity in pattern matching, porates certain topological structural properties of the graphs.
such as all the work mentioned above except [24]. Further, ex- It may be too expensive to compute vertex similarity matrix on
cept [14], the complexity of graph matching is not settled; indeed, large graphs or to match those graphs. To cope with this we may
some algorithms were claimed to be in polynomial time, whereas use “skeletons” of the graphs instead, namely, subgraphs induced

2.

we show that the problem isp-hard even fomAGs (Section 4).
The complexity bounds of [14] are developed for a different prob-
lem, and do not carry over to (1-byhom. In addition, none of the

from “important” nodes such as hubs, authorities and nodes with a
large degree. Indeed, approximate matching is commonly accepted
in practice [6, 24, 27, 30]. We computeat() for such nodes only.

previous algorithms has provable guarantees on match quality, as We use aimilarity threshold to indicate the suitability of map-

opposed to the approximation algorithms of this paper.

A variety of methods have been studied for measuring graph sim-

ilarity, typically following one of three approaches. (Bgature-
based it counts the number of common features in graphs, namely,
domain-specific elementary structuresg., root-leaf paths [18].

(b) Structure-basedit assesses the similarity of the topology of

pingv tou, such that can be mapped te only if mat(v,u) > &.

3.2 P-Homomorphism and 1-1 P-Homomorphism

P-homomorphism. Graph@G; is said to bep-homomorphisnfp-
hom) toG2 w.r.t. a similarity matrixmat() and a similarity thresh-
old ¢, denoted byG'1 2. p) G2, if there exists a mapping from
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Figure 2: p-hom and 1-1p-hom

V1 to V2 such that for each nodec V4,

1) if o(v) = u, thenmat(v, u) > &; and

(2) for each edggv,v’) in Ei, there exists a nonemptyath
u/.../u’ in G2 such thato(v') = </, i.e., each edge from is
mapped to gathemanating from.

We refer too asa p-hom mappingrom G to Ga.

Example 3.1: Recall G, and G of Fig. 1. As shown in Exam-
ple 1.1,G, is neither homomorphic nor isomorphic to a subgraph
of G. In contrast, suppose that a page checker [8, 29] yiekis():

mate (A, B) = mate(audio, digital) = 0.7

mate (books, books) = 1.0

mate (abooks, audiobooks) = 0.8

mate (books, booksets) = mate (textbooks, school) = 0.6

mate (albums, albums) = 0.85

mate (v, u)= 0, for all other node pairs

ThenGy Ze,p) G W.r.t.mate() and any threshold < 0.6. Indeed,
the mapping given in Example 1.1 iggehom mapping.

To further illustratep-hom, let us consider the graphs of Fig. 2.
In each pair of the graphs, assume theit(v,v) = 1 if v andv
have the same label, amdat(v, ) = O otherwise, for nodes in
one graph and in another. Fixt = 0.5. One can see the following.
(1) G1 Z(e,p) G2. A p-hom mapping is defined by mappiibgth
A nodes inG; to the A node inGs, the nodeB in G, to the B
node inG2, and the nod€’ in (G; to anyof the twoC nodes inGz».

(2) G3 Z(e,py G4. Mapping theD node inG's to only oneof the
D nodes inG4 does not make a-hom mapping, because either the
edge(A, D) or (B, D) in G5 cannot be mapped to a pathdy.

(3) G5 Z(e,p) Gé, for the same reason as (1). O

P LAy

1-1 p-homomorphism. A graphG} is 1-1 p-hom toG>, denoted
by G4 jé;;) G, if there exists a 1-1 (injective)-hom mapping
o from G to G2, i.e.,for any distinct nodes:, v2 in G1, o(v1) #

o(v2). We refer too as al-1p-hom mappingrom G to G.

Example 3.2: For G, andG of Fig. 1, thep-hom mapping given
in Example 3.1 is also a 14-hom mappingi.e., G, 3., G-

As another example, consid€f; and G2 of Fig. 2. While
G1 Z(ep) G2, Gy Z?E’;) G>. In particular, thep-hom mapping
given in Example 3.1 is not injective, since it maps betmodes
in G1 to the sameA node inGs. Similarly, while G's 3.,y G,
Gs ;5%;;) G as ap-hom mapping has to map bofhinodes inG's
to the B node inG, which is not allowed by a 1-1 mapping. O

Note that subgraph isomorphism is a special case opdham:
G is isomorphic to a subgraph ¢f iff there exists a 1-Jp-hom
mappinge from G to G, that (a) maps each edde, v’) in Gy
to an edgdo(v), o(v")) in Gz, (b) adopts node label equality, and
moreover, (c) if(c(v),o(v")) is an edge irG2, then(v,v") must
bean edge inG1; in contrast, 1-Jp-hom only requires edges from
G4 to find a match inG'2, but not the other way around. Similarly,
graph homomaorphism is a special case#fom.

<171

Remark. ForGi Ze,p) G2 (G1 e G2) we require an edge-
to-path mapping frontz, to G2 when@ is apatternfor a data
graphG- to match. Nevertheless, (1-g)hom can be readily made
symmetrichat maps paths betwe&r, andG». Indeed, one only
need to comput&, the transitive closureof Gy (in O(|G1|?)-

CPH maximum cardinality fop-hom

CPHI=T | maximum cardinality for 1-Jp-hom

SPH maximum overall similarity fop-hom

SPHI=T | maximum overall similarity for 1-Jp-hom
Table 1: Notations: Optimization problems

time [22]), and check wheth€¥] <.,y G2 (G 2/}

1 ~(e,p)

Gs).

3.3 Metrics for Measuring Graph Similarity

In practice one often wants to measure the similarity of graphs
G and G5 althoughG; maynot be (1-1)p-hom toG>. We next
provide two metrics that give a quantitative measure of the similar-
ity of two graphs in the range of [0, 1]. Letbe ap-hom mapping
from a subgrapl:| = (V{, E1, L) of G1 to Go.

Maximum cardinality . This metric evaluatethe number of nodes
in G thato maps toGG2. Thecardinality of o is defined as:
V|
qualCard(o) = Tk

The maximum cardinality problerfor p-hom (resp. 1-J-hom),
denoted byCPH (resp.CPH'™), is to find, givenG1, G, mat()
and¢ as input, a (resp. 1-J)-hom mappings from a subgraph of
G1 to G2 such thayualCard(o) is maximum.

Observe the following. (1) 71 Z(. ) G2 or G1 jé;;) Go,
then ap-hom mappings with maximumqualCard(o) is ap-hom
mapping from the entiré&/; to G2. (2) The familiaTmaximum com-
mon subgraph problerfMCS) is a special case @PH*~! (recall
thatMCS is to find a subgrapli; of G and a subgrapti, of G
such that (a)7} andG5 are isomorphic, and (b) the cardinality of

| (equivalently,G%) is maximum; seeg.g.,[19]).

Overall similarity . Alternatively, we consider theverall simi-
larity of mappingo. Assume a weightv(v) associated with each
nodev, indicating relative importance of, e.g.,whetherv is a hub,
authority, or a node with a high degree. The metric is defined to be
Zvevl’ (w(v) * mat(v, o(v)))

Euevlw(v)

Intuitively, the higher the weighiv(v) is and the closer is to
its matcho(v), the better the choice af is. This metric favors
“important” nodes inG; that can find highly similar nodes ifi>.

The maximum overall similarity problenfor p-hom (resp. 1-
1 p-hom), denoted bgPH (resp.SPH!!) is to compute, given
G1, G2, mat() and¢ as input, a (resp. 1-J-hom mappingr from
a subgraph of#; to G2 such thagualSim(o) is maximum.

These optimization problems are summarized in Table 1.

qualSim(o) =

Example 3.3: Consider graph&:s andGg shown in Fig. 2. There
are two nodes labeleB in GG, indicated by, andwv2, respectively.
A similarity matrix mato () is given as follows:

matg (A, A) = mato(D, D) = mato(E, E) = matg(v2, B) =1

mato (v1, B) = 0.6 matg (v, w) = O for other cases

Let¢ = 0.6, and assume(v) = 1 for each node in G's, except

w(v2) = 6. ThenGs is not 1-1p-hom toGs: givenmatg () andé,
any p-hom mapping fromGs to G¢ has to map botl; andv; in
G5 to the B node inGe, which is not allowed by a 1-1 mapping.
Nevertheless, we can still measure the similaritgzgfandGs.

(1) When the maximum cardinality metric is adopted, an optimal
1-1 p-hom mappingr. is from a subgrapt/;, of G5 to G, where

H, contains nodes\, D, F andv;. Hereo. maps each node in

G’ to a nodeu in G that has the same label asThe mappingr.

has maximum cardinality withualCard(c.) = 2 = 0.8.

(2) When the maximum similarity metric is used, the optimal 1-1
p-hom mapping is from a subgraptH, of G5 to G, where H,

consists of noded andv; only. HerequalCard () = 1%
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= 0.7. In contrastqualCard(o,) = &L = 0,36, al- SPH!'~!. That s, these problems are at least as hatd/Eswhen

thougho. maps more nodes frofi’s to G thanos. ad approximation is concerned.

4. Intractability and Approximation Hardness 5. Approximation Algorithms

We next establish complexity bounds for the decision problems
and optimization problems associated witfhomomorphism and
1-1 p-homomaorphism (see Appendix A for detailed proofs).

Despite Theorem 4.3, we next provide approximation algorithms
for each of the maximum cardinality problem&RH, CPH'™!)
and the maximum overall similarity problem§RH, SPH'™1).

Intractability . No matter how desirable, it is intractable to de- OPptimization techniques are presented in Appendix B.

termine whether a graph js-hom or 1-1p-hom to another. We One of the main results of this section is an approximation bound
remark that while graph homomorphism is special casg-lsdm, for CPH, CPH'™*, SPH and 5P|‘1|:13 although the problems
there is no immediate reduction from the former to the latter, and aré not approximable withi®(1/n" ") (Theorem 4.3), we estab-
vice versa; similarly for subgraph isomorphism and -iom. lish a boundO(log™(nin2)/(ninz)). This is verified byAFP-

_ R ) reductions (f,g) from these problems toVIS, by constructing
Theorem 4.1: Given graphsGy and G, a similarity matrix product graphs off; andG- (see Appendix A for a detailed proof).
mat() and a threshold, it is NP-complete to decide whether (a) - -
Gl j(e,p) GQ, or (b) Gl {171 GQ. These problems are already Theorem 5.1: CPH, CPH , SPH and SPH are a” apprOX-

NP-hard when botiG; anévézzgre acyclic directed graphSD(AGS). imable WithinO(log2 (_mnz)/(mng)), wheren, anq ns are the
It is NP-hard for 1-1p-hom wher(3; is a tree andGs is aDAG. O numbers of nodes in input grapti& and G2, respectively. O

In addition, it is unrealistic to expect a polynomial tinrer(ME) Theorem 5.1 suggests naive approximation algorithms for these
algorithm for finding an optimal (1-1)-hom mapping. problems. Given graph&'s (Vi, F, L1), G2(V2, E2, Lz), & Sim-

. T ilarity matrix mat() and a similarity threshold, the algorithms
F:orollary 4.2: The maximum cardinality problem and the max- (1) generate a product graph by using functifrin the AFP-
imum overall similarity problem areip-complete forp-hom and  eqyction, (2) find a (weighted) independent set by utilizing the al-
1-1p-hom. These problems are alreasy-hard for DAGS. = gorithms in [7, 16], and (3) invoke functionin the AFP-reduction
to get a (1-1p-hom mapping from subgraphs 6f; to G-.

More specifically, foilCPH andCPH !, we can leverage the ap-
proximation algorithm for maximum independent sets given in [7],
which is inO(nm) time, wheren andm are the numbers of nodes
and edges in a graph, respectively. B&H andSPH'~!, we can
use the algorithm of [16] fowIS, which is inO(nm logn)-time.
Thus the naive approximation algorithms for maximum cardinal-
ity and maximum overall similarity are i@ (|V; |*|Vz|*)-time and

Approximation hardness. In light of Corollary 4.2, the best we
can hope for are efficient heuristic algorithms for finding (1p1)
hom mappings, with performance guarantees on match quality. Un-
fortunately, CPH, CPH!~*, SPH andSPH!~! are all hard to ap-
proximate. Indeed, there exist moriME algorithms for finding
(1-1) p-hom mappings such that the quality of each mapping found
is guaranteed to be withi@(1/n"'~¢) of its optimal counterpart.

Theorem 4.3: UnlessP = NP, CPH, CPH'~!, SPH and SPH*~! O(|V1 2| Va|? log(|Vi|[V2|))-time, respectively.
are not approximable withiD(1/n'~¢) for any constant, where Although thesenaive algorithms possess performance guaran-
n is the number of nodes i@ of input graphs7; andG-. ad tees, they incur a rather high complexity in both time and space.

The cost is introduced by the product graphs, which consist of
O(|V1|[V2]) nodes and)(|V; |*|V2|?) edges.
We next develop more efficient algorithms that operate directly

The hardness is verified by a certain reduction ftbemaximum
weighted independent set probl€W/|S). In a graph, an indepen-
dent set is a set of mutually non-adjacent nodes. Given a graph . ) 4 L
with a positive weight associyated Witr{ each nodAs is to find ang P on the input graphs instead of on.the|r product graph., retaining the
independent set such that the sum of the weights of the nodes in thesagwiahappro:lmﬁlk? n bloun.(ttzlk.] ngasltf)lressﬂt an dﬂ%ﬁ'}b{ﬁ R,
set is maximum. It is known th&VIS is NP-complete, and is hard an en exten e aigonthm ’ an :

to approximate: it is not approximable with(1/n' =) for any Approximation algorithm for CPH. The algorithm is referred to
constani, wheren is the number of nodes [16]. ascompMaxCard and is shown in Figures 3 and 4. Givéh,
To show the approximation bound, we need toajgeroximation G2, mat() and¢ as input, it computes g-hom mappingr from a
factor preserving reductiofAFP-reduction) [28]. LetII; andIl: subgraph of7; to G2, aiming to maximizeyualCard(o).
be two maximization problems. ARFP-reduction from II, to IT, The algorithm maintains the following data structures to ensure
is a pair ofPTIME functions (f, g) such that match quality. (a) Amatching listH for nodes inG1. For each
o for any instance of Iy, I» = f(I1) is an instance ofl» nodewv in H, H|[v].good collects candidate nodes @, that may
such thatbopt, (I2) > opt, (I1), whereopt, (resp.opt,) is matchv via the mappingr; and H [v].minus is the set of nodes in
the quality of an optimal solution tf; (resp./2), and G2 thatv cannot match via. (b) A setl of pairwise contradictory
o for any solutions, to I, s1 = g(s2) is a solution tal; such matching pairs(v, v), wherev is a node inG; andw is a node in
thatobj; (s1) > obj,(s2), whereobj, () (resp.obj,()) is a G-. For any two pairgv, u1), (va, ug) in I, if v1 is mapped tau;,
function measuring the quality of a solution o (resp./2). thenvs cannot be mapped t,, and vice versa. (c) An adjacency
AFP-reductions retain approximation bounds. list H1 for G1. For each node in G+, Hi [v].prev and H; [v].post

store its “parents”i(e., the nodes from which there are edgesjo
and “children” {.e., the nodes to which there are edges from
respectively. (d) An adjacency matriX; for the transitive closure
graphGy of G such thatfs [u1, us] = 1iff (u1,u2) is an edge in
G7,i.e.,there is a nonempty path from tous in Ga.

Here an algorithmA has performance guaranteeif for any Here thetransitive closureG™* (V, E*, L) of graphG(V, E, L)
instancel, obj(A(I)) > « opt(I). Theorem 4.3 is verified by is the graph such that for all nodesv’ € V, (vi,v2) € E7 iff
an AFP-reduction from WIS to each ofCPH, CPH'~*, SPH and there is a nonempty path from to vs in G.

Proposition 4.4128) If (f, g) is an AFP-reduction from problem
II; to problemIIs, and if there is aPTIME algorithm forIT» with
performance guarantee, then there is @ TIME algorithm forIT;
with the same performance guaraniee a
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Algorithm compMaxCard Procedure greedyMatch

Input: Two graphsG1 (Vi, E1, L1) andG2(Va, B2, L2), a similarity Input: GraphsH 1, H2, and matching lisH for subgraphGi[H].
matrix mat(), and a similarity threshold. Output: A p-hom mappings for subgraphG[H| to G2

Output: A p-hom mapping from subgraph 6#; to Gs. and a sef of pairwise contradictory matching pairs.

1. for each node € V; of graphG: do 1. if H is emptythen return (0, 0);

2. Hiplprev:={v' | v € Vi,(v/,v) € E1}; 2. pick a nodey of H and a node: from H[v].good;

3. Hilv].post:={v' | v € Vi, (v,0") € E1}; 3. H[v].minus = H[v].good \ {u}; H[v].good :=0;

4. Hv].good :={u|u € Va,mat(v,u) > £}; H[v].minus :=0; 4. H :=trimMatching(v, u, H1, Ha, H);

5. compute the transitive closu; (Va, E5, L) of graphGa; 5. for each node’ in H do /* partition H into H+ andH ~ */

6. for each ordered node pdit1,u2) in G2 do 6. if H[v'].good is not empty

7. if (u1,u2) € B then Halui][us] = 1; elseHalu1][us] :=0; 7. then {H"[v].good := H[v'].good; H[v'].minus := 0}

8. o =0 8. if H[v].minus is not empty . .

9. while sizeof (H) > sizeof (o1, ) do 9. then {H~[v'].good := H[v'].minus; H ™ [v'].minus := 0}

10. (o,1I):=greedyMatch(H1, Ho, H); H:=H\I, 10. (o1, I1) = greedyMatch(H1, Ha, HT);

11. if sizeof (o) > sizeof (o, ) then oy, = 0 11. (o2, I2) := greedyMatch(H1, Ho, H™);

12.return op,. 12. 0 :=max(o1 U {(v,u)},02); I:=max(I,l2 U {(v,u)});

13. return (o, I);

Figure 3: Approximation algorithm compMaxCard Procedure trimMatching

The algorithm works as follows. It first constructs the adjacency nput: Nodev with matching node:, H1, Ha and H.
list H, and the matching listf for G (lines 1-4, Fig. 3), where Output: Updated matching list .
for eachv in G1, H|v].good collects nodes’ in Gz such that 1. for each node’ in Hy[v].prev N H do
mat(v,v’) > &, and H[v].minus is initially empty. Thetransitive /* prune the matching nodes fefs parent nodes */
closuregraphGy of G- is then computed and stored in adjacency for any nodew” in H[v'].good such thatz[u’, u] = 0 do
matrix H» (lines 5-7). The mapping,. is initially ¢ (line 8), and H[v'].good := H[v'].good \ {u/}; -
. H[v'].minus := H[v'].minus U {u'};
is computed by a procedurgreedyMatch as follows.

- - . for each node’ in H;[v].post N H do
In a nutshellgreedyMatch (Fig. 4) picks a node from H with /* prune the matching nodes fafs children nodes */

ahwnN

maximal H [v].good, and a candidate mateh from H|[v].good. 6. for any nodeu’ in H[v'].good such thatHs[u, u'] = 0 do

It then recursively computes a mappiag provided that(v, u) is 7. H[v'].good = H[v'].good \ {u'};

a match, and a mapping, without (v,u). It returns the larger & H[v'].minus := H[v'].minus U {u'};

one ofo; U {(v,u)} and o to decide whethefv, u) is a good 9. retum H;

choice. _Meanwhilgr_eedyl\/l_atch computes sets; , I of pairwise Figure 4: ProceduresgreedyMatch and trimMatching

contradictory matching pairs and returns the larger one of them as

I. Itis worth remarking thaf is nonempty. (lines 1-4), by the definition gf-hom. Similarly, it processes’s
Upon receivinge and I from greedyMatch (line 10), algo-  children (lines 5-8). The updatéd is then returned (line 9).

rithm compMaxCard removes conflict paird from H (line 10) )

and takes the larger one ofando,,. (line 11). It repeatedly in- ~ Example 5.1:We illustrate howcompMaxCard computes @-hom

vokesgreedyMatch until o, is no smaller tharfl (lines 9-11), ~ Mapping from a subgraph a, to G of Fig. 1. For the lack of

i.e.,wheno,, covers all the remaining nodes i to be matched. ~ SPace we consider subgraphi and G, of &, and G, respec-
The quality of the mapping returned (line 12) is guaranteed becausetively, whereG is induced by{books, textbooks, abooks}, and

(a) greedyMatch always picks the larger one ef U {(m u)} and G’2 by {.boc?ks, categories, booksets, school, audiobqoks}. We use
o2, and (b) bad choices dfare removed froni] at an early stage.  the similarity matrixmat.() of Example 3.1, and fi = 0.5. In
We next give the details of the proceduresofnpMaxCard. the following, the nodes labeled with™ are the nodes chosen at

line 2 in the procedurgreedyMatch.

After step 7, the algorithm constructs an initial matching st
for G (see below), an adjacency matiik for the transitive clo-
sure graph ofy%, and an adjacent ligf; (G% andH; are omitted).

(a) ProcedurgreedyMatch (Fig. 4) takes the current matching list
H as input. It computes a-hom mappings from a subgraph of
G1[H] to G2, and a sef of conflict pairs. It selects a candidate
match(v, v) as mentioned earlier, moves other nodelim].good

to H[v].minus and setd [v].good to empty set, since has already E‘fﬁf;'”H bookﬁf’;’ﬁoksets} bad
picked a match: (lines 2-3). Assuming thaw, u) is a match, it textbooks school | [
updatesH by pruning bad matches for the parent and the children abooks audiobooks} [
of v in G1, via another procedureimMatching (line 4). The up- The algorithm then callgreedyMatch to produce a subgraph

dated H is partitioned into two listsi/ ™ and H~, such that for hom mapping fronG to G5. At step 2 ofgreedyMatch, it maps
each node’ in H™, H[v'].good is nonemptyj.e.,v" may still find books to books. After step 9, it splitsH into H* and H~, and

a match provided thatv, u) is a match; otherwise’ is included H* is further partitioned intdZ,” and H, by mappingabooks to
in H~ (lines 5-9). ProcedurgreedyMatch then recursively com-  audiobooks (shown below with empty lists omitted).
putesp-hom mappingsr; ando for G[H 1] andG[H ~], respec- Nodes Zo0d inus

tively (lines 10-11). It compares the sizesafU{(v,u)} (i.e.,the HT || textbooks | {school} 0

mapping with(v, v)) ando (i.e.,the mapping withoutv, «)), and abooks™ {audiobooks™} 0

returns thdarger one (lines 12—13). It also computes the Betf [ H_ [ books” T f{booksets"} [ 0 |

(v,u) is not a good choice then it is includediin (line 12), the set [ BT ][ textbooks™ | {school”} [ 0 |

of conflict pairs found when computing.. For these listsg ard I are as follows (empty sets omitted).
(b) ProceduretrimMatching (Fig. 4) inputs a candidate match - 1

(v,u) and the current matching lig. It removes bad matches [ H. || {(textbooks, school)} {(textbooks, school) }

from H assuming thatv,«) is a match. That is, for any parent | £ || {(books, booksets)} 1(books, booksets) }

/s ; : HT { (textbooks, school), (abooks, audiobooks)} | {(textbooks, school)}
v" in both Hy[v].prev and H, it moves each candidate¢ from {(books, books), (textbooks, school), {(books, books),

H[v'].good to H[v'].minus if there is no path from:’ to w in G» H (abooks, audiobooks) } (books, booksets) }
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After removingI from H, the size ofH becomes smaller than  graph, each node was labeled with the content of the page. The
that of o,,,, and compMaxCard returns {(abooks, audiobooks), similarity between two nodes was measured by the textual similar-
(textbooks, school), (books, books)} as thep-hom mapping. O ity of their contents based @hingleg8].

Skeletons These Web graphs are typically large. We thus con-
sidered their skeletons that retain only those nodes with a degree
above a certain threshold. For each grépim T4, we produced its
Proposition 5.2: For any G, (Vi, E1, L1), Ga(Va, E2, La), mat() skeletonGG's, which is a subgraph af such that for each nodein

Analysis Algorithm compMaxCard possesses the performance
guarantee given in Theorem 5.1 (see Appendix A for a proof).

and ¢, algorithm compMaxCard finds a p-hom mappingo G, its degreedeg(v) > avgDeg(G) + o x maxDeg((), where
from a subgraph ofG; to G2 such thatqualCard(c) is within avgDeg(() andmaxDeg((7) are the average and maximum node
O(log*(IVa||V2])/(JVa||Vz])) of the optimal quality. O degree in, respectively, and is a constant in [0, 1].

One can verify that algorithrompMaxCard is in O(|V1 || V2 |2 Sele(_:ti(_)n of Web graphs~or eac_h We_b sited, we generateEA
+ VA ||E1||Va|?) time, and is inO((| V4] + |V2])?) space. consisting ofl 1 graphs representing different versionsAfBased

on T4, we fixeda = 0.2 and produced a set of Web skeletons.
Unfortunately, these graphs were beyond the capability of the al-
gorithms we could find for computing maximum common sub-
Approximation algorithm for CPH'~!. A 1-1 p-hom mapping  9raphs [1]. To favor [1], we also chose top 20 nodes with the
requires that no two nodes {&; are mapped to the same node in highest degree, and constructed another set of skeletons. The infor-
G2. Minor changes t@ompMaxCard suffice to do this: we add mation about the Web graphs and skeletons is reported in Table 2.

Algorithm compMaxCard can be readily converted to approxi-
mation algorithms foCPH!~!, SPH andSPH!1, as follows.

an extra step to proceduggeedyMatch such that after node in Since each set of the graphs represents different versions (snap-
H is mapped ta: in G2, we removeu from H|[v'].good and add shots) of the same Web site, thelyould matcteach other. Based
u to H[v'].minus for each nodev’ in H other thanu. The ex- on this, we evaluated the accuracy of our algorithms. More specif-

tra step changes neither the worst-case complexity nor the perfor-ically, afterT’s was generated, we sorted the graphs based on
mance guarantee abmpMaxCard. This yields an approximation  their timestampo get a Web graph sequence [23]. We treated the

algorithm forCPH!~!, referred to asompMaxCard*~*. oldest one apattern G, and tested whether various approaches
o ) - could match the 0 later versions t@+;. We used the percentage of
Approximation algorithms for SPH and SPH™". We develop  matches found as the accuracy measure for all the algorithms.

an approximation algorithm, referred to asmpMaxSim, for the

maximum overall similarity problerSPH. The algorithm borrows

a trick from [16]. The strategy of [16] for computing/IS is as

follows. It first removes nodes with weights less tH&n, where

W is the maximum node weight andis the number of nodes in

a graph. It then partitions the remaining nodes ilt@n groups

based on theirs weights, such that the weight of each node in group

i(1 <14 < logn)isinthe rangéW/2¢ W /2~ 1]. Then for eachi,

it applies an algorithm for computing maximum independent sets

(e.g.,the algorithm of [7]) to the subgraph induced by the graeup

of nodes, and returns the maximum of the solutions to these groups.
Along the same linescompMaxSim first partitions the initial

matching list # into log(|Vi||V2]) groups, and then it applies

compMaxCard to each group. It returns with the maximum

qualSim(o) amongp-hom mappings for all these groups. Sim-

(2) Synthetic dataWe also designed a generator to produce graphs,
controlled by two parameters: the numbeiof nodes and the noise
ratenoise%. Givenm, we first randomly generated a grapéttern

G with m nodes andl x m edges. We then produced a set of
15 graphsGz by introducing noise intd~;, with added complex-

ity to make it hard to matcld7;. More specifically,G> was con-
structed fromG, as follows: (a) for each edge i@d,, with prob-
ability noise%, the edge was replaced with a path of from 1 to 5
nodes, and (b) each nodedh was attached with a subgraph of at
most 10 nodes, with probabilityoise%. The nodes were tagged
with labels randomly drawn from a sétof 5 x m distinct labels.
The setl was divided intoy/5 x m disjoint groups. Labels in dif-
ferent groups were considered totally different, while labels in the
same group were assigned similarities randomly drawn fgr.

ilarly, an approximation algorithm is developed f6PH'~!, re- (3) Algorithms We have implemented the following, all in Java:
ferred to asompMaxSim! ™. It is easy to verify that these algo- (@) all of our algorithms: compMaxCard, compMaxCard' ",
rithms are inO(log(|V1||Va]) (V1|3 [V2|? 4 VA || B4 ||V2]?)) time, compMaxSim, andcompMaxSim! !, (b) the graph simulation al-
and possess the same performance guaraniggrgsMaxCard. gorithm of [17], (c) the algorithm of CDK [1] for finding a maxi-
mum common subgraph, denoteddakMCS, and (d) vertex sim-
6. Experimental Study ilarity based on the similarity floodingS€) algorithm of [21] (we

We next present an experimental study of our matching meth- also tested the algorithm of [6], which had results similar to those

ods in Web mirror detection. Using real-life and synthetic data, ©f SF; for the lack of the space we only report the resultSE}.

we conducted two sets of experiments to evaluate the ability and 1€ €xperiments were run on a machine with an AMD Athlon
scalability of our methods for matching similar Web sites vs. (a) 64 * 2 Dual Core CPU and 2GB of memory. Each experiment was
conventional graph simulation [17] and subgraph isomorphism [9], fePeated oves times and the average is reported here.

and (b) vertex similarity based on similarity flooding [21]. Experimental results. We next present our experimental results.
In both sets of experiments, we fixed the threshold for matching to

. . be0.75; i.e.,a graphG, is said to matclds; if there is a mapping
(1) Real-life data. The real-life data was taken from the Stan- ¢, G1 to G such thaqualCard(c) > 0.75 (resp.qualSim(o);

ford We_bBase l_'—’roject [2], @n three categori_es: Web sites for online gaa section 3). We also assumed a uniform waight) = 1 for all
stores, international organizations and online newspapers, denoteg,ges; when measuring the overall similarity. We used a unified
by sites 1, 2and 3, respectively. For each Web site, we found an 4ccyracy measure defined above. This is because it is impractical
archive that maintained different versions of the same site. to determine whether two graphs exactly match or not, and the two

Using the Web data we generated our graphs as follows. We ran-jn st graphs were guaranteed to match in all the experiments when
domly chose a Web sitd in each category. We then produced & generated. Recall that the problems mrehard (see Section 4).
setTs of Web graphs, using data from the archive for In each

Experimental setting. We used real-life data and synthetic data.
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Web Sites Web graphsG(V, E, L) Skeletons 1{a = 0.2) Skeletons 2(top-20)
# of nodes| # of edges| avgDeg(G) | maxDeg(G) || # of nodes| # of edges|| # of nodes| # of edges

Site 1 20, 000 42,000 4.20 510 250 10, 841 20 207
Site 2 5,400 33,114 12.31 644 44 214 20 20
Site 3 7,000 16, 800 4.80 500 142 4,260 20 37

Table 2: Web graphs and skeletons of real life data

Accuracy (%) Scalability (seconds)

Algorithms Skeletons 1{a = 0.2) Skeletons 2(top-20) Skeletons 1{a = 0.2) Skeletons 2(top-20)
site1 | site2 [ site3 || site 1 [ site2 [ site3 sitel [ site2 [ site3 sitel [ site2 [ site3
compMaxCard 80 100 60 80 100 60 3.128 | 0.108 | 1.062 0.078 0.066 | 0.080
compMaxCardI—1 40 100 30 80 100 40 2.847 | 0.097 | 0.840 0.054 0.051 0.064
compMaxSim 80 100 50 90 100 60 3.197 | 0.093 | 0.877 0.051 0.051 0.062
compMaxSimI =T 20 80 10 90 100 40 2.865 | 0.093 | 0.850 0.053 0.049 | 0.039
SF 40 30 20 80 80 70 60.275 | 3.873 | 7.812 0.067 0.158 | 0.121
cdkMCS N/A | NJA | NJA || 67 100 0 N/A | NJA | NJA || 156.931 | 189.16 | 0.82

Table 3: Accuracy and scalability on real life data

Exp-1: Accuracy and efficiency on real-life data In the first set ratio noise% and the node similarity threshokd In each setting,
of experiments, we evaluated the accuracy and efficiency of (1-1) the accuracy was measured by the percentage of matches found be-
p-hom against the conventional notions of graph matching as well tweenG: and a set ol 5 graphs (72) as mentioned above.

as vertex similarity §F), using the sets of Weskeletons (1) Varying the size of#;. To evaluate the impact of graph sizes

In this set of experiments, graph simulation diat find matches on the accuracy and the scalability, we fixeslse% — 10% and
in almost all the casesThis shows that the graph simulation al- ¢ = 0.75, while varyingm from 100 to 800, where the number of
gorithm, which aim at finding matches for an entire graph, is too nodes in’Gg was in the rangé260, 2225]. ’
restrictive when matching Web sites. As a result, we opt to report The accuracy results are rep7orted in Fig. 5(a), which show that
the results of our approx?mation algorithmskMCS af‘dSF only. our approximation algorithms have accuracy abéﬁ%, and are
The accuracy and efficiency results are shown in Table 3. (1) jysensitive to the size af;. The scalability results are reported in
In most cases, our algorithms found more i@t of matches. 4 g4y which show that all the algorithms scale well with the size

@ Thgp-hom algorithms found more mfatches than theg-fom m. The largerG, is, the longer the algorithms take, as expected.
ones since the latter pose stronger requirements than the former. (3)

All algorithms found more matches aites land2 thansite 3since ~ (2) Varying the noise. We evaluated the accuracy and performance
a typical feature ofite 3 (online news papers) is its timeliness, ~©f the algorithmsw.r.t. noise%: fixing m = 500 and¢ = 0.75, we
reflected by the rapid changing of its contents and structures. variednoise7 from 2% to 20%, where the number of nodes @

On all graphs in skeletons adkMCS did not runto completion. ~ Was in the rangé650, 2100] accordingly.
While compMaxCard andcompMaxSim found more than 50% of Figure 5(b) shows that the accuracy of our algorithms is sensitive

matchesSF found no more than 40%. On skeletons 2, all of our 0 the noise rate. But the accuracy is still ab&o$t even when
algorithms found more matches thadkMCS. In particular, on ~ noise%o = 20% andG» had 2000 nodes. Figure 6(b) shows that
site 3cdkMCS found no matches at all. In contrast, our algorithms ~ While the scalability ographSimulation is sensitive taise%, our

all of our algorithms performed better on sites 1 and 2, whe$€as  (3) Varying the similarity threshold. Finally, we evaluated the im-
did better on site 3. However, when the size of Web sites increased,pact of¢: fixing m = 500 andnoise% = 10%, we varied¢ from
the performance cF deteriorated rapidly. ~ 0.5t0 1.0, where the number of nodes @& was about, 300.

Our algorithms took less thahseconds in all these cases, while Figure 5(c) shows that the accuracy of our approximation algo-
cdkMCS took 180 seconds even for graphs with only 20 nodes. rithms is not very sensitive tg, with accuracy abov&0% in all
Note that althougsites 2and3 are about the same size, the running  the cases. Whetis between 0.6 and 0.8, the accuracy is relatively
times ofcdkMCS on them are not comparable. While the running |ower. This is because (a) wheris low ([0.5, 0.6]), it is relatively
time of SF was comparable to our algorithms on small Web sites easy for a node iii7; to find its matching nodes i6'2; (b) when
(skeleton 2), it took much longer on large sites (skeleton 1). ¢ is high (above 0.8), the chances for each nodé&into find its

From the results we can see the following: our algorithms (1) copy inG> are higher, by the construction 6f,. Figure 6(c) tells
perform well on both the accuracy and efficiency on different types ys that the scalability of all these algorithms is indifferent to
of Web sites, (2) find more matches thatkMCS andSF, and (3)

are much more efficient and robust than the other two methods. Summary. From the experimental results we find the following.

(a) The notions of (1-1p-hom are able to identify a large num-
Exp-2: Accuracy and efficiency on synthetic dataln the second ber of similar Web sites that are not matched by graph simulation,
set of experiments, using graphs randomly generated, we evaluatedsubgraph isomorphism and vertex similarity. On a set of organiza-
the performance of our algorithms and the graph simulation algo- tion sites, the accuracy of all of our algorithms is above 80%, as
rithm of [17], denoted bygraphSimulation. However, we could opposed to 0%, 0% and 30% lgyaphSimulation, cdkMCS and

not evaluateedkMCS andSF, sincecdkMCS did not run to com- SF, respectively. (b) Our algorithms scale well with the sizes of the

pletion on large graphs, argF found constantly)% of matches. graphs, noise rates, and similarity threshold. They seldom demon-
We investigated (a) the accuracy of our four algorithms, and (b) strated their worst-case complexity. Even & of 800 nodes and

the efficiency of these algorithms agehphSimulation. We do not G of 2000 nodes, all of our algorithms took less than two minutes.

show the accuracy gfraphSimulation as it found0% of matches
in all the cases. We evaluated the effects of the following parame-

ters on the performance: the number of nodesn G, the noise 7. Conclusion

We have proposed several notions for capturing graph similarity,
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Figure 6: Scalability on synthetic data
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Appendix A: Proofs
Proof of Theorem 4.1 (a)

The p-hom problem is to determine, given two grapbs =
(VhEl,Ll) andG2 = (‘/27E27L2), WhetherGl j(eﬁp) Ga. We
show that they>-hom problem isvpP-complete even when botfi,
andG; areDAGS.

We first show that this problem is ikp. An NP algorithm is
given as follows: first guess a binary relatiéhC V7 x V3, and
then check whether it isghom mapping. Itis in polynomial time
(PTIME) to check whetheR is a function and whether it isghom
mapping fromG; to Ga.

We next show that this problemiig>-hard by reduction from the
3SAT problem, which isvp-complete (cf. [15]).

An instancep of 3SATis of the formCi A - - - AC),, where all the
variables inp arex1, . .., zm, each claus€’; (j € [1, n]) is of the
formy;, Vyj, Vy,,, and moreover, fof € [1, 3], y;, is eitherz,,
or@,,; forp;: € [1,m]. Here we use,,, to denote the occurrence
of a variable in the literal of clauseC;. The3SAT problem is to
determine whethet is satisfiable.

Given an instancé of the3SAT problem, we construct tWwbAGS
G, G2 and a similarity matrixmat() such thatGy 3,y Gz if
and only if¢ is satisfiable. The similarity threshofdis set tol.

(1) ThepaG G1 = (Vi, E1, L1) is defined as follows:

e} V1 = {R1,01,...,On,Xl,...,Xm};

o Ey = {(R17 Xi)7 (ijl ) Cj)7 (ij27cj)7 (ijsvcj)} for

eachi € [1,m] and eacly € [1,n]; and

o we simply letL, (v) = v for each node € V1.

Intuitively, graphG: encodes the instanegof 3SAT. Node X;
(z € [1,m]) denotes variable;, and nodeC; (5 € [1, n]) repre-
sents claus€’;. NodeR; is the root of grapiG, which connects
to all X; nodes { € [1, m]). An edge(X;, C;) in £ encodes that
variablex; appears in clausé;, i.e., z; is one of the three variables
Tpjys Tpyp ANATp 5.

For example, consider an instance for 8®AT problem: ¢ =
C1 A Co,whereC7 = x1 V2o VazandCs = 22 V 23 V 24. The
corresponding graptr; is depicted in Fig. 7@1).

(2) ThebAG G2 = (Va, Es, L2) is defined as follows:
[e] ‘/2 = {RQ,T,F,XTl,Xpl,... 7XTM7XFm7 01,...
--707”««-77”}-

o By = {(R27T)7(R27F)} U {(T7 XTi)7(F7 XF%)} U Eév
wherei € [1,m].

o Fj contains? x 3 edges for each clausg; = y;, V yj, V yj,
of ¢ (j € [1,n]), and there are in totalln edges inks.
(a) Treatingtrue as 1 andfalse as 0, we represent the truth
assignments of clausg; in terms of 8 node€’; (p), wherep
ranges over all truth assignments of variabigs, , z,,, and
zp,5. Each node”; (p) is a three-bit constant;, v, y;, with
a subscriptj, determined byo(xyp;, ), p(wp,,) and p(zy,;),
e.g.,21.
(b) For each truth assignment of x,,,, xp;,, and z,,,
that makesC; true, E3 consists of the following edges:
(XTij7Cj(p)) if p(Xij) = true, oOr (XFij7Cj(p)) if
p(Xp,,,) = false, wherek € [1, 3].

o La(u) = u for eachu € Va.

Intuitively, graphG. encodes the truth assignments of the vari-
ables that satisfy the clauses in the instagicef 3SAT. Node
Xr: (¢ € [1,m], resp.Xr;) means assigning variable a true
(resp.false) value. Nodes{0;,...,7;} representC;(p), which
are denoted as a three-bit constantt. the truth assignments of
the three variables in claugg;. Node R; is the root of graph
G>. NodesT and F' are simply included for the ease of exposi-

7717

G2

Figure 7: An example reduction for p-hom

tion. Edges fromXr; or Xr; to nodes{0,,...,7;} encode the
relationships between the truth assignments of the variakles, (
xp,, andz, ;) and the corresponding; (p).

For example, grapltz> corresponding to th&SAT instance¢
given above is shown in Fig. 7. Observe that b6thand G- are
DAGS.

(3) The similarity matrixmat() is defined as follows:

o mat[R1, R2] = 1;

o mat[XZ-, XTi] =1 andmat[X,“XFZ—] =1fori e [17 m];

o mat[C;,0;] =1,...,mat[C;,7;]=1forj € [1,n];

o mat[v, u] = 0 for any other nodes € V; andu € Vx.

The matrixmat() guarantees that (a) the roé of G; must
be mapped to the rodk, of G2, (b) nodeX; (i € [1,m]) in G1
is mapped to either nod& r; (true) or Xr; (false) of G2, and
(c) nodeC; in G1 (j € [1,n]) is mapped to one of the nodes
{Oj, .. .77j} of Ga.

It is easy to verify that the above construction isPmME. We
next verify that this is indeed a reduction from tB®AT instance,
i.e., there is ap-hom mapping fromG; to G» if and only if the
3SAT instanceyp is satisfiable.

Assume that there is azhom mapping\ from G; to G2. We
show that there is a truth assignmenthat makesy true. The
truth assignmenp is defined as follows. For each variahle (i €
[1,m]), p(x;) = true if A\(X;) = X1, andp(x;) = false if A\(X;)
= Xr;. Note that nodeX; in G, cannot be mapped to both nodes
X7 and X r; in G2 since) is a function. For each nodg; (j €
[1,n]), A(C;) guarantees that must make claus€’; true, by the
construction of grapiG2. Hence the truth assignmeptindeed
makesy true.

Conversely, if there is a truth assignmerthat makes true, we
show that there is @-hom mapping\ from G; to G2. Thep-hom
mapping is defined as follows: (I\(R1) = Ra; (2) for each
S [l,m], )\(XL) = X1 if p(mb) = true, and)\(Xi) = Xpi if
p(x;) = false; and (3) for each € [1, n], A\(C;) = C;(p) defined
as above. Itis easy to verify thatis indeed g-hom mapping. O

Proof of Theorem 4.1 (b)
< 1-1

We show that the 1--hom problem G, Sew)
complete even whe@'; is atreeandGs is aDAG.

We first show that this problem is iRpP. An NP algorithm is
given as follows: first guess a binary relati&nC Vi x V2, and then
check whether it is a 1--hom mapping. It is in polynomial time
(PTIME) to check whetheR is an injective function and whether it
is ap-hom mapping fronG; to Go.

We next show that this problem isP-hard by reduction from

G2) is NP-
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Figure 8: An example reduction for 1-1p-hom

the exact cover by 3-sets problerd3C), which is NP-complete
(cf. [15]). Given a finite se = {z1, ..., x3,} with | X| = 3¢ and
a collectionS = {C1,...,C,} of 3-element subsets of, where
Ci = {xi1, mi2, xi3} for i € [1,n], theX3C problem is to decide
whether there exists an exact cover fr that is, a sub-collection
S’ C S such thatS’ is a partition ofX, i.e., every element of{
occurs in exactly one member 6f.

Given an instancé of X3C, we construct two graph&; and
G2 and a similarity matrixmat() such that there is a 1-4-hom

mapping fromG, to G5 if and only if there exists an exact cover

for I. The similarity threshold is set tol.

(1) The treeGGy = (V1, E1, L1) is defined as follows:
° ‘/1:{R17Civ'"70(/17X{17X127X137"'7 c/117 (;27X(;3};
o Ey = {(R17C£)7(Cl7 :1)7(027 £2)7(Cz{7 :3)} for each
i €[1,q]; and
o Li(v) = v foreach node € V1.

Intuitively, the treeG; encodes the structure of an exact cover

S’ for the X3C instancel. If there exists such af’, thenS’ con-

sists of exactly; subsets, and each contains three distinct elements.

Node R; is the root node of tre€/,. NodesC; (i € [1,q]) de-

note the subsets in the soluti®h. Moreover, we encode the three

elements for each subs€t (i € [1,q]) with three distinct nodes
X/, X!y and X/;. Edges from nod€”; to nodesX/;, X/, and
X! indicate their relationships.

For example, consider an instance ®BC, where X =
{X11,X127X137X21,X227X23} and S = {01702703} such
that Cy = {X11, X12, X13}, Co = {X11, X412, Xo1} and C3 =
{X21, X22, X23}. The tree(G; is depicted in Fig. 8@1).

(2) ThebAG G2 = (Va, E») is defined as follows:
o Vo ={R2,Ch,...,Cn, X11,X12, X13, ..., Xq1, Xg2, Xg3 };
o By = {(R2,C¢)} @] {(Ci,Xjk)}, where: € [1,n], 1<5<
p, andX;, € C; forall k € [1, 3]; and

o La(u) = u for each nodes € V5.

Intuitively, DAG G encodes the instance of tk&C problem.
Node R is the root ofG». For each € [1, n], nodeC; represents
the 3-element subsét; in S, and nodesY;;, X2, X;3 denotes the
three elements of’;. Again, edges from nodé€’; to nodesX;,
X2 and X;3 indicate their relationships.

Referring theX3C instance given above, theac G» is shown
in Fig. 8 G2).

(3) The similarity matrixmat() is defined as follows:

o mat[R1, R2] = 1;

o mat[Cj,C;] =1fori € [1,¢] andj € [1,n];

o mat[Xj, X,4] =1fori,j € [1,¢] andk, g € [1, 3];

o mat[v, u] = 0 for any other nodes € V; andu € Vx.

The similarity matrixmat() guarantees that (a) the rogt of
G1 must be mapped to the roét of G», (b) nodeC; (i € [1,q])
of G is mapped to nod€’; (j € [1,n]) of G2, and (c) nodeX},,
inG1 (i € [1,¢q] andk € [1,3]) is mapped to node&;, in G2
(j € [1.q andg € [1,3)).

It is easy to verify that the above construction isPmME. We
next verify that this is indeed a reduction from tK8C instance,

i.e., there is a 1-Ip-hom mapping fromG; to G- if and only if
there is an exact cover for th€3C instance.

First, suppose that there exists a p-hom mappingh from G
to G>. From the mapping\, we constructs’ = {\(Cj)} for each
Ci e Vi of Gy (i € [1, g]). We next show tha$’ is an exact cover
for the X3C instance.

Since the mapping is injective, it is easy to verify that (1f’|
= ¢, and (2) for any two distinct nodes; andC; (¢,5 € [1,¢] and
i # j)in G1, M(C]) # XC}), i.e.,they are mapped to distinct
nodes inG2. From this it follows that ifS” is not an exact cover of
S, there must exisA(C}), A(C}) € S" (1 < 4,5 < g andi # j)
such that\(C}) N A(C}) # 0. However, this implies that there
exist two distinct nodes(;,, (a child of nodeC;) and X7, (a child
of nodeC?) in G1 such that\ (X, ) = A\(X},), which isimpossible
since) is injective. Hence$’ is indeed an exact cover.

To illustrate this, let us consider an example. Rdbe a 1-1p-
hom mapping fromG; to G2 shown in Fig. 8 such that (1)(R1)
= R, (2) M\(C1) = C1, M\(C%) = C3, and (A (X/;,) = X, for each
i € [1,2] and eachk € [1,3]. ConsiderS’ = {\(C1),\(C3)} =
{C1,C3}. Itis easy to verify thas” is an exact cover for th¥3C
instance given above.

Conversely, suppose there is an exact ca¥/efor the X3C in-
stance. We show that there is J=hom mapping\ from G to Gs.
Assumew.l.o.g.thatS’ = {Cj,, ..., Cj,} such thatj; € [1,n] and
Cy, € Sforie[l,q].

We define a mapping as follows: (L)A(R1) = Ra, (2) A(C})
=Cj, fori € [1,q], and 3)A(X},) = X, fori € [1,q] and
k € [1,3], whereCj, ={Xj,1, Xj,2, X;,3} and X}, X;», X3 are
the children ofC; in G1. Then it is easy to verify thak is a 1-1

p-hom mapping, using an argument similar to the one given above.

For instanceS’ = {C1,C3} is an exact cover for th&3C in-
stance in Fig. 8. Then the corresponding &-fiom mappingh is
constructed as follows: ()(R1) = Rz, (2) A\(C1) =C1 andA(C3)
=5, B)A(X},) = Xy fori € [1,2] andk € [1, 3]. |

Proof of Corollary 4.2

We show that the maximum cardinality problem (MCP) and the
maximum overall similarity problem (MSP) aner-complete for
both p-hom and 1-1p-hom. These problems are already-hard
when onlyDAGS are considered.

Given graphg71, G2, similarity matrixmat, thresholdg, and a
rational numbet<, MCP (resp. MSP) fop-hom (resp. 1-p-hom)
is to determine whether there existgpdom (resp. 1-Ip-hom)
mappingo from G to G2 such thatqualCard(c) > K (resp.
qualSim(o) > K).

It is easy to verify that these problems arenr. We next
show that there exists a reduction from gh@om problem to MCP
(MSP) for p-hom, and the reduction from the 1pthom problem
to MCP (MSP) for 1-1p-hom is identical.

Given an instancé; = (G1, G2, mat, &) of the p-hom problem,
we construct an instande = (G1, G2, mat’, &, K) of MCP (MSP)
such that (1)K = 1, (2) mat’(v,u) = 1 for each nodey in G
and each node in G» such thatmat(v,u) > &, andmat’ (v, u) =
mat(v, u) otherwise. The reduction is trivially iRTIME.

If there is ap-hom mappings such thatqualCard(c) > 1 for
MCP or qualSim(o) > 1 for MSP in instancel, then it is easy
to verify that the mapping contains all nodes off;. From this,
it follows that there exists a solution for instanfeif and only if
there exists a solution for instanée. m|

Proof of Theorem 4.3

We show thatCPH, CPH!~!, SPH and SPH!~! are not approx-
imable withinO(1/n'~¢) for any constant, wheren is the num-
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ber of nodes irG1, and G1 andG» are input graphs.

We show that there exists akFP-reduction (f,g) (see Sec-
tion 4 for a detailed description) from tiW¢IS problem to theSPH
problem, from which the conclusion follows since tWéS prob-
lem is not approximable withi®(|V;|'~¢) for any constant [16].

We first construct algorithnf. Given an instancé; of the WIS
problem as its input, algorithnf outputs an instancé, of the
SPH problem. The instancé; is an undirected grapl(V, E)
with a positive weightv(v) on each node. The instancd. con-
sists of the following: (1) two directed grapla& (Vi, F1, L1) and
G2(Va, E2, L2) such thatV; = Vo = V, E; contains the set of
(arbitrarily directed) edges i, E> = 0, andL; (v) = L2(v) = v
for each nodev € V; (2) a similarity matrixmat() such that
mat(v,u) = 1iff Li(v) = L2(u) for any nodesy in G1 andu
in G2, andmat(v, u) = 0 otherwise; (3) for each nodec Vi, its
weight is equal tav(v) on G; and (4) a similarity threshold = 1.
It is easy to verify that algorithnf is in PTIME.

We then construct algorithm. Given a feasible solutios, =
{(v1,v1),- .., (vn,vs)} of the SPH instancel, algorithmg out-
putssi = {v1,...,vs}. Algorithm g is trivially in PTIME.

We now show that f, g) is an AFP-reduction from the WIS
problem to théSPH problem. Let us consider the following.

Claim 1. Lets; = {v1,...,v,} be a set of nodes @ in the WIS
instancel;, andsz = {(v1,v1),..., (vn,vn)} be a mapping of
the SPH instancel>. Thens: is p-hom mapping from subgraph
G1[s1] to graphGs in I, iff s1 is an independent set 6f in I;.

This suffices. For if it holds, then we can easily verify that algo-
rithm ¢ produces a solution of th@/IS instancel:, obj;(s1) =
objy(s2), and opt,(l2) = opt,([1). Recall that (1)obj, ()
(resp.obj, () is a function measuring the quality of a solution to
I, (resp.I2); and (2)opt, (resp.opt,) is the quality of an optimal
solution toI; (resp.I2). From this it follows that( f, ¢) is indeed
anAFP-reduction from theWIS problem to thesPH problem.

We next proveClaim 1. First, suppose that; is an independent
set inl;. By the definition ofp-hom, it is easy to verify that; is a
p-hom mapping from subgrapfi [s1] to G2 in Is.

Conversely, suppose that is ap-hom mapping from subgraph
G1[s1] to graphG. in I>. We then show that; is an independent
set of graph= in I,. By the definition ofp-hom, (1) each node;

(z € [1,n]) of s1 in G1 is mapped to nodez(v;) = v; in G2; and
(2) for any nodes;, v; (i # j)in s1, (vs,v;) is not in E1 since
G- has no edges at all = 0). Hence,s; is an independent set
of graphG in I2. By the construction of grapy'; in algorithm £,
s1 is indeed an independent set of gra@hn 1.

For the SPH!~! problem, the aboveAFP-reduction suffices
since thep-hom mapping constructed is indeed injective.

For theCPH (resp.CPH'~!) problem, by setting the weights of
all nodes inG: to 1, the revisedAFP-reduction (f,g) for SPH
given above suffices again. a

Proof of Theorem 5.1

We show thatCPH, CPH'~!, SPH and SPH!~! are all approx-
imable within O(log®(n1n2)/(nins2)), wheren; andn, are the
numbers of nodes in input graptis andG., respectively.

It suffices to show that there exists &k P-reduction (f,g)
from the SPH problem to theWIS problem, from which the con-
clusion follows since theVIS problem is approximable within
O(log®n) /n, wheren = nins is the number of graph nodes [16].

We first design algorithmf. Given anSPH instancel, as
its input, algorithm f produces awIS instancel,. The in-
stancel; consists of (1) two directed grapld$, (V1, E1, L1) and
G2(Va, E2, L2), (2) a similarity matrixmat() on the nodes of7,

and G2, and (3) a similarity threshold. Algorithm f first com-
putes theransitive closureGy (Va, B, Lo) of graphG-2, and then
produces an undirected gragh(V, E') with a positive weight on
each node based on grapfis and Gy . The graphG, a product
graph ofG, andGa, is built as follows:
@A)V =A{[v,u] | v € Vi,u € Vo, mat(v,u) > £}
(2) For any nodegv:, u1], [v2,uz] in V, there exists an edge from
[v1,u1] tO [v2,usz] in E iff they satisfy the following conditions:
(a) vi # wg; (b) if there is a loop(v1, v1) (resp.(vz, v2)) in G1,
then there must exist a loofui, u1) (resp. (uz, uz)) in G ; and
(C) if (’Ul,’UQ) € Fn, then(ul,UQ) c E;
(3) For each nodév, u] in G, its weight is equal tenat(v, u).
Finally, algorithm f produces a grapli“(V, E€), which is the
WIS instancel,. GraphG¢(V, E€) is the complemengraph of
G(V, E) such thatan edgec E°iff e ¢ E. Here graphG* allow
no self-loops. It is easy to verify that algorithfiruns inPTIME.
We then design algorithm as follows. Given a feasible solu-

tion s = {[v1,u1], ..., [vn,un]} Of the WIS instancel:, g out-
putssi = {(vi,u1),..., (vn,un)}. Algorithm g is obviously in
PTIME.

We now show thaf f, g) is an AFP-reduction from the SPH
problem to theWIS problem. Let us consider the following.

Claim 2. Letsy = {[v1,u1],..., [vn, un]} be a set of nodes i@,
andsy = {(v1,u1),..., (vn,un)}. Thenss is an independent set
in graphG* iff s is ap-hom mapping from subgrapfy; [V/] to
Go such tha! = {v1,...,v,}.

If Claim 2 holds, then we can easily verify that (1) algoritlym
produces a solution (a-hom mapping) for th&PH instancel,,
(2) obj; (s1) = obj,(s2), and (2)opt, (I2) = opt, (I1). From this
it follows that(f, g) is indeed arAFP-reduction.

We next proveClaim 2. Assume that; is an independent set
of G¢. We show that; is ap-hom mapping fronG1[V{] to G-.
Sincess is an independent set 6f¢, s2 is a clique ofG. Hence
there exists an edge in gragh between any nodep;, u;] and
[vj,uj] (i # j) of s2. The construction o7 guarantees the fol-
lowing: (a) if there is an edge from nodés, u;] to [v;, u;], then
v; # v;, and (b) if there is an edge from to v; in G, then there
must exist a path fromy; to v; in G2; (c) nodes with self-loops
in G1 must be mapped to nodes with self-loopsdg. Condition
(a) guarantees that is a function; and conditions (a), (b) and (c)
together guarantee that is indeed g»-hom mapping.

Conversely, ifs1 is a p-hom mapping fromG:[V/] to G2, we
show thats, is an independent set @¥. This is trivial since
for any nodegv;, u;] and[v;, u;] (i # j) in s2, there is an edge
([vi, wi], [vj,u4]) in G, and thus no edge 6.

To prove the statement for th8PH'~' problem, for each
node pair[vi,u] and [vz,u] (v1 # v2), we further add an edge
([v1, u], [v2, u]) to G° given above. This suffices to guarantee that
the independent set corresponds to a 1<3-hom mapping.

For the CPH (resp.CPH! ') problem, by setting the weights
of all nodes inG° to 1, the AFP-reduction (f,g) for SPH
(resp.SPH! 1) given above suffices. ]

Proof of Proposition. 5.2

We show that given any graplis; (Vi, E1, L1), G2(V2, E2, L2),
mat() and¢, algorithmcompMaxCard finds ap-hom mappingr
from a subgraph of7; to G2 such thatqualCard(o) is within
O(log® (|V4||Va])/([Vi][V2])) of the optimal quality.

As pointed out in Section 5, theFP-reductions in Theorem 5.1,
together with the algorithm for thé/IS problem [16] serve as naive
approximation algorithms for these problems. These algorithms
have the performance guarantee given above. Thus, all we need to
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; A
Algorithm ISRemoval P

Input: An undirected grapld:(V, E). B C A E
Output: A clique C of G. D/\E /\ A %\(@\
4. — . £ ¢/C%D ~C P pBc—-b
1.4:=1; (I1,Ch):=Ramsey(G); F 6 B D F G B @: 724
2.while G is not emptydo G, Gy G, Gy G, G, Gy
3. G:=G\ I;; rremove independent sét from G*/ a) Partitioning grapic' b) Compressing grap&'+
4. i:=i+1; (Cy,I;) = Ramsey(G); @ g grapiin (®) P 9 grapt;
S.return max(C1, Ca, . .., Cy). Figure 10: Reducing the graph size
Procedure Ramsey ducting the experiments reported in Section 6.
Input: An undirected grapld:(V, E).
Output: An independent sett and a cliqueC' of G. Partitioning graph G:. Consider the se$; of nodes inG; such

that for any node) € S;, mat(v,u) < & for each node: in Ga.
Thatis, no node it%; can find gp-hom match inG2. Obviously the
nodes inS; do not contribute to any-hom mapping from any sub-
graph ofG; to graphG». Therefore, we only need to consider the
subgraph1[V4 \ S1] of G, instead of entir&~;, when computing
p-hom mappings frondz; to G2.

Observe that7; [V \ S1] may become disconnected everyif is
5. :=max(I1, I U{v}); C:=max(CrU{v}, Ca); connected. For e)[<an>plé]¥,1 depicted in Fig. 10(a) is connected, in
6.return (1, C). which nodeC' has nop-hom nodes irG». After removing node”

Figure 9: Algorithm ISRemoval from G1, the remaining subgraph has three pairwise disconnected
componentg711, G12 andGis. Itis easy to show:

Lif G = 0 then return (0, 0);
2.choose some nodeof G do
3. (C1,I) :=Ramsey(N (v));
/*subgraph\ (v) of G consists of the neighbors of/
4. (Cs,I3) = Ramsey(N (v));
*subgraph\ (v) of G consists of the non-neighbors of/

do is to show that given the same input, algorittempMaxCard
produces the same output as those naive algorithms.

To show this, it suffices to show that algoritrtémpMaxCard
simulates algorithniSRemoval, in a non-trivial way, for finding a
maximum clique on the product graph (shown in Fig. 9). Algorithm
ISRemoval is the dual of algorithnCliqueRemoval for finding a This allows us to treat each component separately, and take
maximum independent set [7]. Recall that the maximum indepen- as the final mapping the union of those mappings for the com-
dent set problem on graphi is equivalent to the maximum cligue  ponents. Better yet, if some group:; contains a single node
problem on the complement grag#f of GG, and vice versa. v, e.g., G12 in Fig. 10(a), a match is simply(v,u)}, where

One can easily see how algorititompMaxCard in Fig. 3 mim- mat(v,u) > mat(v,u’) for any other node.’ in G2. Note that
ics algorithmISRemoval. We next show, in detail, how procedure  finding pairwise disconnected components is linear-time equiva-
greedyMatch in Fig. 4 simulates procedufRamsey (see a detailed lent to finding strongly connected components, which is in linear

Proposition 1: Let graphG, consist ofk pairwise disconnected
componentssii, . . ., andGy. If o; is a maximunp-hom mapping
from a subgraph of+1; to G2, thenU;j(ai) is a maximunp-hom
mapping from a subgraph @ to G-. a

explanation in [7]). This is based on the following connections: time [13].
(1) The matching-lisff for graphG; corresponds to the product The partitioning strategy may improve match quality. To see this
graphG = G1 x (G2, and each node in G1 and another node let us examine the approximation boupd= log*n/n. Obviously,
in H|v].good or H [v].minus together correspond to the nofde u| (1) if n = e? ~ 7.39, y is maximal, where is the base of the
in the product grapltz. From these it follows that lines 1 and 2 of  natural logarithms; (2) when > €2, y is monotonically decreas-
greedyMatch simulate lines 1 and 2 dtamsey, respectively. ing; and (3) ifn < €2, itis affordable to use an exact algorithm to
(2) The matching-listZ* and H~ correspond to\V ([v, u]) find the exact maximurp-hom mapping. Thus when > €2, the
and N ([v, u]), respectively, where nodes« come from line 2 of largern is, the worse the performance guarantee is. This tells us
greedyMatch. Since computing the neighbors or non-neighbors of that reducingG: to G1[Vi \ Si] and partitioningG1[V4 \ Si] to
a node on graphs is trivial, it is not explicitly addresse®#msey. disconnected components indeed improve match quality.

In greedyMatch, however, we need to distinguish neighbors from
non-neighbors in the matching-ligf, instead of the product graph
directly. ProcedurarimMatching in Fig. 4 is thus introduced to
solve this problem. Indeed, it isimMatching that makes it possi-
ble to operate on the product graph directly.

(3) ProcedurgreedyMatch(H1, H2, H) returns(o, I'), whereo
and! correspond to a clique and an independent set in the product
graphG respectively, as defined in the proof of Theorem 5.1. From
this it follows that lines 10, 11, 12 and 13 @feedyMatch simulate
lines 3, 4, 5 and 6 oRamsey, respectively.

Putting all these together, we have shown tt@ahpMaxCard
indeed simulatekSRemoval, i.e.,given the same input, they always
produce the the same output.

Compressing graph G . Each strongly connected component
(scQ in G forms acliquein its transitive closure graptiy . By a
cliguein G we mean a sef’ of nodes such that subgragkC] is
a complete graph.g.,any pair of nodes is connected by an edge).

We can replace each cliqued; with a single node with a self-
loop, whose label is the bag of all node labels in the clique. We
denote the compressed graph®@y(V5", E5 ), where each node in
V5 represents a (maximum) clique @i, and there exists an edge
from nodesuy to us in G5 iff there is an edge from a node in clique
u} to anode in cliques} in G . For example, Figure 10(b) shows a
graphGs, its transitive closure grapfij and its compressed graph
G%. Note thatG is often much smaller tha@'s.

By capitalizing on bags of labels, our algorithms can be mod-
ified such that any+strong (1-rhom mapping they find from a

: . H : : subgraph of7, to G5 is also a strong (1-1)-hom mapping from a

Appendlx B: Optlmlzatlon TeChnlqueS subgraph of7; to ng, with the same quality. By compressiiig
We next propose techniques to improve the efficiency of our algo- to G, the performance of the algorithms is significantly improved.
rithms given in Section 5, while retaining or even improving their The compressing process incurs little extra cost s#ces of G2
match quality. These techniques had been implemented when con-can be identified during the computation@ [22].
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