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Abstract 

Ontology alignment is regarded as one of the core tasks in many 
Web services. It is concerned with finding the correspondences 
between separate ontologies by identifying concepts with the 
same or similar semantics in order to resolve semantic 
heterogeneity between them. Existing ontology alignment 
techniques are tailored towards today’s ontology languages, 
which are not capable of representing and reasoning with 
uncertain or incomplete information. It is expected, however, that 
future Semantic Web services will rely on the development and 
use of proper domain ontologies. Alignment of such ontologies 
goes beyond standard concept matching, and requires non-
standard logic processing. In this paper, we present an alignment 
technique utilizing an alternative, rule-based representation, 
which provides a uniform framework for representing and 
mapping heterogeneous ontologies. To justify and illustrate our 
research, we describe an example application scenario. 

Introduction 

The World Wide Web (WWW) holds an enormous amount 
of information and provides an astonishing number of 
information services, which nowadays are primarily 
intended to be used by people. The next generation of the 
WWW, the Semantic Web, will make this information 
accessible to computers by annotating and explicating it 
using ontologies “that are composed of concepts that are to 
some extent valid in a domain, relations that hold to some 
degree of certainty, and rules that apply only in some 
cases” (Davis, Studer, and Warren 2006). It is expected 
that a huge number of Web ontologies will be created, 
some of them intended to be used by the same Semantic 
Web services.  This can only be possible if the consistency 
and interoperability between cooperating ontologies is 
assured. The process, referred to as ontology alignment (de 
Bruijn et al. 2006),   is intended to carry out this task.   It   
is   commonly  implemented   by     the   so-called    Match  
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operator, which takes two or more ontologies as an input, 
and returns a specification of the correspondences between 
them. Depending on the way ontologies are compared, we 
distinguish between schema-based and instance-based 
matching. The former accounts for different properties of 
the concepts (such as name, for example) and uses 
similarity measures to evaluate the correspondence 
between them (Noy and Musen 2000), while the latter 
compares instances of the concepts (Doan et al. 2004). 
Some alignment algorithms, such as the one presented in 
(Giunchiglia and Shvaiko 2003), compare the structure of 
ontologies based on the mapping between their elements. 
All of these alignment algorithms are tailored towards 
current ontology languages, which were shown to have  
limited representational and computational power to fulfill 
the needs of a broad range of Web services dealing with 
incomplete and/or uncertain information, or requiring more 
sophisticated reasoning capabilities (beyond those offered 
by Description Logics upon which they are built on). Such 
capabilities, ranging from conventional monotonic 
backward and forward chaining to various types of default 
reasoning, are inherent to rule-based languages, 
traditionally used for building knowledge-based systems 
and intelligent agents. Rules have already been shown to 
be very effective in various Web applications such as 
identifying matches between different data sets, e-learning, 
multimedia collection indexing, skill finding, device 
interoperability, etc. (Dean 2004; Antoniou and van 
Harmelen 2004). It is widely admitted that rules will be a 
major part of the Semantic Web, and critical for adapting 
AI techniques in a broad range of Web applications. 
 
In this paper, we describe a hypothetical application 
scenario which illustrates the need for a rule-based 
representation capable of expressing heterogeneous 
(mixed) ontologies in a uniform fashion, and supporting 
non-monotonic reasoning. The problem addressed here is a 
special case of ontology alignment, where we are 
interested not only in establishing the correspondences 



between two ontologies, but also in identifying the 
discrepancies between them and explicating the culprits for 
those discrepancies. Because ontologies can be encoded in 
different formats, we advocate that finding an alternative 
representation in which cooperating ontologies can be 
adequately mapped, will greatly simplify their alignment. 
We show how the Contradiction-tolerant Truth 
Maintenance System (CTMS) (Zlatareva 1992) can be 
utilized as a common representation for cooperating 
ontologies, and how its inference engine can be adapted to 
carry out the alignment procedure.  

Motivation Example 

Consider a university domain, where programs are 
described in terms of their basic curriculum as taxonomies 
of courses, and a course catalog provides course 
descriptions. Figures 1 and 2 illustrate computer science 
curriculum at universities A and B. 
 
Assume John is interested to transfer out of university A, 
but he wants to make the most of the credits acquired there. 
In addition to the CS courses taken at university A, John 
has taken some non-CS courses, which are common 
prerequisites for CS courses. Since those are not part of the 
basic CS-course taxonomy, they are not shown on Figures 
1 and 2. John is looking for a CS program which offers a 
specialization track in AI, and he is especially interested in 
a course on Semantic Web. University B is identified by 
him (or by his helper Web agent) as a possible choice. Can 
John transfer the two senior courses (Computer 
Architecture and Networking) that he has already taken at 
university A, and can he continue with AI specialization 
track without taking extra prerequisites at university B?  
 
The first step towards processing John’s query is to set up 
a common semantic framework for the two ontologies. 
This is typically done by establishing the so-called 
semantic bridges (Maedche et al. 2002; Ghidini and 
Serafini 2006) in a form of rules, which allow entities 
(concepts, relations, etc.) from one ontology to be 
connected to the entities of the other. This process is not 
always trivial. Consider, for example, university A course 
called “Data Structures” and university B course called 
“JAVA Programming 2”. Note also that there is another 
course at university B called “Data Structures”. The 
mapping procedure must be able to bridge the university A 
“Data Structures” course to university B “JAVA 
Programming 2” course rather than to university B “Data 
Structures” course. Finding a mapping between relations of 
the course ontologies should allow queries like “Is the 
networking course at university A eligible for transfer to 
university B?” to be answered. 

 
As pointed out in (Ghidini and Serafini 2006), current 
ontology languages make it possible to express mappings 

between homogeneous components of different ontologies 
(that is, concepts to concepts, relations to relations, etc.). 
However, in many Semantic Web applications a need may 
arise to establish semantic relations between heterogeneous 
components. In our example, some of the relations between 
the courses must be acquired from course catalogs, which 
are not part of the course taxonomy. 
 

 
 
Figure 1: A taxonomy of courses at university A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: A taxonomy of courses at university B 
 
Next, we define a specification format for representing 
heterogeneous ontologies and describe a simple mapping 
procedure to establish correspondences between their 
concepts and relations.  

Specification of Heterogeneous Ontologies 

In heterogeneous ontologies, data is not specified in a 
common format. Assume some data is defined 
declaratively, and other data is defined procedurally. Here 
is our working definition for an ontology, which accounts 
for both data specifications.  
 

Intro to 
Algorithms 

Computer 
Organization 

Computer 
Architecture 

Data Bases 

Data 
Structures 

Intro to 
Programming 

Networking 

JAVA Prog- 
ramming 1 

JAVA Prog-
ramming 2 

Computer 
Organization 

Data 
Structures 

Computer 
Architecture 

Semantic Web 

Networking Artificial 
Intelligence 

Data Bases 



Definition 1:  Let ontology O = {SchemaSet ∪ RuleSet}, 
where: 
 

a) SchemaSet is a set of concepts describing classes of 
entities in a domain {C1, C2,  …, Ck},  such that     
Ci = <Ni, Di, Si>,  where: 

• Ni is a term (the name of the concept);  
• Di is a list of  “property – value” pairs providing 

the syntactic definition of the concept;  
• Si is a list of semantically equivalent to Ni terms. 

b) RuleSet is a set of implications representing 
relations between concepts.  

 
In our example domain, formal concept definitions can be 
acquired from informal course descriptions using 
keywords, and can be represented in the following format: 
 
       Ci = <CS-designator,  
               <CS-prereqs : {CS-designator},  
                  non-CS-prereqs : {non-CS-designator},  
                  credits : number>, {CS-designator}> 
 
In XML, this format is defined as follows: 
 
<!ELEMENT course (course_name, course_attributes, 
                       equiv_names)> 
<!ELEMENT course_name (#PCDATA)> 
<!ELEMENT course_attributes (CS_prereqs,  
                       non_CS_prereqs, credits) 
<!ELEMENT CS_prereqs (prereq_item*)> 
<!ELEMENT prereq_item (#PCDATA)> 
<!ELEMENT non_CS_prereqs (prereq_item*)> 
<!ELEMENT credits (#PCDATA)> 
<!ELEMENT equiv_names (equiv_item*)> 
<!ELEMENTS equiv_item (#PCDATA)> 
 
Example descriptions of CS courses at universities A and 
B, respectively, are given below: 
<course> 
   <course_name>Data Structures</course_name> 
   <course_attributes> 
        <CS_prereqs> 
             <prereq_item>Introduction to    
                                 Programming</prereq_item> 
        </CS_prereqs> 
        <non_CS_prereqs></non_CS_prereqs> 
        <credits></credits> 
   </course_attributes> 
   <equiv_names> 
        <equiv_item>CS-2</equiv_item> 
        <equiv_item>Object-Oriented-  
                         Programming</equiv_item> 
   </equiv_names> 
</course> 
 <course> 
   <course_name>JAVA-Programming 2</course_name> 

   <course_attributes> 
        <CS_prereqs> 
             <prereq_item>JAVA-Programming-1 
             </prereq_item> 
        </CS_prereqs> 
        <non_CS_prereqs></non_CS_prereqs> 
        <credits></credits> 
   </course_attributes> 
   <equiv_names> 
        <equiv_item>CS-2</equiv_item> 
        <equiv_item>Functional-Programming</equiv_item> 
   </equiv_names> 
</course> 
 
A simple matching procedure will be sufficient in this case 
to establish name equivalences between concepts.  In our 
example ontologies, the following list of name 
equivalences will be returned: 
 
{Intro-to-Programming ≅ JAVA-Programming-1 ≅ CS-1, 
  Data Structures ≅ JAVA-Programming-2 ≅  
                  ≅  Functional- Programming ≅ CS-2, 
   Intro-to-Algorithms ≅ Data-Structures ≅ CS-3} 
 
The second component of our domain specification, 
namely the relations between concepts, is shown as course 
taxonomies on Figures 1 and 2. Rules are natural way to 
represent and process such taxonomies. It is interesting to 
note, however, that an adequate representation of domain 
semantics requires that we distinguish between two types 
of rule (course) prerequisites:  
 
1. Prerequisites explicitly shown in course taxonomies 

(that is, reflecting relations between CS courses). We 
can interpret those as “required” (John cannot take an 
AI course at university B without a Data Structures 
course; recall, however, that the later is not the same 
as the Data Structures course at university A). 

2. Prerequisites not shown in course taxonomies, but 
spelled out in course descriptions (that is, reflecting 
“CS – non-CS” relations). We can interpret those as 
“desirable” (John is expected to have a Discrete Math 
course in order to take AI at university B; however, he 
may still be allowed to take AI without Discrete Math 
with AI professor’s permission, but John may not get 
it, in which case he cannot take the course).  

Alignment of Web Ontologies: Basic 
Definitions and Notation 

Let O1 = {SchemaSet1 ∪ RuleSet1} and O2 = {SchemaSet2 

∪ RuleSet2} be two propositional ontologies. Then, the 
degree of correspondence between O1 and O2 is defined as 
follows. 
 



Definition 2: O1 and O2 are fully compatible iff:  
 
a) The syntactic definitions of the concepts comprising 

their schema sets match, i.e. 
i. ∀ Ci(1) ∈ SchemaSet1 �  ∃ Cj(2) ∈ 

SchemaSet2 , such that Ni(1) = Nj(2) or  Ni(1) 
∈ {Sj2 , …,  Sjk}(2). 

ii.  ∀ Cj(2) ∈ SchemaSet2 �  ∃  Ci(1) ∈ 
SchemaSet1,   such that Nj(2) = Ni(1) or Nj(2) 
∈ {Si1 , …,  Sil}(2). 

b) Transitive closures of O1 and O2 contain only 
semantically equivalent sets of concepts, i.e. concepts 
which derivation paths are exactly the same. We shall 
say that such concepts strongly agree. 

 
Definition 3: O1 and O2 are partially compatible iff: 
 
a) A subset of concepts comprising SchemaSet1 and 

SchemaSet2 match. 
b) Transitive closures of O1 and O2 contain subsets of 

concepts that strongly agree. 
 
Definition 4: O1 and O2 are incompatible if there exists a 
concept from SchemaSet1 which semantically contradicts a 
concept from SchemaSet2, and all other concepts depend 
on them.  
 
If two ontologies are fully or partially compatible, their 
complete or partial alignment is possible; incompatible 
ontologies can not be aligned.    
 
The rest of the paper presents a effective procedure 
intended to test if two ontologies are fully or partially 
compatible. It returns not only the correspondences, but 
also the discrepancies between participating ontologies, 
and provides an explanation to justify the detected 
semantic similarity between them. The underlying idea is 
to translate the aligned heterogeneous ontologies into an 
alternative homogeneous representation where implicit 
relations between concepts are explicated and processed. 
We use the Contradiction-tolerant Truth Maintenance 
System (Zlatareva 1992) as a common representation 
framework, and show how its inference engine can be 
utilized to carry out the alignment task.  

Representing Web Ontologies as CTMS Rules  

The Contradiction-tolerant TMS (CTMS) was originally 
introduced as an alternative to other non-monotonic 
formalisms to allow for: (i) efficient processing of some 
types of non-monotonic theories, (ii) maintaining 
statements with different degrees of belief, not just true, 
false, and unknown; and (iii) reasoning in the presence of a 
logical contradiction, instead of halting and waiting until 
the contradiction is resolved. Implementation of these 

features is largely due to the fact that CTMS employs two 
types of inference rules, T-rules and P-rules. T-rules are 
regular monotonic rules, while P-rules are non-monotonic 
rules of the form: 
 

(Premise-1, …, Premise-n) (Assumption-1, …,  
           Assumption-m) � Conclusion 
 

Here Premise-1, …, Premise-n are monotonic supporters 
comprising the minimal evidence for Conclusion, and 
Assumption-1, …, Assumption-m provide additional 
evidence intended to strengthen the truth of  Conclusion. 
Such rules will fire if the minimal evidence for Conclusion 
has been established. In turn, Conclusion will be derived 
with different degrees of belief depending on the 
accumulated evidence in its favor. For example, given the 
rule (BirdTweety) (¬PenguinTweety, ¬OstrichTweety) � 
FliesTweety, if BirdTweety is true then we can derive 
FliesTweety, even though we do not know if Tweety is a 
penguin or an ostrich. The rule 
(PositiveResultOfTheBodyScanner) (Headache, Neurosis, 
MentalDisturbances) � DiagnoseBrainTumor, implies a 
brain tumor as a possible diagnosis if 
PositiveResultOfTheBodyScanner is true,   even though 
additional symptoms such as headache, neurosis and 
mental disturbances, which usually accompany the disease, 
are not observed in a particular case. If one, or more, or all 
in the extreme case, of the assumptions of such rules 
become true, then the degree of belief in Conclusion 
should increase. In such cases, the so-called duplicate rules 
are used instead of original P-rules. Duplicate rules are 
variants of the corresponding P-rules to account for the 
additional evidence accumulated for Conclusion and revise 
its belief status accordingly. For more on CTMS syntax 
and semantics, see (Zlatareva 1992). 
 
Relative to our example domain, CTMS-rules have the 
following format:  
(CS-1, …,CS-n ) (non-CS-1, …, non-CS-m) � CS-i  
 
Here CS-1, …, CS-n are the required prerequisites for CS-i 
acquired from course taxonomies shown on Figures 1 and 
2, and non-CS-1, …, non-CS-m are “desired” or 
“assumed” prerequisites acquired from concept definitions. 
If such rule fires, conclusion CS-i will be recorded together 
with its justification as follows: 
CS-i:  (CS-1, …, CS-n ) (non-CS-1, …,  non-CS-m). 
 
The resulting sets of CTMS rules describing example 
ontologies are shown below. 
 
University A rules: 
 
Rule 1A:  (CS-2) (Web-Technologies) � Data-Bases 
Rule 2A:  (CS-2) ( ) � CS-3 
Rule 3A:  (CS-3) (Web-Technologies) � Networking 



Rule 4A:  (Computer-Organization) ( ) �  
                       � Computer-Architecture 
Rule 5A:  (CS-1) ( ) � CS-2 
Rule 6A:  (  ) (Calculus) � Intro-to-Programming 
Rule 7A:  (CS-2) ( ) � Computer-Organization 
 
University B rules: 
 
Rule 1B:  (CS-3) (Statistics) � Data-Bases 
Rule 2B:  (CS-2) (Discrete-Math) � CS-3 
Rule 3B:  (CS-3, Computer-Architecture) ( )  � 
                     � Networking 
Rule 4B: (Computer-Organization, CS-2) ( ) �  
                     � Computer-Architecture 
Rule 5B:  (CS-1) (Calculus) � CS-2 
Rule 6B:  (  ) ( ) � CS-1 
Rule 7B:  (CS-1) ( ) � Computer-Organization 
Rule 8B:  (CS-3) (Statistics) � Artificial-Intelligence 
Rule 9B:  (Networking, Data-Bases, Artificial-Intelligence) 
                       ( )   � Semantic-Web 
 
Next, by running the CTMS inference engine on the two 
rule sets, we can explicate the immediate as well as all 
other course predecessors. Assuming that all required 
conditions for rule firing hold, we can first compute the 
stable extensions of the two rule sets, and then compute 
their so-called grounded stable extensions (GSEs). As 
described in the next section, GSEs contain useful 
information for explicating the correspondences and 
discrepancies between the two source ontologies. 

Testing CTMS Rule Sets for Similarities and 
Discrepancies  

The stable extension of a CTMS rule set shows how 
derived formulas depend on their immediate predecessors. 
To explicate all of the predecessors of a given formula, we 
compute the transitive closure of its immediate 
predecessors. The resulting set of formulas comprises the 
GSE of the CTMS rule set (Zlatareva 1992). Processing of 
our example ontologies converted into CTMS 
representation results in the following GSEs: 
 
GSE(A) = {CS-1 : ( ) (Calculus), CS-2 : (CS-1) (Calculus), 
CS-3 : (CS-2, CS-1) (Calculus), 
Computer-Organization : (CS-2, CS-1) (Calculus), 
Data-Bases :  (CS-2, CS-1) (Calculus, Web-Technologies), 
Networking : (CS-3, CS-2, CS-1) (Calculus, Web-
Technologies), Computer-Architecture :  (Computer- 
Organization, CS-2, CS-1) (Calculus)}. 
 
GSE(B) = {CS-1: ( ) ( ),   
Computer-Organization:(CS-1)( ), CS-2:(CS-1) (Calculus), 
CS-3: (CS-2, CS-1) (Discrete-Math, Calculus), 
Computer-Architecture: (Computer-Organization, CS-2,  
CS-1) (Calculus), Data-Bases: (CS-3, CS-2, CS-1)  

(Discrete-Math, Calculus, Statistics), Networking: (CS-3,  
CS-2, CS-1, Computer-Architecture, Computer- 
Organization)  (Discrete-Math, Calculus),  
Artificial-Intelligence : (CS-3, CS-2, CS-1)  (Statistics,  
Discrete-Math, Calculus), Semantic-Web : (Networking,  
CS-3, CS-2, CS-1, Computer-Architecture, Computer- 
Organization, Data-Bases, Artificial-Intelligence)  
(Calculus, Statistics, Discrete-Math)} 
 
Recall that we have already identified name equivalences 
between concepts. Now we can use this information for 
establishing the semantic relation between them. For that, 
we compare justifications of the formulas describing 
courses with the same name from GSE(A) and GSE(B). 
The following three cases are possible: 
 
Case 1.  The two justifications are exactly the same. For 
example, 
Computer-Architecture: (Computer-Organization, CS-2,  
       CS-1) (Calculus)  ∈ GSE(A) 
Computer-Architecture: (Computer-Organization, CS-2,  
       CS-1) (Calculus)  ∈ GSE(B) 
 
In this case, the two concepts Computer-Architecture(A) 
and Computer-Architecture(B) strongly agree. 
 
Case 2.  The two justifications differ in their assumption 
lists only. For example,  
CS-3 : (CS-2, CS-1) (Calculus) ∈ GSE(A) 
CS-3 : (CS-2, CS-1) (Discrete-Math, Calculus) ∈ GSE(B) 
 
In this case, we say that the two concepts, CS-3(A) and 
CS-3(B), partially agree, and that CS-3(B) is stronger than 
CS-3(A) (that is, CS-3(A) < CS-3(B)). 
 
Case 3.  The two justifications differ in their required lists. 
For example, 
Data-Bases:  (CS-2, CS-1) (Calculus, Web-Technologies) 
∈ GSE(A) 
Data-Bases:  (CS-3, CS-2, CS-1) (Calculus, Statistics, 
Discrete-Math) ∈ GSE(B) 
 
In this case, we say that the two concepts, Data-Bases(A) 
and Data-Bases(B), are inconsistent.  
 
By the definitions of full and partial compatibility of two 
ontologies, introduced earlier in this paper, we can say 
that: 
• O1 and O2 are fully compatible iff their GSEs contain 

only concepts that strongly agree. 
• O1 and O2 are partially compatible iff their GSEs 

contain concepts that strongly or partially agree. 
• O1 and O2 are incompatible iff their GSEs contain 

only concepts that are either inconsistent, or contain 



inconsistent required prerequisites in their 
justifications. 

 
Going back to John’s query, the presented alignment 
technique will return the following results:  
 
• CS-2(A) and CS-2(B), and Computer-Architecture(A) 

and Computer-Architecture(B) strongly agree. 
•  CS-1(A) and CS-1(B), and CS-3(A) and CS-3(B) 

partially agree.  Note that CS-1(A) > CS-1(B), so 
John can transfer it to university B. However, CS-3(A) 
< CS-3(B), and thus John can not be certain about 
whether or not he will be allowed to transfer this one.  

• The following three concepts are identified as 
inconsistent: Computer-Organization,Data-Bases, and 
Networking. The interpretation of such inconsistencies 
depends on the semantics of a posted query.  

 
Inconsistencies are of special interest in our example 
application. Since the sources of detected inconsistencies 
have already been identified and recorded in course 
justifications, we can further process them to clarify the 
final response to John’s query. First, consider the 
justifications for Computer-Organization concept: 
 
Computer-Organization:(CS-2,CS-1) (Calculus) ∈ GSE(A) 
Computer-Organization:(CS-1) ( ) ∈ GSE(B) 
 
Computer-Organization(A) > Computer-Organization(B), 
because the required prerequisites of the latter are a subset 
of the required prerequisites of the former. Therefore, John 
must be allowed to transfer his Computer Organization 
course to university B. Now, compare the justifications for 
Data-Bases concept: 
 

Data-Bases: (CS-2,CS-1)(Calculus, Web-Technologies)∈  
                        ∈ GSE(A) 
Data-Bases: (CS-3, CS-2, CS-1) (Calculus, Statistics,  
                         Discrete-Math) ∈ GSE(B) 
 
Here Data-Bases(B) > Data-Bases(A), because (CS-2, CS-
1) ⊆ (CS-3, CS-2, CS-1). Therefore, John will not be 
allowed to transfer this course to university B.  

Conclusion 

The paper addressed a special case of ontology alignment, 
which is one of the core tasks in many Web services. The 
presented alignment technique aims not only to establish 
the correspondences between two cooperating ontologies, 
but also to identify the discrepancies between them and 
explicate the culprits for those discrepancies. We have 
shown how heterogeneous ontologies comprised of 
concepts that are not fully specified and relations that are 
characterized with some degree of uncertainty, can be 

uniformly mapped into CTMS representation, and have 
shown how CTMS inference engine can be utilized to 
implement the alignment process. 
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