Alignment of Heter ogeneous Ontologies. A Practical Approach to Testing
for Similarities and Discrepancies

Neli P. Zlatareva
Department of Computer Science, Central Connec8tate University
1615 Stanley Street, New Britain, CT 06050, USA
Zlatareva@ccsu.edu

Maria Nisheva
Faculty of Mathematics and Informatics, Sofia Unsity “St. Kliment Ohridski”
5 James Bourchier Blvd., Sofia, Bulgaria
marian@fmi.uni-sofia.bg

Abstract
Ontology alignment is regarded as one of the caskstin many
Web services. It is concerned with finding the espondences
between separate ontologies by identifying concepth the
same or similar semantics in order to resolve s#man
heterogeneity between them. Existing ontology alignt
techniques are tailored towards today's ontologggleges,
which are not capable of representing and reasoniith
uncertain or incomplete information. It is expecgtedwever, that
future Semantic Web services will rely on the depetent and
use of proper domain ontologies. Alignment of sactologies
goes beyond standard concept matching, and requiogs
standard logic processing. In this paper, we pteseralignment
technique utilizing an alternative, rule-based espntation,
which provides a uniform framework for representiagd
mapping heterogeneous ontologies. To justify ahdtilate our
research, we describe an example application soenar

I ntroduction

The World Wide Web (WWW) holds an enormous amount
of information and provides an astonishing numbér o
information services, which nowadays are primarily
intended to be used by people. The next generafidhe
WWW, the Semantic Web, will make this information
accessible to computers by annotating and expligaiti
using ontologies “that are composed of conceptsateato
some extent valid in a domain, relations that Holdome
degree of certainty, and rules that apply only eams
cases” (Davis, Studer, and Warren 2006). It is etqub
that a huge number of Web ontologies will be créate
some of them intended to be used by the same Siemant
Web services. This can only be possible if theststancy
and interoperability between cooperating ontologises
assured. The process, referred to@t®logy alignmen(de
Bruijn et al. 2006), is intended to carry outsthask. It

is commonly implemented by the so-callédatch

Copyright © 2008, Association for the AdvancemeinAuificial
Intelligence (www.aaai.org). All rights reserved.

operator, which takes two or more ontologies asnpat,
and returns a specification of the correspondeheéseen
them. Depending on the way ontologies are compaved,
distinguish betweenschema-basedand instance-based
matching. The former accounts for different projesriof

the concepts (such as name, for example) and uses
similarity measures to evaluate the correspondence
between them (Noy and Musen 2000), while the latter
compares instances of the concepts (Doan et ak)200
Some alignment algorithms, such as the one presénte
(Giunchiglia and Shvaiko 2003), compare the stmactf
ontologies based on the mapping between their eltsme
All of these alignment algorithms are tailored toss
current ontology languages, which were shown toehav
limited representational and computational powefutfill

the needs of a broad range of Web services dealitig
incomplete and/or uncertain information, or requgrmore
sophisticated reasoning capabilities (beyond tradtered

by Description Logics upon which they are built .08uch
capabilities, ranging from conventional monotonic
backward and forward chaining to various types efadIt
reasoning, are inherent to rule-based languages,
traditionally used for building knowledge-based teyss
and intelligent agents. Rules have already beemwsho

be very effective in various Web applications suah
identifying matches between different data selsaening,
multimedia collection indexing, skill finding, deé
interoperability, etc. (Dean 2004; Antoniou and van
Harmelen 2004). It is widely admitted that ruledl e a
major part of the Semantic Web, and critical foagtihg

Al techniques in a broad range of Web applications.

In this paper, we describe a hypothetical apphcati
scenario which illustrates the need for a rule-tase
representation capable of expressing heterogeneous
(mixed) ontologies in a uniform fashion, and supingr
non-monotonic reasoning. The problem addressediare
special case of ontology alignment, where we are
interested not only in establishing the corresponds

between two ontologies, but also in identifying the
discrepancies between them and explicating theitsifjor
those discrepancies. Because ontologies can beletdo
different formats, we advocate that finding an raiigive
representation in which cooperating ontologies ¢en
adequately mapped, will greatly simplify their aligent.
We show how the Contradiction-tolerant Truth
Maintenance System (CTMS) (Zlatareva 1992) can be
utiized as a common representation for cooperating
ontologies, and how its inference engine can bgtadato
carry out the alignment procedure.

Motivation Example

Consider a university domain, where programs are
described in terms of their basic curriculum atemies

of courses,
descriptions. Figures 1 and 2 illustrate computserse
curriculum at universities A and B.

Assume John is interested to transfer out of usitierd,
but he wants to make the most of the credits aeduhere.
In addition to the CS courses taken at universityJéhn

has taken some non-CS courses, which are common

prerequisites for CS courses. Since those arearbbpthe
basic CS-course taxonomy, they are not shown our&sg

1 and 2. John is looking for a CS program whiclecffa
specialization track in Al, and he is especiallieiested in

a course on Semantic Web. University B is iderdifiey
him (or by his helper Web agent) as a possiblecghaCan
John transfer the two senior courses (Computer
Architecture and Networking) that he has alreadgemtaat
university A, and can he continue with Al speciatian
track without taking extra prerequisites at uniitgrB?

The first step towards processing John’s query iset up

a common semantic framework for the two ontologies.
This is typically done by establishing the so-ddlle
semantic bridges(Maedche et al. 2002; Ghidini and
Serafini 2006) in a form of rules, which allow eis$
(concepts, relations, etc.) from one ontology to be
connected to the entities of the other. This predssot
always trivial. Consider, for example, universitycAurse
called “Data Structures” and university B coursdlech
“JAVA Programming 2”. Note also that there is arath
course at university B called “Data Structures”.eTh
mapping procedure must be able to bridge the usityef
“Data Structures” course to university B “JAVA
Programming 2" course rather than to university Bata
Structures” course. Finding a mapping betweeniozlatof
the course ontologies should allow queries like the
networking course at university A eligible for teder to
university B?” to be answered.

As pointed out in (Ghidini and Serafini 2006), @nr
ontology languages make it possible to express mgpp

and a course catalog provides course

between homogeneous components of different origsog
(that is, concepts to concepts, relations to m@hati etc.).
However, in many Semantic Web applications a neag m
arise to establish semantic relations between bgeaeous
components. In our example, some of the relatietwéden
the courses must be acquired from course catalalgsh
are not part of the course taxonomy.

Intro to
Programming
Data
Structures
Intro to
Algorithms

Computer Data Bases
Organization

Computer
Architecture

Figure 1: A taxonomy of courses at university A
JAVA Prog-
ramming 1
Computer JAVA Pro¢-
Computer Data
Architecture Structures

Artificial
Intelligence

\

Semantic Web

Figure 2: A taxonomy of courses at university B

Next, we define a specification format for represen
heterogeneous ontologies and describe a simple ingapp
procedure to establish correspondences between thei
concepts and relations.

Specification of Heter ogeneous Ontologies

In heterogeneous ontologies, data is not specifiec
common format. Assume some data is defined
declaratively, and other data is defined procetiurélere

is our working definition for an ontology, which @mints

for both data specifications.

Definition 1: Let ontology O= {SchemaSefl RuleSet},
where:

a) SchemaSet is a set of concepts describing clagses o
entities in a domain {¢ C,, ..., G}, such that
Ci = <N, b;, S>, where:
¢ N;jis aterm (the name of the concept);
« D;is alist of “property — value” pairs providing
the syntactic definition of the concept;
e Sis alist of semantically equivalent tg fdrms.
b) RuleSet is a set of implications representing
relations between concepts.

In our example domain, formal concept definitioas be
acquired from informal course descriptions using
keywords, and can be represented in the followimmét:

G = <CS-designator,
<CS-preregs : {CS-designator},
non-CS-preregs : {non-CS-desigriat
credits : number>, {CS-designgtor

In XML, this format is defined as follows:

<IELEMENT course (course_name, course_attributes,
equiv_names)>
<IELEMENT course_name (#PCDATA)>
<IELEMENT course_attributes (CS_preregs,
non_CS_preregs, credits)
<IELEMENT CS_prereqs (prereq_item*)>
<IELEMENT prereq_item (#PCDATA)>
<IELEMENT non_CS_prereqs (prereq_item*)>
<I[ELEMENT credits (#PCDATA)>
<IELEMENT equiv_names (equiv_item*)>
<I[ELEMENTS equiv_item (#PCDATA)>

Example descriptions of CS courses at univershiasd
B, respectively, are given below:
<course>
<course_name>Data Structures</course_name>
<course_attributes>
<CS_prereqs>
<prereq_item>Introduction to
Programming</prgrigem>
</CS_prereqs>
<non_CS_prereqs></non_CS_prereqs>
<credits></credits>
</course_attributes>
<equiv_names>
<equiv_item>CS-2</equiv_item>
<equiv_item>Object-Oriented-
Programming</equiv_item>
</equiv_names>
</course>
<course>
<course_name>JAVA-Programming 2</course_name>

<course_attributes>
<CS_prereqgs>
<prereq_item>JAVA-Programming-1
</prereq_item>
</CS_prereqs>
<non_CS_preregs></non_CS_prereqs>
<credits></credits>
</course_attributes>
<equiv_names>
<equiv_item>CS-2</equiv_item>
<equiv_item>Functional-Programming</equigni>
</equiv_names>
</course>

A simple matching procedure will be sufficient g case
to establish name equivalences between conceptsurl
example ontologies, the following list of name
equivalences will be returned:

{Intro-to-ProgrammindJ JAVA-Programming-11CS-1,
Data Structure8l JAVA-Programming-2]
O Functional- Programming CS-2,
Intro-to-Algorithms[d Data-Structure& CS-3}

The second component of our domain specification,
namely the relations between concepts, is showroase
taxonomies on Figures 1 and 2. Rules are naturgltea
represent and process such taxonomies. It is Bitegeto
note, however, that an adequate representatioromwiaoh
semantics requires that we distinguish betweenttpes

of rule (course) prerequisites:

1. Prerequisites explicitty shown in course taxonomies
(that is, reflecting relations between CS coursés.
can interpret those as “required” (John cannot ke
Al course at university B without a Data Structures
course; recall, however, that the later is not shme

as the Data Structures course at university A).
Prerequisites not shown in course taxonomies, but
spelled out in course descriptions (that is, reiftec
“CS — non-CS” relations). We can interpret those as
“desirable” (John is expected to have a Discret¢hMa
course in order to take Al at university B; howeJss
may still be allowed to take Al without Discrete tfla
with Al professor’s permission, but John may not ge
it, in which case he cannot take the course).

Alignment of Web Ontologies: Basic
Definitions and Notation

Let O, = {SchemaSetl RuleSet} and O, = {SchemaSet

O RuleSef} be two propositional ontologies. Then, the
degree of correspondence betwegra@d Q is defined as
follows.

Definition 2: O, and Q arefully compatible iff: features is largely due to the fact that CTMS empltwo
types of inference rules, T-rules and P-rules. [Egware
a) The syntactic definitions of the concepts compgsin regular monotonic rules, while P-rules are non-ntonic

their schema sets match, i.e. rules of the form:
i. 0 CG(1) O SchemaSet=> 0O G(2) O .))
SchemaSet such that 1) = N(2) or N(1) (Premise-1, ..., Premise-n) (Assumption-1, ...,
) 0{Sp, ... SH2). Assumption-m¥$® Conclusion
- g hC,~(2) SDtSChETP?StQt;)— Dl G(1) E Here Premise-1, ..., Premise-n are monotonic supsorte
chemaSet such that I{2) = N(1) or N(2) comprising the minimal evidence for Conclusion, and
O{Si, .., SH2). Assumption-1, ..., Assumption-m provide additional

b) Transitive closures of Oand Q contain only evidence intended to strengthen the truth of QGesich.
semantically equivalent sets of concepts, i.e. €pt& gych ryles will fire if the minimal evidence for Gdusion
which derivation paths are exactly the same. Wé sha 55 peen established. In turn, Conclusion will beved
say that such concepis ongly agree. with different degrees of belief depending on the

accumulated evidence in its favor. For examplegmithe

rule (BirdTweety) ¢ PenguinTweety; OstrichTweety)d>

FliesTweety, if BirdTweety is true then we can deri

FliesTweety, even though we do not know if Tweetai

penguin or an ostrich. The rule

(PositiveResultOfTheBodyScanner) (Headache, Nesirosi

MentalDisturbances)® DiagnoseBrainTumor, implies a

brain tumor as a possible diagnosis @ if

PositiveResultOfTheBodyScanner is true, even ghou

additional symptoms such as headache, neurosis and

mental disturbances, which usually accompany theadie,

are not observed in a particular case. If one, aremor all

in the extreme case, of the assumptions of sucésrul

become true, then the degree of belief in Conclusio

should increase. In such cases, the so-cdllgdicate rules
are used instead of original P-rules. Duplicateesuére
variants of the corresponding P-rules to accounttlie
additional evidence accumulated for Conclusion l@vise
its belief status accordingly. For more on CTMStayn
and semantics, see (Zlatareva 1992).

Definition 3: O, and Q arepartially compatible iff:

a) A subset of concepts comprising SchemaSetd
SchemaSetmatch.

b) Transitive closures of PDand Q contain subsets of
concepts that strongly agree.

Definition 4: O, and Q areincompatible if there exists a
concept from SchemaSethich semantically contradicts a
concept from SchemaSgetnd all other concepts depend
on them.

If two ontologies are fully or partially compatibléheir
complete or partial alignment is possible; incoripat
ontologies can not be aligned.

The rest of the paper presents a effective proeedur
intended to test if two ontologies are fully or fely
compatible. It returns not only the correspondendes
also the discrepancies between participating ogiesy
and provides an explanation to justify the detected
semantic similarity between them. The underlyingaids

to translate the aligned heterogeneous ontologits an
alternative homogeneous representation where iihplic
relations between concepts are explicated and-psede Here CS-1, ..., CS-n are the required prerequisie€&-i
We use the Contradiction-tolerant Truth Maintenance acquired from course taxonomies shown on Figuraad.
System (Zlatareva 1992) as a common representation, ", 4 11on-CS-1. ... non-CS-m are “desired” or

fra_mework, and show h.OW its inference engine can be “assumed” prerequisites acquired from concept defirs.
utilized to carry out the alignment task. If such rule fires, conclusion CS-i will be recodd®gether
with its justification as follows:

CS-i: (Cs-1, ..., CS-n) (non-CS-1, ..., non-CS-m).

Relative to our example domain, CTMS-rules have the
following format:
(Cs-1, ...,CS-n) (non-CS-1, ..., non-CS-m) CS-i

Representing Web Ontologiesas CTM S Rules

The Contradiction-tolerant TMS (CTMS) was origigall ~ The resulting sets of CTMS rules describing example
introduced as an alternative to other non-monotonic ontologies are shown below.

formalisms to allow for: (i) efficient processindg some

types of non-monotonic theories, (i) maintaining University A rules:

statements with different degrees of belief, ndt jaue,

false andunknown and (jii) reasoning in the presence of a Rule 1A: (CS-2) (Web-Technologies} Data-Bases

logical contradiction, instead of halting and wagtiuntil Rule 2A: (CS-2) (y» CS-3

the contradiction is resolved. Implementation ofsth Rule 3A: (CS-3) (Web-Technologiedy Networking

Rule 4A: (Computer-Organization) &
= Computer-Architecture
Rule 5A: (CS-1) (@ CS-2
Rule 6A: () (Calculus¥ Intro-to-Programming
Rule 7A: (CS-2) (¥ Computer-Organization

University B rules:

Rule 1B: (CS-3) (Statisticsp Data-Bases
Rule 2B: (CS-2) (Discrete-Matkp CS-3
Rule 3B: (CS-3, Computer-Architecture) &
= Networking
Rule 4B: (Computer-Organization, CS-2)9®)
= Computer-Architecture
Rule 5B: (CS-1) (Calculus® CS-2
Rule 6B: () (> CS-1
Rule 7B: (CS-1) (¥ Computer-Organization
Rule 8B: (CS-3) (Statisticsp Atrtificial-Intelligence
Rule 9B: (Networking, Data-Bases, Atrtificial-Inigence)
()=>» Semantic-Web

Next, by running the CTMS inference engine on the t
rule sets, we can explicate the immediate as welala
other course predecessors. Assuming that all reduir
conditions for rule firing hold, we can first computhe
stable extensions of the two rule sets, and thenpate
their so-calledgrounded stable extension&GSEs). As
described in the next section,

discrepancies between the two source ontologies.

Testing CTMSRule Setsfor Similaritiesand
Discrepancies

The stable extension of a CTMS rule set shows how

derived formulas depend on their immediate predsrss
To explicate all of the predecessors of a givemfda, we
compute the transitive closure of its
predecessors. The resulting set of formulas comprike
GSE of the CTMS rule set (Zlatareva 1992). Proogsef
our example ontologies converted into
representation results in the following GSEs:

GSE(A) = {CS-1: () (Calculus), CS-2 : (CS-1) (Galus),
CS-3: (CS-2, CS-1) (Calculus),
Computer-Organization : (CS-2, CS-1) (Calculus),
Data-Bases : (CS-2, CS-1) (Calculus, Web-Techneg
Networking
Technologies), Computer-Architecture : (Computer-
Organization, CS-2, CS-1) (Calculus)}.

GSE(B) ={CS-1: () ().
Computer-Organization:(CS-1)(), CS-2:(CS-1) (Chlsy
CS-3: (CS-2, CS-1) (Discrete-Math, Calculus),
Computer-Architecture: (Computer-Organization, GS-2
CS-1) (Calculus), Data-Bases: (CS-3, CS-2, CS-1)

GSEs contain useful
information for explicating the correspondences and

immediate

CTMS

(Cs-3, Cs-2, Cs-1) (Calculus, Web-

(Discrete-Math, Calculus, Statistics), Networki(@s-3,
CS-2, CS-1, Computer-Architecture, Computer-
Organization) (Discrete-Math, Calculus),
Artificial-Intelligence : (CS-3, CS-2, CS-1) (Sttics,
Discrete-Math, Calculus), Semantic-Web : (Netwogkin
CS-3, CS-2, CS-1, Computer-Architecture, Computer-
Organization, Data-Bases, Artificial-Intelligence)
(Calculus, Statistics, Discrete-Math)}

Recall that we have already identified name eqeiveds
between concepts. Now we can use this informat@mn f
establishing the semantic relation between them.tifat,
we compare justifications of the formulas descigbin
courses with the same name from GSE(A) and GSE(B).
The following three cases are possible:

Case 1. The two justifications are exactly the same. For

example,

Computer-Architecture: (Computer-Organization, GS-2
CS-1) (Calculus)] GSE(A)

Computer-Architecture: (Computer-Organization, GS-2
CS-1) (Calculus)] GSE(B)

In this case, the two concepts Computer-Architegiy
and Computer-Architecture(Bjrongly agree.

Case 2. The two justifications differ in their assumptio
lists only. For example,

CS-3: (CS-2, CS-1) (CalculuB) GSE(A)

CS-3: (CS-2, CS-1) (Discrete-Math, CalculusisSE(B)

In this case, we say that the two concepts, CS-3{#9
CS-3(B),partially agree, and that CS-3(B) istronger than
CS-3(A) (that is, CS-3(Ax CS-3(B)).

Case 3. The two justifications differ in their requirects.

For example,

Data-Bases: (CS-2, CS-1) (Calculus, Web-Techne&)gi
0 GSE(A)

Data-Bases: (CS-3, CS-2, CS-1) (Calculus, Stesisti

Discrete-MathY1 GSE(B)

In this case, we say that the two concepts, Date&a)
and Data-Bases(B), aneconsistent.

By the definitions of full and partial compatibyfiof two

ontologies, introduced earlier in this paper, wa cay

that:

e O and Q arefully compatible iff their GSEs contain
only concepts that strongly agree.

e O; and Q are partially compatible iff their GSEs
contain concepts that strongly or partially agree.

e O, and Q are incompatible iff their GSEs contain
only concepts that are either inconsistent, or aiant

inconsistent in their

justifications.

required prerequisites

Going back to John's query, the presented alignment
technique will return the following results:

+ CS-2(A) and CS-2(B), and Computer-Architecture(A)
and Computer-Architecture(Bjrongly agree.

+ CS-1(A) and CS-1(B), and CS-3(A) and CS-3(B)
partially agree. Note that CS-1(A) > CS-1(B), so
John can transfer it to university B. However, G8)3
< CS-3(B), and thus John can not be certain about
whether or not he will be allowed to transfer thige.

e The following three concepts are identified as
inconsistent: Computer-Organization,Data-Bases, and
Networking. The interpretation of such inconsistesc
depends on the semantics of a posted query.

Inconsistencies are of special interest in our etam
application. Since the sources of detected inctersies
have already been identified and recorded in course
justifications, we can further process them to ifslathe
final response to John's query. First, consider
justifications for Computer-Organization concept:

the

Computer-Organization:(CS-2,CS-1) (CalculusizSE(A)
Computer-Organization:(CS-1) () GSE(B)

Computer-Organization(A) > Computer-Organization(B)
because the required prerequisites of the lateeaasubset
of the required prerequisites of the former. TherefJohn
must be allowed to transfer his Computer Orgarorati
course to university B. Now, compare the justificas for
Data-Bases concept:

Data-Bases: (CS-2,CS-1)(Calculus, Web-Technologies)
0 GSE(A)
Data-Bases: (CS-3, CS-2, CS-1) (Calculus, Stagistic
Discrete-Math) GSE(B)

Here Data-Bases(B) > Data-Bases(A), because (52,
1) O (CS-3, CS-2, CS-1). Therefore, John will not be
allowed to transfer this course to university B.

Conclusion

The paper addressed a special case of ontologynadigt,
which is one of the core tasks in many Web servitég
presented alignment technique aims not only tobésta
the correspondences between two cooperating orgslog
but also to identify the discrepancies between tlad
explicate the culprits for those discrepancies. WWéee
shown how heterogeneous ontologies comprised of
concepts that are not fully specified and relatitret are
characterized with some degree of uncertainty, ban

uniformly mapped into CTMS representation, and have
shown how CTMS inference engine can be utilized to
implement the alignment process.

Acknowledgement. Neli Zlatareva would like to thank the
Fulbright Commission for Educational Exchange, unde
the sponsorship of which this joint research waslena
possible

References

Davis J., R. Studer, P., and Warren, P. 2006ncfDsion

and Outlook. In Davis, S. and Warren (e®&)mantic Web
Technologies: Trends and Research in Ontology-Based
SystemsJohn Wiley and Sons.

de Bruijn, J. et al. 2006. Ontology Mediation, Miegyand
Alignment. In Davis, S. and Warren (edS¢mantic Web
Technologies: Trends and Research in Ontology-Based
SystemsJohn Wiley and Sons.

Noy, N. and Musen, M. 2000. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignmeifrt.
Proc. AAAI'’2000Austin, Texas.

Doan, A. et al. 2004. Ontology Matching: A Machine
Learning Approach. In Staab S, Studer R. (eldandbook
on Ontologies in Information SystenSpringer-Verlag.

Giunchiglia, F. and Shvaiko, P. 2003. Semantic Miaig.
Knowledge Engineering Revieh8(3): 265-280.

Dean, M. 2004. Semantic Web Rules: Covering the Use
Cases. In G. Antoniou and Boley H. (ed3yles and Rule
Markup Languages for the Semantic \\Blyinger-Verlag.

Antoniou, G. and van Harmelen, F. 2004.SAmantic Web
Primer. MIT Press.

Zlatareva, N. 1992. CTMS: A General Framework for
Plausible Reasoning. linternational Journal of Expert
Systems: Research and Applicatiob@t).

Maedche, A. et al. 2002. MAFRA - A Mapping
Framework for distributed Ontologies. IRroc. 13th
European Conference of Knowledge Engineering and
Knowledge Management (EKAW’200R)adrid, Spain.

Ghidini, C. and Serafini, L. 2006 Reconciling cepts
and relations in heterogeneous ontologies.Ptoc. 3rd
European Semantic Web Conference (ESWC'2006)
Budva, Montenegro.

