
Evaluation of entity resolution approaches
on real-world match problems

Hanna Köpcke
WDI-Lab

University of Leipzig
Germany

koepcke@informatik.uni-
leipzig.de

Andreas Thor
Database Group

University of Leipzig
Germany

thor@informatik.uni-
leipzig.de

Erhard Rahm
WDI-Lab & Database Group

University of Leipzig
Germany

rahm@informatik.uni-
leipzig.de

ABSTRACT

Despite the huge amount of recent research efforts on entity
resolution (matching) there has not yet been a comparative
evaluation on the relative effectiveness and efficiency of alternate
approaches. We therefore present such an evaluation of existing
implementations on challenging real-world match tasks. We
consider approaches both with and without using machine
learning to find suitable parameterization and combination of
similarity functions. In addition to approaches from the research
community we also consider a state-of-the-art commercial entity
resolution implementation. Our results indicate significant quality
and efficiency differences between different approaches. We also
find that some challenging resolution tasks such as matching
product entities from online shops are not sufficiently solved with
conventional approaches based on the similarity of attribute
values.

1. INTRODUCTION
Entity resolution (also referred to as object matching, duplicate
identification, record linkage, or reference reconciliation) is a
crucial task for data integration and data cleaning [10], [18], [29].
It is the task of identifying entities referring to the same real-world
entity. The high importance and difficulty of the entity resolution
problem has triggered a huge amount of research on different
variations of the problem and numerous approaches have been
proposed especially for structured data. Recent surveys include
[2], [20], and [24].

Due to the high number and diversity of different entity resolution
approaches we see a strong need for comparative evaluations of
different schemes. To date most entity resolution approaches have
been evaluated individually using diverse methodologies,
configurations, and test problems making it difficult to assess the
overall quality of each approach, let alone their comparative
effectiveness and efficiency. Only few attempts for comparative
evaluations of some sub-approaches have been made, e.g.,

evaluation of different string similarity metrics [11] and of
blocking approaches [3]. Some benchmark proposals for entity
resolution have been made [28], [32] but they have not yet been
implemented or applied.

We have analyzed numerous research publications w.r.t. their
evaluation of entity resolution approaches1 and provide an
overview of selected studies in our recent survey paper [20].
While we identified several popular datasets used in the
evaluations, e.g., DBLP, Citeseer, Cora, or IMDB, we were not
able to derive conclusive results on the relative quality of different
entity resolution approaches. This is because the published
evaluation results are mostly based on selected subsets or
preprocessed versions of these datasets so that the achieved results
became incomparable. See, for example, the differently sized
Cora-based datasets used in [25], [30], [13], and [12].

Another difficulty when comparing entity resolution algorithms is
that they require different parameters to be set such as the
similarity functions for comparing attribute values or similarity
thresholds to be exceeded by matching entities. Many proposed
approaches also make use of machine learning algorithms
requiring specific parameters such as the size and characteristics
of training data. Obviously, the chosen algorithm configuration is
one of the predominant factors for the resulting match quality and
in many published evaluation results significant details of it (e.g.,
on the used training data) remain unspecified.

In this study, we use a new evaluation framework, FEVER, to
comparatively evaluate several previously proposed entity
resolution approaches. Main characteristics of our evaluation are:

- The approaches are uniformly evaluated on four real-world
match tasks of two domains. In particular we consider matching
of product entities from different web shops.

- We consider individual algorithms (PPJoin+) as well as
frameworks (FEBRL, MARLIN) offering different approaches.
Furthermore we study approaches that do and do not require
training data. In addition we consider a state-of-the art
commercial entity resolution approach. More than 20 different
approaches are evaluated under different parameter settings.

- Our evaluation considers both match quality in terms of
precision, recall, and F-measure, as well as efficiency in terms
of runtime.

1 The complete list can be found at http://dbs.uni-leipzig.de/fever

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Articles from this volume were presented at The 36th International
Conference on Very Large Data Bases, September 13-17, 2010,
Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1

© 2010 VLDB Endowment 2150-8097/10/09... $10.00

- We use the FEVER framework to automatically execute the
approaches and to find favorable parameter settings in a
comparable way. In particular, we always apply the same
blocking method to reduce the search space and use a uniform
approach for providing training to the machine-learning
approaches. For the approaches not based on machine learning
we spend the same effort for optimizing parameters such as
similarity thresholds.

The rest of the paper is organized as follows: Section 2 describes
the use of the FEVER framework to perform the evaluations of
entity resolution approaches. The evaluation results are presented
and discussed in Section 3. In Section 4 we briefly discuss related
evaluation studies, especially of the approaches considered in our
study. Finally, we conclude in Section 5.

2. EVALUATION APPROACH
We use the FEVER platform (Framework for EValuating Entity
Resolution) [23] to evaluate several match approaches for
different match tasks. While FEVER has its own library of match
algorithms we do not evaluate this functionality here but use
FEVER only to evaluate existing entity resolution approaches
from the research community and one vendor. FEVER allows us
to automatically execute these algorithms for many different
parameter settings in a comparable way as we will discuss in the
following for both non-learning and learning-based match
approaches.

2.1 Non-learning match approaches
In FEVER, a match approach is specified by a so-called operator
tree or workflow that specifies the sequence of processing steps
for determining the match result on two input datasets. Figure 1a
illustrates the FEVER operator tree that was applied in our
evaluation of non-learning match approaches.

For large datasets, it is generally not feasible to exhaustively
evaluate the Cartesian product of all input entities. Hence, we first
apply a blocking operator to reduce the search space to the most
likely matching entity pairs. For comparability, we use a fixed

blocking strategy for all non-learning and learning-based match
approaches, i.e., blocking is not subject of the evaluation.

The blocking result is input to the non-learning match approaches
to be evaluated. In this study all considered match approaches are
based on so-called attribute matchers that evaluate the similarity
of attribute values based on some similarity function (e.g., an
approximate string similarity). The approaches may evaluate only
a single matcher (for a specific attribute pair and similarity
function) or multiple matchers using different attribute pairs or
similarity functions. In the latter case the approaches also need to
support a combination of the individual similarities to derive a
match decision. In our evaluation, we will always use the same
attributes for comparability. Furthermore, all non-learning match
approaches apply a threshold-based selection of the matching
entity pairs and require the similarity threshold to be provided as a
parameter.

For the similarity computation and the threshold-based match
decision we used the implementation of the following non-
learning match approaches:

- COSY: This is a state-of-the-art commercial system for entity
resolution. Unfortunately, license restrictions do not allow us to
disclose the name of the system. COSY uses its own similarity
function that can be applied on one or several attribute pairs.
The most important parameter to be provided is the overall

MinimumSimilarity threshold. An entity pair will be considered
a match only if it has a similarity that is greater than or equal to
this threshold. Additional attribute-level similarity thresholds
can optionally be specified for each attribute pair that should be
considered in the computation of the entity similarity.

- PPJoin+ [34] is a single-attribute match approach (similarity
join) using sophisticated filtering techniques for improved
efficiency. The approach has two parameters that need to be
configured. The parameter function determines the similarity
function used for the join. We will evaluate both supported
implementations for the similarity function (Cosine, Jaccard).
The parameter threshold determines the threshold for the
similarity values above which entities are considered to match.

• FEBRL

• MARLIN

• COSY

• PPJoin+

• FellegiSunter

Model

Generation

Training

Data

Selection

Blocking

Training

Data
Source Target

• No. of examples

• Selection scheme

(Ratio, Random)

• Threshold

• Learning algorithm

(Dec. Tree, SVM, ...)

• Matcher selection

Model

Application

Blocking

Source Target

• Similarity function

• Attribute selection

• Threshold

Similarity

Computation

Match

Decision

(a) Non-learning match approaches (b) Learning-based match approaches

Figure 1. FEVER match workflows for evaluating existing entity resolution approaches

- FellegiSunter [15] is a non-learning approach from the FEBRL
framework [9]. For similarity computation we evaluate three of
the similarity measures provided by FEBRL (Winkler,
Tokenset, Trigram). The approach has an lower and upper

similarity threshold that can be adjusted. Entity pairs with a
similarity above the upper classification threshold are classified
as matches, pairs with a combined value below the lower
threshold are classified as non-matches, and those entity pairs
that have a matching weight between the two classification
thresholds are classified as possible matches. For our
evaluation, we set the lower threshold equal to the upper
threshold as we only want a classification into matching and
non-matching entity pairs.

An operator tree typically comprises several operators each having
several parameters that need to be specified in order to apply the
operator tree to a match problem. FEVER allows a systematic
evaluation of operator trees for different parameter settings to help
finding a suitable configuration [23]. For this study we limit the
number of parameters to be set by applying a fixed blocking
approach and manually pre-selecting the attributes to be
evaluated. We further evaluate the existing similarity functions
either on one or two attributes of the input datasets. In both cases
we have to specify similarity thresholds on the single attribute or
combined attribute similarity. For comparability, we evaluate
every match approach for a fixed maximum number, N, of settings
for the threshold parameters. FEVER supports several methods
for selecting the parameter values such as manual (user-defined)
and random. For this evaluation, we use the sophisticated and
effective gradient descent strategy that iteratively refines a
parameter setting by considering the quality of previously
generated settings [23].

2.2 Learning-based match approaches
Figure 1b shows the FEVER operator tree applied for the
evaluation of learning-based approaches. The execution falls into
two phases: model generation and model application. The model
generation (left part of the operator tree) requires a training
dataset that contains manually labeled correspondences
representing matching (similarity value equals 1) and non-
matching (0) entity pairs. The learning algorithm applies the
specified matchers to the entity pairs in the training data. The
learner then uses the resulting similarity values to automatically
determine a match strategy model, i.e., combination and

parameterization of the specified matchers to derive a match
decision for any entity pair. More details on training selection and
model generation will be provided below. The second phase (right
part of the operator tree) applies the determined model for the real
match task (model application) to match a source and target
dataset (or to find duplicates within one dataset).

For model generation, a pre-selected set of matchers is applied to
the training data. By comparing similarity values computed by the
matchers to the perfect (labeled) match result in the training it is
possible to determine (learn) a combination of the most effective
matchers and their parameters such as similarity thresholds.

In our evaluation we will compare several existing training-based
approaches for model generation and application offered by the
following frameworks:

- FEBRL [9] (Freely Extensible Biomedical Record Linkage)
provides a support vector machine (SVM) implementation for
learning suitable matcher combinations. For attribute matching
we will evaluate the same three similarity measures than for the
non-learning matchers studied for FEBRL.

- MARLIN [4] (Multiply Adaptive Record Linkage with
INduction) offers two string similarity measures (Edit Distance
and Cosine) and several learners, specifically SVM and
decision trees. The learners can be used in a single step
approach or can be employed for a two-level learning approach.
For the two-level approach string similarity measures are first
trained for every selected attribute so that they can provide
accurate estimates of string distance between values for that
attribute. Next, a final decision is learned from similarity
metrics applied to each of the individual attributes.

The effectiveness of machine learning approaches is known to
depend on the provision of sufficient, suitable, and balanced
training data. On the other hand, the number of entity pairs to be
labeled affects the manual tuning effort and should thus be small.
To address these issues we build upon our evaluation experiences
reported in [21] and only consider entity pairs for labeling for
which the similarity exceeds a specified threshold t. This ensures
that the training is not dominated by trivial non-matching entity
pairs that are not useful to find effective matcher parameters and
matcher combinations. We further strive at providing both
matching and non-matching entity pairs by a training selection
approach called Ratio (r,t). It uses a ratio parameter r from the

Table 1. Overview of real-world evaluation match tasks

Match task Source size
(#entities)

Mapping size (#correspondences)

Domain Attributes Sources Source 1 Source 2 Full input mapping
(Cartesian product)

Reduced input mapping
(blocking result)

perfect
result

Bibliographic - title
- authors

DBLP-ACM 2,616 2,294 6 million 494,000 2,224

 - venue
- year

DBLP-Scholar 2,616 64,263 168.1 million 607,000 5,347

E-commerce - product name
- description

Amazon-
GoogleProducts

1,363 3,226 4.4 million 342,761 1,300

 - manufacturer
- price

Abt-Buy 1,081 1,092 1.2 million 164,072 1,097

range 0 to 0.5 indicating the minimal percentage of both matching
and non-matching entity pairs. r=0 corresponds to a random
strategy that randomly selects entity pairs with a similarity above
the threshold t. For r>0 the number of randomly selected entity
pairs is reduced so that either the number of matching or non-
matching entity pairs satisfy the ratio restriction. For example,

r=0.4 guarantees that at least 40% of all training pairs are either
matching or non-matching, i.e., at most 60% are non-matching or
matching. By ensuring a minimum number of matching/non-
matching pairs the ratio approach aims at enhancing the
discriminative value of the training data for learning effective
match strategies. We have extensively evaluated the Ratio training
selection approach and found that setting r=0.4 and t=0.4 with
TFIDF is a reliable and effective default configuration. Our
evaluation for learning-based matching will thus be based on this
configuration.

3. EVALUATION
We first describe the datasets for the four real-life match tasks. In
the main part of this section we present and discuss the obtained
evaluation results for six non-learning and 15 learning match
approaches. In the evaluation we will consider both match quality
and runtime efficiency. For match quality we evaluate the usual
measures precision, recall, and F-measure.

3.1 Datasets
We consider four match tasks of two application domains
(bibliographic and e-commerce data entities). Table 1 provides
some statistics on these tasks which are named after the involved
web sources. The number of entities per source ranges from about
1,100 to more than 64,000; the size of the Cartesian product for
the four tasks ranges from about 1.2 million (Abt-Buy task) to
168.1 million (DBLP-Scholar) entity pairs. We use a fixed

blocking strategy for all experiments and evaluated systems to
guarantee equal effectiveness and efficiency of the blocking step.
Thus blocking is not subject to our evaluation. The blocking
strategy employs Trigram on a low string similarity threshold to
reduce the search space to the numbers shown in Table 1 (up to
607,000 pairs). To investigate the scalability of the match
approaches we evaluate the match runtimes not only on the
blocking output but also on the full Cartesian product. To
determine the match quality we further created the perfect match
results with the cardinalities as shown in Table 1. Selected
attributes of the seven data sources are also listed. In this
evaluation we focus on matching on the first or the first two
attributes listed since they turned out to be most suited for the
respective match tasks.

The match tasks were chosen to represent a spectrum of different
data characteristics and difficulty levels. The first task is expected
to be of low difficulty as it deals with publication entities from
two well-structured bibliographic data sources (DBLP, ACM
digital library) that are at least partially under manual curation.
The selected DBLP and ACM entities cover the same sets of
computer science conferences and journals. The second match
task requires matching DBLP publications with publications from
the entity search engine Google Scholar (Scholar). Scholar
automatically extracts its publication entities from full-text
documents crawled from the web. This data has many quality
problems, in particular duplicate publications, heterogeneous
representations of author lists or venue names, misspellings, and
extraction errors. To obtain the Scholar data we sent numerous
queries on the publication title and venue names and stored the
combined query results as our evaluation dataset. The perfect
match result was determined manually. We have used the
bibliographic data sets already in previous work [31], [21].

Amazon-GoogleProducts

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

DBLP-ACM

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0
precision

recall

F-measure

DBLP-Scholar

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Abt-Buy

1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1 COSY
2 FellegiSunter TokenSet
3 FellegiSunter Trigram
4 FellegSunter Winkler
5 PPJoin+ Cosine
6 PPJoin+ Jaccard

Figure 2: Performance results for non-learning approaches

(a) simple approaches (1 attribute)

(b) combination approaches (2 attributes)

The e-commerce tasks deal with sets of related product entities
from the online retailers Abt.com, Buy.com (Abt-Buy task),
Amazon.com and the product search service of Google accessible
through the Google Base Data API (Amazon-GoogleProducts
task). In order to obtain the perfect match result we included only
product entities with a valid UPC (Universal Product Code) in our
datasets which allows a unique identification of a product. Of
course, the match strategies to be evaluated could not make use of
these UPCs but only of the attributes listed in Table 1 (especially
product name and description). This is because in reality many
websites do not provide the UPC information so that entity
matching cannot rely on these in general. The Abt, Buy, and
Amazon datasets were created by selecting products from
predefined categories. Based on the Amazon products, the
GoogleProducts dataset were generated by sending queries on the
product name.

3.2 Evaluation results
We first present match quality and runtime results separately for
non-learning and learning-based approaches. Afterwards we
briefly compare the two kinds of matchers with each other. The
runtime results are determined for a HP Z400 workstation with
2.66 GHz Intel Quad-Core Processor W3520 and 4GB of RAM
running 64-bit Windows 7. The evaluated match approaches are
implemented in different languages: PPJoin+ is implemented in
C++, MARLIN in Java and FEBRL in Python.

3.2.1 Non-learning approaches

Figure 2 shows the match quality (precision, recall, F-measure)
results for the four real world match tasks achieved with different
non learning approaches. The upper half shows the results for
approaches operating on just a single attribute, namely the first
attribute listed in Table 1 (publication title for the bibliographic
tasks, product name for the e-commerce tasks). The lower half
shows the results for approaches combining the similarity for two
attributes (the first two attributes listed in Table 1). In both cases

we optimized the threshold for the final match decision while all
other parameters of the approach were kept constant.
Optimization was done with the GradientDescent approach on a
test set of 500 object pairs for each match task. For the
FellegiSunter approach from the FEBRL framework we
considered three different similarity measures, namely Winkler,
TokenSet, and Trigram. FEBRL's FellegiSunter approach sums
the logarithms of the single similarities. For the COSY approach it
is not clear how similarities are combined.

All simple and combined approaches could effectively solve the
simple bibliographic match tasks DBLP-ACM (F-measure> 91%),
except for the FellegiSunter approach with the Winkler measure
which did not even reach an F-measure of 50% because it suffers
from a very low precision. The e-commerce match tasks turned
out to be much more challenging so that no approach could
achieve an F-measure of more than 62% (Amazon-
GoogleProducts) or 70% (Abt-Buy). The COSY approach is the
top or among the top performing approaches for all match tasks.
From the FellegiSunter approaches the configuration using
Trigram performed best for all match tasks.

Using two attributes (first two of Table 1) is not always more
effective than using one attribute because it is difficult to find a
good similarity combination. All approaches become worse for
the easy bibliographic match task DBLP-ACM. COSY becomes
worse for DBLP-ACM, DBLP-Scholar, and ABT-BUY. PPJoin+
could not be evaluated on two attributes because no combination
approach is provided.

Table 2 lists the execution times for the considered non-learning
approaches for the blocked input as well as the Cartesian product
of the considered match tasks. The table shows significant
differences between the approaches already for the blocked input.
The evaluation of the Cartesian product tests the scalability and
leads to huge differences. PPJoin+ and COSY achieved very fast
execution times and could even achieve acceptable run times for
the Cartesian product. PPJoin+ implements an intelligent pruning
of the search space and is uniformly the fastest approach for all

Table 2: Execution times (in seconds) for non-learning approaches

1 attribute DBLP-ACM DBLP-Scholar Abt-Buy
Amazon-

GoogleProducts

 blocked Cartesian blocked Cartesian blocked Cartesian blocked Cartesian

COSY 1 1.6 8.8 224.7 2.7 5.8 6.5 9.6

FellegiSunter TokenSet 2.1 170 10.2 64,057 2.5 17.2 4.6 84

FellegiSunter Trigram 2.5 655 44.7 243,060 25 105 34.1 320

FellegiSunter Winkler 5.7 1,601 164.6 277,200 53.5 364 96.2 1,065

PPJoin+ Cosine 0.4 0.9 3.4 6.9 0.6 2.5 0.5 0.9

PPJoin+ Jaccard 0.4 0.6 3.5 7 0.6 2.5 0.5 0.9

2 attributes

COSY 35 56 17 434 44 94 28 41

FellegiSunter TokenSet 3 429 17.8 108,896 5.9 43 44 709

FellegiSunter Trigram 3.1 1,512 116 >500,000 58 635 1,940 16,620

FellegiSunter Winkler 7.4 3,602 341 >500,000 135 970 2,833 20,760

match tasks with execution times between less than a second to at
most seven seconds. The small increase of at most a factor of 2 for
evaluating the Cartesian product proves the excellent scalability of
PPJoin+. In this respect it also outperforms COSY that noticeably
slows down for the Cartesian product evaluation of DBLP-
Scholar (almost 4 minutes vs. 9 seconds for the blocked input).

The considered FEBRL approaches were mostly much slower
than COSY and PPJoin+, on the Cartesian products by orders of
magnitude. This may be influenced by the Python-based
implementation of FEBRL. FellegiSunter using the Winkler
similarity turned out to be not only the least effective but also by
far the slowest of all non-learning match approaches. On the
blocked input, FEBRL with tokenset similarity is almost as fast as
COSY.

3.2.2 Learning-based approaches
Figure 3 shows the F-measure results for the four real-world
match tasks achieved with different learning-based approaches
from FEBRL and MARLIN and different labeling efforts (x-axis).
The labeling effort varies between 20 and 500 entity pairs, i.e., we
consider only comparatively small training sizes and thus a
limited amount of labeling effort. The F-measure results are
averaged over 10 runs.

All results in Figure 3 refer to matching on the first or the first
two attributes listed in Table 1 (publication title and authors for
the bibliographic tasks, product name and product description for
the e-commerce tasks) with different similarity functions. Figure
3a shows the results for the SVM learner of FEBRL that was
applied for the same three similarity functions (TokenSet,
Trigram, and Winkler) as for the non-learning case. In addition we

DBLP-ACM

labeling effort

20 50 100 500

F
-m

e
a

s
u

re

0.0

0.2

0.4

0.6

0.8

1.0

DBLP-Scholar

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Abt-Buy

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Amazon-GoogleProducts

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

SVM Winkler

SVM TokenSet

SVM Trigram

SVM comb. (1 attr.)

SVM comb. (2 attr.)

(a) FEBRL

DBLP-ACM

labeling effort

20 50 100 500

F
-m

e
a

s
u

re

0.0

0.2

0.4

0.6

0.8

1.0

DBLP-Scholar

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Abt-Buy

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Amazon-GoogleProducts

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0 ADTree Cosine (1)

ADTree ED (1)

ADTree ED (2)

ADTree comb. (1 attr.)

ADTree comb. (2 attr.)

labeling effort

20 50 100 500

F
-m

e
a
s

u
re

0.0

0.2

0.4

0.6

0.8

1.0

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

labeling effort

20 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0 SVM Cosine (1)

SVM ED (1)

SVM ED (2)

SVM comb. (1 attr.)

SVM comb. (2 attr.)

(b) MARLIN

Figure 3: Evaluation results for learning-based approaches

use the SVM for two combined match strategies using all three
similarity measures either on one or on two attributes. Figure 3b
shows the results for MARLIN separated by the employed learner,
first for MARLIN’s decision tree implementation ADTree
followed by the SVM results. For both learners we applied the
two similarity measures Edit Distance and Cosine. EditDistance
was used in the single-step as well as the two-step learning
approach. Cosine was just applied in the single-step approach as it
has limitations in the two-step implementation as mentioned by
the authors in [4]. We also tested combined match strategies using
the two similarity measures either on one or on two attributes for
single-step learning. In total, 15 different learning-based
approaches are considered.

For the easy bibliographic match task DBLP-ACM, we observe
that both FEBRL and MARLIN are able to achieve stable results
already for very small training sizes of 20 labeled entity pairs with
all evaluated approaches. For the more challenging bibliographic
match task DBLP-Scholar, for both FEBRL and MARLIN the
SVM strategies combining several matchers on two attributes
perform best and achieve F-measure results of 88-89%. The best
one-attribute strategies are the combined SVM approaches and
SVM using trigram (for FEBRL) or EditDistance (MARLIN). All
approaches have substantial difficulties with the e-commerce
match tasks, especially for training sizes smaller than 500 entity
pairs. The best match quality is always achieved for the combined
strategies using all similarity measures on two attributes, followed
by the combined approach on one attribute. This underlines that
the learners are able to effectively find a combination of several
matchers. The decision tree learner of MARLIN is mostly inferior
to the SVM-based results. The SVM learner of MARLIN
performs slightly better than the one of FEBRL for smaller

training sizes. However, for 500 training pairs both SVM learners
perform similarly well and achieve a top F-measure of about 71%
for Abt-Buy and (only) 60% for Amazon-GoogleProducts. From
the single similarity approaches FEBRL with trigram and
MARLIN with cosine similarity performed best for the
e-commerce tasks. For MARLIN, the 2-step learning for Edit-
Distance was always better than the 1-step approach but still too
ineffective for the e-commerce tasks. Here the rather long product
names and product descriptions tend to favor token-based
similarity measures such as cosine, trigram, or the unsupported
TF/IDF similarity.

There are huge differences between the approaches regarding
execution time as can be seen in Table 3. In general, the execution
times for the considered learning-based approaches are
significantly worse than for the non-learning approaches. Nearly
all learning-based approaches do not scale with larger input sets
and are unable to match sufficiently fast on the Cartesian product.
For the largest match task DBLP-Scholar execution times of hours
to days are needed, the most effective combined approaches
exceeded our limit of 500,000 seconds. On the blocked datasets,
the approach with the fastest execution time for all match tasks is
the FEBRL approach with the TokenSet Cosine measure. The
combined match approaches on two attributes take the longest
time for blocking, too. They are more than a factor 2 slower than
the other learning-based approaches and (except for DBLP-ACM)
requires execution times in the order of minutes to hours.

3.2.3 Non-learning vs. learning-based
Table 4 shows a brief summary of the maximum F-measure results
achieved for each of the considered non-learning as well as
learning-based approaches. For three of four tasks the commercial

Table 3: Execution times (in seconds) for learning-based approaches

 DBLP-ACM DBLP-Scholar Abt-Buy
Amazon-

GoogleProducts

 blocked Cartesian blocked Cartesian blocked Cartesian blocked Cartesian

FEBRL SVM TokenSet 3 244 20.0 249,364 8 23 14 124

 SVM Trigram 5 859 79.0 250,920 25 127 46 415

 SVM Winkler 8 2,022 196.5 295,800 62 409 110 1,225

 SVM comb. (1 attr.) 13 2,400 275 >500,000 83 590 154 1,481

 SVM comb. (2 attr.) 99 4,320 482 >500,000 232 1,364 196 36,090

MARLIN ADTree ED (1) 3 329 76 10,090 22 64 41 161

 ADTree ED (2) 5 582 96 17,427 37 119 57 244

 ADTree Cosine (1) 5 157 71 301 1 89 2 98

 ADTree comb. (1 attr.). 7 951 104 28,476 40 340 95 373

 ADTree comb. (2 attr.) 12 1,553 324 46,501 551 3,456 10,299 41,615

 SVM ED (1) 5 633 117 257,982 28 231 66 333

 SVM ED (2) 7 979 146 445,575 44 192 80 465

 SVM Cosine (1) 4 267 41 7,696 10 143 26 186

 SVM comb. (1 attr.) 9 1,336 157 >600,000 68 552 127 498

 SVM comb. (2 attr.) 20 2,196 375 >900,000 324 3,747 13,768 55,632

COSY approach performs best for matching on one attribute.
However for two match tasks its quality degrades when using two
attributes. The learning-based approaches, on the other hand,
always improve for matching on two attributes compared to only
one attribute underlining their potential to effectively combine
different match criteria. SVM learning was most effective and the
FEBRL and MARLIN implementations perform similarly well for
training size 500. They achieve the top F-measure for three of the
four match tasks for matching on two attributes. The learning-
based approaches from FEBRL perform better than the non-
learning FEBRL (FellegiSunter) approach, especially when
considering two attributes. The good quality of the learning-based
approaches on two attributes comes at the expense of significantly
higher execution times. With a single matcher on just one attribute
the learning-based approaches could not exploit their potential to
combine several matchers and thus turned out to be inferior to the
non-learning approaches considering both match quality and
execution times.

The relatively low match quality for the e-commerce task asks for
further improvements, e.g., by considering additional similarity
measures such as TFIDF and/or further attributes and spending
more training effort on learning.

4. RELATED WORK
There has been a large body of research on entity resolution and
its variations. Recent surveys include [2], [20], and [24]. Most
previous studies used a single match approach like threshold-
based attribute matching (similarity join [5]), clustering [26], or
context-based matching [1], [12], [33].

Most published entity resolution evaluations also focus on
individual approaches and use diverse methodologies, measures,
and test problems making it difficult to assess the quality of each
approach, not to mention their comparative effectiveness and
efficiency. There have been few attempts for more comparative
evaluations, e.g., comparative evaluations of different string
similarity metrics [11], [19], blocking approaches [3], [14], and
clustering algorithms [17]. Standardized benchmarks for object
matching are useful for comparative evaluations; first proposals
exist [28], [32] but have not yet been implemented or applied.

Existing matching frameworks such as FEBRL and MARLIN
have been used in several evaluation scenarios for non-learning

matchers. The authors of [8] present a comparison of FEBRL's
string similarity functions for personal name data. The evaluation
results demonstrate that there is no single best name matching
approach and the type of personal name data has to be considered
when selecting a matching technique.

Blocking techniques as provided by matching frameworks are also
subject to comparative evaluation. For example, [27] compares a
learned blocking scheme to a hand-crafted blocking strategy
implemented in MARLIN. The results indicate that learned
blocking schemes can achieve a significant higher reduction rate
by a comparable pairs completeness.

The decision model is a crucial aspect for match techniques that
combine different similarity measures and, thus, several
approaches have been compared individually to the techniques
implemented in FEBRL and MARLIN. A matching approach
based on genetic programming is presented in [5]. The
automatically generated similarity function can improve the match
quality in comparison to FEBRL's FellegiSunter method. [15]
introduces an enhanced clustering-based decision model of entity
resolution. The comparison to the probabilistic decision model of
FEBRL shows that it can achieve similar accuracy but with
smaller training data. Finally, the authors of [7] compare their
programmatic matching techniques to the SVM implementation of
MARLIN. They report that the recall values of their operator trees
are comparable to that of the SVM for their evaluation settings.
Unfortunately, without considering further quality measures such
as precision or F-measure and comparable evaluation settings the
generality of such findings remains open.

Most previous evaluations of learning-based approaches have
provided only limited information on how training examples
where acquired and how many were necessary to achieve the
stated results making it difficult to judge whether good results
were due to the approach or clever (time-consuming) manual
training data selection. The authors of [5] present a first study on
evaluation and training-set construction for training-based
approaches. We present a study of different generic methods for
automatically selecting training data to combine and configure
several matching techniques in [21].

In [22] we used the same test data sets as in this paper to evaluate
our own training-based approaches in comparison with COSY.
For all match tasks the learning-based approaches improved F-

Table 4: Summary of evaluation results (F-measure in %, top values are underlined)

 DBLP-ACM DBLP-Scholar Abt-Buy
Amazon-

GoogleProducts

 1 attr 2 attr 1 attr 2 attr 1 attr 2 attr 1 attr 2 attr

COSY 96.2 93.8 84.5 82.9 70.7 65.8 62.1 62.2

FEBRL FellegiSunter 97.6 96.2 57.2 81.9 44.5 36.7 48.4 53.8

PPJoin+ 91.9 - 77.8 - 47.4 - 41.9 -

FEBRL SVM comb. 97.3 97.6 81.9 87.6 44.5 71.3 46.5 60.1

MARLIN ADTree comb 96.4 96.4 82.6 82.9 18.4 54.8 45.0 50.5

MARLIN SVM comb. 96.4 97.4 82.6 89.4 54.8 70.8 50.5 59.9

measure compared to COSY and the results reported here. The
learning-based approaches in [22] combine the results of eight
matchers (four similarity measures on two attributes); the best
match quality was achieved by a multi-learner approach
combining the results of several learners.

5. SUMMARY AND OUTLOOK
We presented a comprehensive and comparable evaluation of
existing implementations of non-learning as well as learning-
based entity resolution approaches on challenging real-world
match tasks. Our evaluations reveal big differences regarding
match quality and execution times.

It turned out that the commercial implementation COSY is very
effective and efficient for matching on one attribute. However, it
was not always able to effectively use more than one attribute for
improved match quality. The learning-based match strategies
using SVM, on the other hand, outperformed the non-learning
approaches for the combined usage of several matchers on more
than one attribute. While the SVM approaches effectively solve
simple bibliographic match tasks with little training, more training
is needed for the challenging e-commerce tasks (500 training pairs
in our evaluation). Furthermore, the combined learning-based
approaches could only be executed on blocked datasets and
required the highest execution times of all match strategies.

The best scalability was observed for the very fast single-attribute
PPJoin+ implementation which was even faster than COSY and
can be applied on the unblocked Cartesian product (execution
time of at most 7 s). Hence scalability to large test cases needs to
be better addressed in future approaches, especially for learning-
based approaches.

The e-commerce tasks turned out to be quite challenging for all
approaches and could not be effectively solved. More
sophisticated methods are needed there.

6. ACKNOWLEDGEMENTS
We thank Peter Christen, Mikhal Bilenko, and Wei Wang for
kindly making the evaluated approaches available to us and giving
us valuable feedback. We also thank the anonymous reviewers for
their helpful comments.

7. REFERENCES
[1] Ananthakrishna, R., Chaudhuri, S., and Ganti, V.:

Eliminating Fuzzy Duplicates in Data Warehouses. In Proc.

of VLDB, 2002

[2] Batini, C., and Scannapieco, M.: Data Quality: Concepts,
Methodologies and Techniques, Data-Centric Systems and
Applications, Springer, 2006

[3] Baxter, R., Christen, P, and Churches, T.: A comparison of
fast blocking methods for record linkage. In Proc of ACM

SIGKDD Workshop on Data Cleaning, Record Linkage, and

Object Consolidation, 2003

[4] Bilenko, M. and Mooney, R. J.: Adaptive duplicate detection
using learnable string similarity measures. In Proc. of ACM

SIGKDD, 2003

[5] Bilenko, M. and Mooney, R. J.: On Evaluation and Training-
Set Construction for Duplicate Detection. In Proc. of

Workshop on Data Cleaning, Record Linkage, and Object

Consolidation, 2003

[6] de Carvalho, M. G., Gonçalves, M. A., Laender, A. H., and
da Silva, A. S.: Learning to deduplicate. In Proc. of JCDL,
2006

[7] Chaudhuri, S., Chen, B.-C., Ganti,V., and Kaushik, R.:
Example-driven design of efficient record matching queries.
In Proc. of VLDB, 2007

[8] Christen, P.: A Comparison of Personal Name Matching:
Techniques and Practical Issues. Technical Report,
Australian National University, 2006

[9] Christen, P.: FEBRL: a freely available record linkage
system with a graphical user interface. In Proc. of HDKM,
2008

[10] Cohen, W. W., Kautz, H. A., and McAllester, D. A.:
Hardening soft information sources. In Proc. of Workshop on

Information Quality in Information Systems (IQIS), 2005

[11] Cohen, W. W., Ravikumar, P., and Fienberg, S. E.: A
Comparison of String Distance Metrics for Name-Matching
Tasks. In Proc. of Workshop on Information Integration on

the Web (IIWeb), 2003

[12] Culotta, A., and McCallum, A.: Joint deduplication of
multiple record types in relational data. In Proc. of CIKM,
2005

[13] Dong, X., Halevy, A., and Madhavan, J.: Reference
reconciliation in complex information spaces. In Proc. of

ACM SIGMOD, 2005

[14] Elfeky, M. G., Elmagarmid, A.K., and Verykios, V.S.:
TAILOR: A Record Linkage Tool Box. In Proc. of ICDE,
2002

[15] Fellegi, I. P., and Sunter, A. B.: A theory for record linkage.
Journal of the American Statistical Association 64 (328),
1969

[16] Gu, L., and Baxter, R.: Decision Models for Record Linkage.
In Proc. of AusDM, 2006

[17] Hassanzadeh, O., Chiang, F., Lee, H. C., and Miller, R. J.:
Framework For Evaluating Clustering Algorithms In
Duplicate Detection. In Proc. of VLDB, 2009

[18] Hernandez, M. A., and Stolfo, S. J.: The Merge/Purge
Problem for Large Databases. In Proc. of ACM SIGMOD,
1995.

[19] Heuser, C. A., Krieser, F. N., and Orengo, V. M.: SimEval: a
tool for evaluating the quality of similarity functions. In
Proc. of Conference on Conceptual Modeling, 2007

[20] Köpcke, H., and Rahm, E.: Frameworks for Entity Matching:
A Comparison. Data & Knowledge Engineering, 96(2), 2010

[21] Köpcke, H., and Rahm, E.: Training Selection for Tuning
Entity Matching. In Proc. of QDB/MUD workshop, 2008

[22] Köpcke, H., Thor, A., and Rahm, E.: Learning-Based
Approaches for Matching Web Data Entities. IEEE Internet
Computing, pp. 23-31, July/August, 2010

[23] Köpcke, H., Thor, A., and Rahm, E.: Comparative evaluation
of entity resolution approaches with FEVER. In Proc. of
VLDB, 2009 (Demo paper)

[24] Koudas, N., Sarawagi, S., and Srivastava, D.: Record
linkage: Similarity measures and algorithms. In Proc of ACM

SIGMOD, 2006

[25] Lu, Q., and Getoor, L.: Link-based Classification using
Labeled and Unlabeled Data. In Proc of ICML, 2003

[26] McCallum, A., Nigam, K., and Ungar, L. H.: Efficient
Clustering of High-Dimensional Data Sets with Application
to Reference Matching. In Proc. of ACM SIGKDD, 2000

[27] Michelson, M., and Knoblock, C. A.: Learning blocking
schemes for record linkage. In Proc. of AAAI, 2006

[28] Neiling, M., Jurk, S., Lenz, H.-J., and Naumann, F.: Object
identification quality. In Proc. of DQCIS, 2003

[29] Rahm, E., and Do, H.-H.: Data Cleaning: Problems and
Current Approaches. IEEE Data Engineering Bulletin, 23(4),
2000

[30] Singla, P., and Domingos, P.: Object Identification with
Attribute-Mediated Dependences. In Proc. of PKDD, 2005

[31] Thor, A., and Rahm, E.: MOMA - A Mapping-based Object
Matching System. In Proc. of CIDR, 2007

[32] Weis, M., Naumann, F., and Brosy, F.: A Duplicate
Detection Benchmark for XML (and Relational) Data. In
Proc. of Workshop on Information Quality for Information

Systems (IQIS), 2006

[33] Weis, N. and Naumann, F.: DogmatiX tracks down
Duplicated in XML. In Proc. of ACM SIGMOD, 2005

[34] Xiao, C., Wang, W., Lin, X., and Yu, J. X.: Efficient
Similarity Joins for Near Duplicate Detection. In Proc. of

WWW, 2008

