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ABSTRACT 

Despite the huge amount of recent research efforts on entity 
resolution (matching) there has not yet been a comparative 
evaluation on the relative effectiveness and efficiency of alternate 
approaches. We therefore present such an evaluation of existing 
implementations on challenging real-world match tasks. We 
consider approaches both with and without using machine 
learning to find suitable parameterization and combination of 
similarity functions. In addition to approaches from the research 
community we also consider a state-of-the-art commercial entity 
resolution implementation. Our results indicate significant quality 
and efficiency differences between different approaches. We also 
find that some challenging resolution tasks such as matching 
product entities from online shops are not sufficiently solved with 
conventional approaches based on the similarity of attribute 
values.  

1. INTRODUCTION 
Entity resolution (also referred to as object matching, duplicate 
identification, record linkage, or reference reconciliation) is a 
crucial task for data integration and data cleaning [10], [18], [29]. 
It is the task of identifying entities referring to the same real-world 
entity. The high importance and difficulty of the entity resolution 
problem has triggered a huge amount of research on different 
variations of the problem and numerous approaches have been 
proposed especially for structured data. Recent surveys include 
[2], [20], and [24]. 

Due to the high number and diversity of different entity resolution 
approaches we see a strong need for comparative evaluations of 
different schemes. To date most entity resolution approaches have 
been evaluated individually using diverse methodologies, 
configurations, and test problems making it difficult to assess the 
overall quality of each approach, let alone their comparative 
effectiveness and efficiency. Only few attempts for comparative 
evaluations of some sub-approaches have been made, e.g., 

evaluation of different string similarity metrics [11] and of 
blocking approaches [3]. Some benchmark proposals for entity 
resolution have been made [28], [32] but they have not yet been 
implemented or applied. 

We have analyzed numerous research publications w.r.t. their 
evaluation of entity resolution approaches1 and provide an 
overview of selected studies in our recent survey paper [20]. 
While we identified several popular datasets used in the 
evaluations, e.g., DBLP, Citeseer, Cora, or IMDB, we were not 
able to derive conclusive results on the relative quality of different 
entity resolution approaches. This is because the published 
evaluation results are mostly based on selected subsets or 
preprocessed versions of these datasets so that the achieved results 
became incomparable. See, for example, the differently sized 
Cora-based datasets used in [25], [30], [13], and [12].  

Another difficulty when comparing entity resolution algorithms is 
that they require different parameters to be set such as the 
similarity functions for comparing attribute values or similarity 
thresholds to be exceeded by matching entities. Many proposed 
approaches also make use of machine learning algorithms 
requiring specific parameters such as the size and characteristics 
of training data. Obviously, the chosen algorithm configuration is 
one of the predominant factors for the resulting match quality and 
in many published evaluation results significant details of it (e.g., 
on the used training data) remain unspecified.  

In this study, we use a new evaluation framework, FEVER, to 
comparatively evaluate several previously proposed entity 
resolution approaches. Main characteristics of our evaluation are:  

- The approaches are uniformly evaluated on four real-world 
match tasks of two domains. In particular we consider matching 
of product entities from different web shops.  

- We consider individual algorithms (PPJoin+) as well as 
frameworks (FEBRL, MARLIN) offering different approaches. 
Furthermore we study approaches that do and do not require 
training data. In addition we consider a state-of-the art 
commercial entity resolution approach. More than 20 different 
approaches are evaluated under different parameter settings.  

- Our evaluation considers both match quality in terms of 
precision, recall, and F-measure, as well as efficiency in terms 
of runtime.  

                                                                 
1 The complete list can be found at http://dbs.uni-leipzig.de/fever 
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- We use the FEVER framework to automatically execute the 
approaches and to find favorable parameter settings in a 
comparable way. In particular, we always apply the same 
blocking method to reduce the search space and use a uniform 
approach for providing training to the machine-learning 
approaches. For the approaches not based on machine learning 
we spend the same effort for optimizing parameters such as 
similarity thresholds.  

The rest of the paper is organized as follows: Section 2 describes 
the use of the FEVER framework to perform the evaluations of 
entity resolution approaches. The evaluation results are presented 
and discussed in Section 3. In Section 4 we briefly discuss related 
evaluation studies, especially of the approaches considered in our 
study. Finally, we conclude in Section 5. 

2. EVALUATION APPROACH 
We use the FEVER platform (Framework for EValuating Entity 
Resolution) [23] to evaluate several match approaches for 
different match tasks. While FEVER has its own library of match 
algorithms we do not evaluate this functionality here but use 
FEVER only to evaluate existing entity resolution approaches 
from the research community and one vendor. FEVER allows us 
to automatically execute these algorithms for many different 
parameter settings in a comparable way as we will discuss in the 
following for both non-learning and learning-based match 
approaches.  

2.1 Non-learning match approaches 
In FEVER, a match approach is specified by a so-called operator 
tree or workflow that specifies the sequence of processing steps 
for determining the match result on two input datasets. Figure 1a 
illustrates the FEVER operator tree that was applied in our 
evaluation of non-learning match approaches.  

For large datasets, it is generally not feasible to exhaustively 
evaluate the Cartesian product of all input entities. Hence, we first 
apply a blocking operator to reduce the search space to the most 
likely matching entity pairs. For comparability, we use a fixed 

blocking strategy for all non-learning and learning-based match 
approaches, i.e., blocking is not subject of the evaluation.  

The blocking result is input to the non-learning match approaches 
to be evaluated. In this study all considered match approaches are 
based on so-called attribute matchers that evaluate the similarity 
of attribute values based on some similarity function (e.g., an 
approximate string similarity). The approaches may evaluate only 
a single matcher (for a specific attribute pair and similarity 
function) or multiple matchers using different attribute pairs or 
similarity functions. In the latter case the approaches also need to 
support a combination of the individual similarities to derive a 
match decision. In our evaluation, we will always use the same 
attributes for comparability. Furthermore, all non-learning match 
approaches apply a threshold-based selection of the matching 
entity pairs and require the similarity threshold to be provided as a 
parameter.  

For the similarity computation and the threshold-based match 
decision we used the implementation of the following non-
learning match approaches: 

- COSY: This is a state-of-the-art commercial system for entity 
resolution. Unfortunately, license restrictions do not allow us to 
disclose the name of the system. COSY uses its own similarity 
function that can be applied on one or several attribute pairs. 
The most important parameter to be provided is the overall 

MinimumSimilarity threshold. An entity pair will be considered 
a match only if it has a similarity that is greater than or equal to 
this threshold. Additional attribute-level similarity thresholds 
can optionally be specified for each attribute pair that should be 
considered in the computation of the entity similarity. 

- PPJoin+ [34] is a single-attribute match approach (similarity 
join) using sophisticated filtering techniques for improved 
efficiency. The approach has two parameters that need to be 
configured. The parameter function determines the similarity 
function used for the join. We will evaluate both supported 
implementations for the similarity function (Cosine, Jaccard). 
The parameter threshold determines the threshold for the 
similarity values above which entities are considered to match. 
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(a) Non-learning match approaches                                                         (b) Learning-based match approaches 

Figure 1. FEVER match workflows for evaluating existing entity resolution approaches 

 



- FellegiSunter [15] is a non-learning approach from the FEBRL 
framework [9]. For similarity computation we evaluate three of 
the similarity measures provided by FEBRL (Winkler, 
Tokenset, Trigram). The approach has an lower and upper 

similarity threshold that can be adjusted. Entity pairs with a 
similarity above the upper classification threshold are classified 
as matches, pairs with a combined value below the lower 
threshold are classified as non-matches, and those entity pairs 
that have a matching weight between the two classification 
thresholds are classified as possible matches. For our 
evaluation, we set the lower threshold equal to the upper 
threshold as we only want a classification into matching and 
non-matching entity pairs.  

An operator tree typically comprises several operators each having 
several parameters that need to be specified in order to apply the 
operator tree to a match problem. FEVER allows a systematic 
evaluation of operator trees for different parameter settings to help 
finding a suitable configuration [23]. For this study we limit the 
number of parameters to be set by applying a fixed blocking 
approach and manually pre-selecting the attributes to be 
evaluated. We further evaluate the existing similarity functions 
either on one or two attributes of the input datasets. In both cases 
we have to specify similarity thresholds on the single attribute or 
combined attribute similarity. For comparability, we evaluate 
every match approach for a fixed maximum number, N, of settings 
for the threshold parameters. FEVER supports several methods 
for selecting the parameter values such as manual (user-defined) 
and random. For this evaluation, we use the sophisticated and 
effective gradient descent strategy that iteratively refines a 
parameter setting by considering the quality of previously 
generated settings [23].  

2.2 Learning-based match approaches 
Figure 1b shows the FEVER operator tree applied for the 
evaluation of learning-based approaches. The execution falls into 
two phases: model generation and model application. The model 
generation (left part of the operator tree) requires a training 
dataset that contains manually labeled correspondences 
representing matching (similarity value equals 1) and non-
matching (0) entity pairs. The learning algorithm applies the 
specified matchers to the entity pairs in the training data. The 
learner then uses the resulting similarity values to automatically 
determine a match strategy model, i.e., combination and 

parameterization of the specified matchers to derive a match 
decision for any entity pair. More details on training selection and 
model generation will be provided below. The second phase (right 
part of the operator tree) applies the determined model for the real 
match task (model application) to match a source and target 
dataset (or to find duplicates within one dataset).  

For model generation, a pre-selected set of matchers is applied to 
the training data. By comparing similarity values computed by the 
matchers to the perfect (labeled) match result in the training it is 
possible to determine (learn) a combination of the most effective 
matchers and their parameters such as similarity thresholds.  

In our evaluation we will compare several existing training-based 
approaches for model generation and application offered by the 
following frameworks: 

- FEBRL [9] (Freely Extensible Biomedical Record Linkage) 
provides a support vector machine (SVM) implementation for 
learning suitable matcher combinations. For attribute matching 
we will evaluate the same three similarity measures than for the 
non-learning matchers studied for FEBRL.  

- MARLIN [4] (Multiply Adaptive Record Linkage with 
INduction) offers two string similarity measures (Edit Distance 
and Cosine) and several learners, specifically SVM and 
decision trees. The learners can be used in a single step 
approach or can be employed for a two-level learning approach. 
For the two-level approach string similarity measures are first 
trained for every selected attribute so that they can provide 
accurate estimates of string distance between values for that 
attribute. Next, a final decision is learned from similarity 
metrics applied to each of the individual attributes.  

The effectiveness of machine learning approaches is known to 
depend on the provision of sufficient, suitable, and balanced 
training data. On the other hand, the number of entity pairs to be 
labeled affects the manual tuning effort and should thus be small. 
To address these issues we build upon our evaluation experiences 
reported in [21] and only consider entity pairs for labeling for 
which the similarity exceeds a specified threshold t. This ensures 
that the training is not dominated by trivial non-matching entity 
pairs that are not useful to find effective matcher parameters and 
matcher combinations. We further strive at providing both 
matching and non-matching entity pairs by a training selection 
approach called Ratio (r,t). It uses a ratio parameter r from the 

Table 1. Overview of real-world evaluation match tasks 

Match task Source size 
(#entities) 

Mapping size (#correspondences) 

Domain Attributes Sources Source 1 Source 2 Full input mapping 
(Cartesian product) 

Reduced input mapping 
(blocking result) 

perfect 
result 

Bibliographic - title 
- authors 

DBLP-ACM 2,616 2,294 6 million 494,000  2,224 

 - venue 
- year 

DBLP-Scholar 2,616 64,263 168.1 million 607,000 5,347 

E-commerce - product name 
- description 

Amazon-
GoogleProducts 

1,363 3,226 4.4 million 342,761 1,300 

 - manufacturer 
- price 

Abt-Buy 1,081 1,092 1.2 million 164,072 1,097 



range 0 to 0.5 indicating the minimal percentage of both matching 
and non-matching entity pairs. r=0 corresponds to a random 
strategy that randomly selects entity pairs with a similarity above 
the threshold t. For r>0 the number of randomly selected entity 
pairs is reduced so that either the number of matching or non-
matching entity pairs satisfy the ratio restriction. For example, 

r=0.4 guarantees that at least 40% of all training pairs are either 
matching or non-matching, i.e., at most 60% are non-matching or 
matching. By ensuring a minimum number of matching/non-
matching pairs the ratio approach aims at enhancing the 
discriminative value of the training data for learning effective 
match strategies. We have extensively evaluated the Ratio training 
selection approach and found that setting r=0.4 and t=0.4 with 
TFIDF is a reliable and effective default configuration. Our 
evaluation for learning-based matching will thus be based on this 
configuration.  

3. EVALUATION 
We first describe the datasets for the four real-life match tasks. In 
the main part of this section we present and discuss the obtained 
evaluation results for six non-learning and 15 learning match 
approaches. In the evaluation we will consider both match quality 
and runtime efficiency. For match quality we evaluate the usual 
measures precision, recall, and F-measure.  

3.1 Datasets 
We consider four match tasks of two application domains 
(bibliographic and e-commerce data entities). Table 1 provides 
some statistics on these tasks which are named after the involved 
web sources. The number of entities per source ranges from about 
1,100 to more than 64,000; the size of the Cartesian product for 
the four tasks ranges from about 1.2 million (Abt-Buy task) to 
168.1 million (DBLP-Scholar) entity pairs. We use a fixed 

blocking strategy for all experiments and evaluated systems to 
guarantee equal effectiveness and efficiency of the blocking step. 
Thus blocking is not subject to our evaluation. The blocking 
strategy employs Trigram on a low string similarity threshold to 
reduce the search space to the numbers shown in Table 1 (up to 
607,000 pairs). To investigate the scalability of the match 
approaches we evaluate the match runtimes not only on the 
blocking output but also on the full Cartesian product. To 
determine the match quality we further created the perfect match 
results with the cardinalities as shown in Table 1. Selected 
attributes of the seven data sources are also listed. In this 
evaluation we focus on matching on the first or the first two 
attributes listed since they turned out to be most suited for the 
respective match tasks.  

The match tasks were chosen to represent a spectrum of different 
data characteristics and difficulty levels. The first task is expected 
to be of low difficulty as it deals with publication entities from 
two well-structured bibliographic data sources (DBLP, ACM 
digital library) that are at least partially under manual curation. 
The selected DBLP and ACM entities cover the same sets of 
computer science conferences and journals. The second match 
task requires matching DBLP publications with publications from 
the entity search engine Google Scholar (Scholar). Scholar 
automatically extracts its publication entities from full-text 
documents crawled from the web. This data has many quality 
problems, in particular duplicate publications, heterogeneous 
representations of author lists or venue names, misspellings, and 
extraction errors. To obtain the Scholar data we sent numerous 
queries on the publication title and venue names and stored the 
combined query results as our evaluation dataset. The perfect 
match result was determined manually. We have used the 
bibliographic data sets already in previous work [31], [21].  
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Figure 2: Performance results for non-learning approaches  

(a) simple approaches (1 attribute)  

(b) combination approaches (2 attributes)  



The e-commerce tasks deal with sets of related product entities 
from the online retailers Abt.com, Buy.com (Abt-Buy task), 
Amazon.com and the product search service of Google accessible 
through the Google Base Data API (Amazon-GoogleProducts 
task). In order to obtain the perfect match result we included only 
product entities with a valid UPC (Universal Product Code) in our 
datasets which allows a unique identification of a product. Of 
course, the match strategies to be evaluated could not make use of 
these UPCs but only of the attributes listed in Table 1 (especially 
product name and description). This is because in reality many 
websites do not provide the UPC information so that entity 
matching cannot rely on these in general. The Abt, Buy, and 
Amazon datasets were created by selecting products from 
predefined categories. Based on the Amazon products, the 
GoogleProducts dataset were generated by sending queries on the 
product name. 

3.2 Evaluation results 
We first present match quality and runtime results separately for 
non-learning and learning-based approaches. Afterwards we 
briefly compare the two kinds of matchers with each other. The 
runtime results are determined for a HP Z400 workstation with 
2.66 GHz Intel Quad-Core Processor W3520 and 4GB of RAM 
running 64-bit Windows 7. The evaluated match approaches are 
implemented in different languages: PPJoin+ is implemented in 
C++, MARLIN in Java and FEBRL in Python. 

3.2.1 Non-learning approaches 
 

Figure 2 shows the match quality (precision, recall, F-measure) 
results for the four real world match tasks achieved with different 
non learning approaches. The upper half shows the results for 
approaches operating on just a single attribute, namely the first 
attribute listed in Table 1 (publication title for the bibliographic 
tasks, product name for the e-commerce tasks). The lower half 
shows the results for approaches combining the similarity for two 
attributes (the first two attributes listed in Table 1). In both cases 

we optimized the threshold for the final match decision while all 
other parameters of the approach were kept constant. 
Optimization was done with the GradientDescent approach on a 
test set of 500 object pairs for each match task. For the 
FellegiSunter approach from the FEBRL framework we 
considered three different similarity measures, namely Winkler, 
TokenSet, and Trigram. FEBRL's FellegiSunter approach sums 
the logarithms of the single similarities. For the COSY approach it 
is not clear how similarities are combined. 

All simple and combined approaches could effectively solve the 
simple bibliographic match tasks DBLP-ACM (F-measure> 91%), 
except for the FellegiSunter approach with the Winkler measure 
which did not even reach an F-measure of 50% because it suffers 
from a very low precision. The e-commerce match tasks turned 
out to be much more challenging so that no approach could 
achieve an F-measure of more than 62% (Amazon-
GoogleProducts) or 70% (Abt-Buy). The COSY approach is the 
top or among the top performing approaches for all match tasks. 
From the FellegiSunter approaches the configuration using 
Trigram performed best for all match tasks.  

Using two attributes (first two of Table 1) is not always more 
effective than using one attribute because it is difficult to find a 
good similarity combination. All approaches become worse for 
the easy bibliographic match task DBLP-ACM. COSY becomes 
worse for DBLP-ACM, DBLP-Scholar, and ABT-BUY. PPJoin+ 
could not be evaluated on two attributes because no combination 
approach is provided.  

Table 2 lists the execution times for the considered non-learning 
approaches for the blocked input as well as the Cartesian product 
of the considered match tasks. The table shows significant 
differences between the approaches already for the blocked input. 
The evaluation of the Cartesian product tests the scalability and 
leads to huge differences. PPJoin+ and COSY achieved very fast 
execution times and could even achieve acceptable run times for 
the Cartesian product. PPJoin+ implements an intelligent pruning 
of the search space and is uniformly the fastest approach for all 

Table 2: Execution times (in seconds) for non-learning approaches 

1 attribute DBLP-ACM DBLP-Scholar Abt-Buy 
Amazon-

GoogleProducts 

 blocked Cartesian blocked Cartesian blocked Cartesian blocked Cartesian 

COSY 1 1.6  8.8  224.7 2.7  5.8  6.5  9.6  

FellegiSunter TokenSet 2.1 170 10.2  64,057 2.5  17.2 4.6  84  

FellegiSunter Trigram 2.5 655 44.7  243,060 25  105 34.1  320 

FellegiSunter Winkler 5.7 1,601 164.6  277,200 53.5 364 96.2  1,065 

PPJoin+ Cosine 0.4 0.9  3.4  6.9  0.6  2.5  0.5  0.9  

PPJoin+ Jaccard 0.4 0.6  3.5  7  0.6  2.5  0.5  0.9  

2 attributes  

COSY 35 56  17  434 44  94  28  41  

FellegiSunter TokenSet 3 429 17.8 108,896 5.9  43 44  709 

FellegiSunter Trigram 3.1 1,512 116 >500,000 58 635 1,940 16,620 

FellegiSunter Winkler 7.4 3,602 341  >500,000 135 970 2,833  20,760 

 



match tasks with execution times between less than a second to at 
most seven seconds. The small increase of at most a factor of 2 for 
evaluating the Cartesian product proves the excellent scalability of 
PPJoin+. In this respect it also outperforms COSY that noticeably 
slows down for the Cartesian product evaluation of DBLP-
Scholar (almost 4 minutes vs. 9 seconds for the blocked input).  

The considered FEBRL approaches were mostly much slower 
than COSY and PPJoin+, on the Cartesian products by orders of 
magnitude. This may be influenced by the Python-based 
implementation of FEBRL. FellegiSunter using the Winkler 
similarity turned out to be not only the least effective but also by 
far the slowest of all non-learning match approaches. On the 
blocked input, FEBRL with tokenset similarity is almost as fast as 
COSY.  

3.2.2 Learning-based approaches 
Figure 3 shows the F-measure results for the four real-world 
match tasks achieved with different learning-based approaches 
from FEBRL and MARLIN and different labeling efforts (x-axis). 
The labeling effort varies between 20 and 500 entity pairs, i.e., we 
consider only comparatively small training sizes and thus a 
limited amount of labeling effort. The F-measure results are 
averaged over 10 runs.  

All results in Figure 3 refer to matching on the first or the first 
two attributes listed in Table 1 (publication title and authors for 
the bibliographic tasks, product name and product description for 
the e-commerce tasks) with different similarity functions. Figure 
3a shows the results for the SVM learner of FEBRL that was 
applied for the same three similarity functions (TokenSet, 
Trigram, and Winkler) as for the non-learning case. In addition we 
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(a) FEBRL 
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(b) MARLIN 

Figure 3: Evaluation results for learning-based approaches 



use the SVM for two combined match strategies using all three 
similarity measures either on one or on two attributes. Figure 3b 
shows the results for MARLIN separated by the employed learner, 
first for MARLIN’s decision tree implementation ADTree 
followed by the SVM results. For both learners we applied the 
two similarity measures Edit Distance and Cosine. EditDistance 
was used in the single-step as well as the two-step learning 
approach. Cosine was just applied in the single-step approach as it 
has limitations in the two-step implementation as mentioned by 
the authors in [4]. We also tested combined match strategies using 
the two similarity measures either on one or on two attributes for 
single-step learning. In total, 15 different learning-based 
approaches are considered. 

For the easy bibliographic match task DBLP-ACM, we observe 
that both FEBRL and MARLIN are able to achieve stable results 
already for very small training sizes of 20 labeled entity pairs with 
all evaluated approaches. For the more challenging bibliographic 
match task DBLP-Scholar, for both FEBRL and MARLIN the 
SVM strategies combining several matchers on two attributes 
perform best and achieve F-measure results of 88-89%. The best 
one-attribute strategies are the combined SVM approaches and 
SVM using trigram (for FEBRL) or EditDistance (MARLIN). All 
approaches have substantial difficulties with the e-commerce 
match tasks, especially for training sizes smaller than 500 entity 
pairs. The best match quality is always achieved for the combined 
strategies using all similarity measures on two attributes, followed 
by the combined approach on one attribute. This underlines that 
the learners are able to effectively find a combination of several 
matchers. The decision tree learner of MARLIN is mostly inferior 
to the SVM-based results. The SVM learner of MARLIN 
performs slightly better than the one of FEBRL for smaller 

training sizes. However, for 500 training pairs both SVM learners 
perform similarly well and achieve a top F-measure of about 71% 
for Abt-Buy and (only) 60% for Amazon-GoogleProducts. From 
the single similarity approaches FEBRL with trigram and 
MARLIN with cosine similarity performed best for the 
e-commerce tasks. For MARLIN, the 2-step learning for Edit-
Distance was always better than the 1-step approach but still too 
ineffective for the e-commerce tasks. Here the rather long product 
names and product descriptions tend to favor token-based 
similarity measures such as cosine, trigram, or the unsupported 
TF/IDF similarity.   

There are huge differences between the approaches regarding 
execution time as can be seen in Table 3. In general, the execution 
times for the considered learning-based approaches are 
significantly worse than for the non-learning approaches. Nearly 
all learning-based approaches do not scale with larger input sets 
and are unable to match sufficiently fast on the Cartesian product. 
For the largest match task DBLP-Scholar execution times of hours 
to days are needed, the most effective combined approaches 
exceeded our limit of 500,000 seconds. On the blocked datasets, 
the approach with the fastest execution time for all match tasks is 
the FEBRL approach with the TokenSet Cosine measure. The 
combined match approaches on two attributes take the longest 
time for blocking, too. They are more than a factor 2 slower than 
the other learning-based approaches and (except for DBLP-ACM) 
requires execution times in the order of minutes to hours.    

3.2.3 Non-learning vs. learning-based  
Table 4 shows a brief summary of the maximum F-measure results 
achieved for each of the considered non-learning as well as 
learning-based approaches. For three of four tasks the commercial 

Table 3: Execution times (in seconds) for learning-based approaches 

 DBLP-ACM DBLP-Scholar Abt-Buy 
Amazon-

GoogleProducts 

 blocked Cartesian blocked Cartesian blocked Cartesian blocked Cartesian 

FEBRL SVM TokenSet 3 244 20.0 249,364 8 23 14 124 

  SVM Trigram 5 859 79.0 250,920 25 127 46 415 

  SVM Winkler 8 2,022 196.5 295,800 62 409 110 1,225 

 SVM comb. (1 attr.) 13 2,400 275 >500,000 83 590 154 1,481 

 SVM comb. (2 attr.) 99 4,320 482 >500,000 232 1,364 196 36,090 

MARLIN ADTree ED (1) 3 329 76 10,090 22 64 41 161 

  ADTree ED (2) 5 582 96 17,427 37 119 57 244 

  ADTree Cosine (1) 5 157 71 301 1 89 2 98 

 ADTree comb. (1 attr.). 7 951 104 28,476 40 340 95 373 

 ADTree comb. (2 attr.) 12 1,553 324 46,501 551 3,456 10,299 41,615 

  SVM ED (1) 5 633 117 257,982 28 231 66 333 

  SVM ED (2) 7 979 146 445,575 44 192 80 465 

  SVM Cosine (1) 4 267 41 7,696 10 143 26 186 

 SVM comb. (1 attr.) 9 1,336 157 >600,000 68 552 127 498 

 SVM comb. (2 attr.) 20 2,196 375 >900,000 324 3,747 13,768 55,632 

 



COSY approach performs best for matching on one attribute. 
However for two match tasks its quality degrades when using two 
attributes. The learning-based approaches, on the other hand, 
always improve for matching on two attributes compared to only 
one attribute underlining their potential to effectively combine 
different match criteria. SVM learning was most effective and the 
FEBRL and MARLIN implementations perform similarly well for 
training size 500. They achieve the top F-measure for three of the 
four match tasks for matching on two attributes. The learning-
based approaches from FEBRL perform better than the non-
learning FEBRL (FellegiSunter) approach, especially when 
considering two attributes. The good quality of the learning-based 
approaches on two attributes comes at the expense of significantly 
higher execution times. With a single matcher on just one attribute 
the learning-based approaches could not exploit their potential to 
combine several matchers and thus turned out to be inferior to the 
non-learning approaches considering both match quality and 
execution times.  

The relatively low match quality for the e-commerce task asks for 
further improvements, e.g., by considering additional similarity 
measures such as TFIDF and/or further attributes and spending 
more training effort on learning.  

4. RELATED WORK 
There has been a large body of research on entity resolution and 
its variations. Recent surveys include [2], [20], and [24]. Most 
previous studies used a single match approach like threshold-
based attribute matching (similarity join [5]), clustering [26], or 
context-based matching [1], [12], [33]. 

Most published entity resolution evaluations also focus on 
individual approaches and use diverse methodologies, measures, 
and test problems making it difficult to assess the quality of each 
approach, not to mention their comparative effectiveness and 
efficiency. There have been few attempts for more comparative 
evaluations, e.g., comparative evaluations of different string 
similarity metrics [11], [19], blocking approaches [3], [14], and 
clustering algorithms [17]. Standardized benchmarks for object 
matching are useful for comparative evaluations; first proposals 
exist [28], [32] but have not yet been implemented or applied. 

Existing matching frameworks such as FEBRL and MARLIN 
have been used in several evaluation scenarios for non-learning 

matchers. The authors of [8] present a comparison of FEBRL's 
string similarity functions for personal name data. The evaluation 
results demonstrate that there is no single best name matching 
approach and the type of personal name data has to be considered 
when selecting a matching technique.  

Blocking techniques as provided by matching frameworks are also 
subject to comparative evaluation. For example, [27] compares a 
learned blocking scheme to a hand-crafted blocking strategy 
implemented in MARLIN. The results indicate that learned 
blocking schemes can achieve a significant higher reduction rate 
by a comparable pairs completeness.   

The decision model is a crucial aspect for match techniques that 
combine different similarity measures and, thus, several 
approaches have been compared individually to the techniques 
implemented in FEBRL and MARLIN. A matching approach 
based on genetic programming is presented in [5]. The 
automatically generated similarity function can improve the match 
quality in comparison to FEBRL's FellegiSunter method. [15] 
introduces an enhanced clustering-based decision model of entity 
resolution. The comparison to the probabilistic decision model of 
FEBRL shows that it can achieve similar accuracy but with 
smaller training data. Finally, the authors of [7] compare their 
programmatic matching techniques to the SVM implementation of 
MARLIN. They report that the recall values of their operator trees 
are comparable to that of the SVM for their evaluation settings. 
Unfortunately, without considering further quality measures such 
as precision or F-measure and comparable evaluation settings the 
generality of such findings remains open.   

Most previous evaluations of learning-based approaches have 
provided only limited information on how training examples 
where acquired and how many were necessary to achieve the 
stated results making it difficult to judge whether good results 
were due to the approach or clever (time-consuming) manual 
training data selection. The authors of [5] present a first study on 
evaluation and training-set construction for training-based 
approaches. We present a study of different generic methods for 
automatically selecting training data to combine and configure 
several matching techniques in [21].  

In [22] we used the same test data sets as in this paper to evaluate 
our own training-based approaches in comparison with COSY. 
For all match tasks the learning-based approaches improved F-

Table 4: Summary of evaluation results (F-measure in %, top values are underlined) 

  DBLP-ACM DBLP-Scholar Abt-Buy 
Amazon-

GoogleProducts 

 1 attr 2 attr 1 attr 2 attr 1 attr 2 attr 1 attr 2 attr 

COSY 96.2 93.8 84.5 82.9 70.7 65.8 62.1 62.2 

FEBRL FellegiSunter 97.6 96.2 57.2 81.9 44.5 36.7 48.4 53.8 

PPJoin+ 91.9 - 77.8 - 47.4 - 41.9 - 

FEBRL SVM comb.  97.3 97.6 81.9 87.6 44.5 71.3 46.5 60.1 

MARLIN ADTree comb 96.4 96.4 82.6 82.9 18.4 54.8 45.0 50.5 

MARLIN SVM comb.  96.4 97.4 82.6 89.4 54.8 70.8 50.5 59.9 

 



measure compared to COSY and the results reported here. The 
learning-based approaches in [22] combine the results of eight 
matchers (four similarity measures on two attributes); the best 
match quality was achieved by a multi-learner approach 
combining the results of several learners.  

5. SUMMARY AND OUTLOOK 
We presented a comprehensive and comparable evaluation of 
existing implementations of non-learning as well as learning-
based entity resolution approaches on challenging real-world 
match tasks. Our evaluations reveal big differences regarding 
match quality and execution times.  

It turned out that the commercial implementation COSY is very 
effective and efficient for matching on one attribute. However, it 
was not always able to effectively use more than one attribute for 
improved match quality. The learning-based match strategies 
using SVM, on the other hand, outperformed the non-learning 
approaches for the combined usage of several matchers on more 
than one attribute. While the SVM approaches effectively solve 
simple bibliographic match tasks with little training, more training 
is needed for the challenging e-commerce tasks (500 training pairs 
in our evaluation). Furthermore, the combined learning-based 
approaches could only be executed on blocked datasets and 
required the highest execution times of all match strategies.  

The best scalability was observed for the very fast single-attribute 
PPJoin+ implementation which was even faster than COSY and 
can be applied on the unblocked Cartesian product (execution 
time of at most 7 s). Hence scalability to large test cases needs to 
be better addressed in future approaches, especially for learning-
based approaches.  

The e-commerce tasks turned out to be quite challenging for all 
approaches and could not be effectively solved. More 
sophisticated methods are needed there. 
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