
Web Services Discovery Based on Schema Matching

Yanan Hao Yanchun Zhang

School of Computer Science and Mathematics
Victoria University

Melbourne, VIC, Australia
haoyn@csm.vu.edu.au
yzhang@csm.vu.edu.au

Abstract

A web service is programmatically available applica-
tion logic exposed over Internet. With the rapid de-
velopment of e-commerce over Internet, web services
have attracted much attention in recent years. Nowa-
days, enterprises are able to outsource their internal
business processes as services and make them acces-
sible via the Web. Then they can dynamically com-
bine individual services to provide new value-added
services. A main problem that remains is how to dis-
cover desired web services. In this paper, we propose
a novel web services discovery strategy given a tex-
tual description of services. In particularly, we pro-
pose a new schema matching algorithm for supporting
web-service operations matching. The matching algo-
rithm catches not only structures, but also semantic
information of schemas. We also propose a ranking
strategy to satisfy a user’s top-k requirements. Ex-
perimental evaluation shows that our approach can
achieve high precision and recall ratio.

Keywords: Web service, XML Schema, Matching

1 Introduction

A web service is programmatically available appli-
cation logic exposed over Internet. It has a set of
operations and data types. The current set of web
service specifications defines how to specify reusable
operations through the Web-Service Description
Language(WSDL) (Christensen, Curbera, Meredith
& Weerawarana 2001), how these operations can
be discovered and reused through the Universal
Description, Discovery, and Integration(UDDI)API
(Clement, Hately, Riegen & Rogers 2004), and how
the requests to and responses from web-service op-
erations can be transmitted through the Simple Ob-
ject Access Protocol API(SOAP) (Gudgin, Hadley,
Mendelsohn, Moreau & Nielsen 2003).

With the rapid development of e-commerce over
Internet, web services have attracted much attention
in recent years. Nowadays, enterprises are able to out-
source their internal business processes as services and
make them accessible via the Web (see, e.g., (Wang,
Zhang, Cao & Varadharajan 2003, Bhiri, Perrin &
Godart 2005, Wang, Cao & Zhang 2005, Limthan-
maphon & Zhang 2004, Limthanmaphon & Zhang
2003)). Then they can combine individual services
into more complex, orchestrated services.

A main problem that remains is how to discover
desired web services. To find a service in UDDI, a user

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at the Thirtieth Australasian Computer Science
Conference (ACSC2007), Ballarat, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 62. Gillian Dobbie, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

needs to input some keywords about the required ser-
vice and then to browse the relevant UDDI category
to locate relevant web services. Considering a large
amount of service entries, this process is time consum-
ing and frustrating. Furthermore, this method does
not provide a mechanism assisting users in selection
among similar web services. For example, consider
the examples shown in Figure 1. A user searching
for a CreateOrder service may also be interested in
an OrderGeneration service. These two services are
similar because they have the same function. But if
the cost of CreateOrder is higher than that of Or-
derGeneration, the user would choose the latter one.
This form of similarity potentially involves more web
services. It is particularly useful and challenging in
service composition.

This paper is devoted to address the problems
above in web service search. The contribution of the
work reported here is summarized as follows:

1. We propose algorithms for supporting web-
service operations matching. The key part of our
algorithms is a schema tree matching algorithm,
which employs a new cost model to compute tree
edit distances. Our new schema tree matching al-
gorithm can not only catch structures, but also
the semantic information of schemas.

2. Based on operations matching, we use the ag-
glomeration algorithm to cluster similar web-
service operations.

3. We also introduce a ranking strategy to satisfy
a user’s top-k requirements. Experimental eval-
uation shows that our approach can achieve ac-
ceptable result with high performance.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 gives an
overview of our web service search approach. Section
4 describes a web-service operation matching algo-
rithm, in which a new cost model and some XML
schema transformation rules are defined. In section
5 we present how to cluster web-service operations.
Section 6 describes our experimental evaluation. Sec-
tion 7 gives some concluding remarks.

2 Related Works

Recently, several approaches have been proposed to
find similar web services for a given web service. The
earlier technique tModel presents an abstract inter-
face to enhance service matching process. But the
tModel needs to be defined while authors publishing
in UDDI (Booth, Haas, McCab, Newcomer, Cham-
pion, Ferris & Orchard 2004). In (Sajjanhar, Hou
& Zhang 2004), the authors propose a SVD-Based
algorithm to locate matched services for a given ser-
vice. This algorithm uses characteristics of singular

value decomposition to find relationships among ser-
vices. But it only considers textual descriptions and
can not reveal the semantic relationship between web
services. Wang etc.(Wang & Stroulia 2003)proposed a
method based on information retrieval and structure
matching. Given a potentially partial specification of
the desired service, all textual elements of the spec-
ification are extracted and are compared against the
textual elements of the available services, to identify
the most similar service description files and to order
them according to their similarity. Next, given this
set of likely candidates, a structure-matching method
further refines the candidate set and assesses its qual-
ity. The drawback is that simple structural matching
may be invalid when two web-service operations have
many similar substructures on data types. Our ap-
proach is similar to this work, but we focus on the se-
mantic simiarity not the structural similarity. Woogle
(Dong, Halevy, Madhavan, Nemes & Zhang 2004) de-
velops a clustering algorithm to group names of pa-
rameters of web-service operations into semantically
meaningful concepts. Then these concepts are used
to measure similarity of web-service operations. It
relies too much on names of parameters and does
not deal with composition problem however. (Shen
& Su 2005) formally defines a behaviour model for
web service by automata and logic formalisms. How-
ever, the behaviour signature and query statements
need to be constructed manually, which can be very
hard for common users.

3 An Overview of Web Services Search

The goal of our web-service search method is to
find relevant web-service operations given a natu-
ral language description of desired web services and
WSDL specifications of all available services pub-
lished through UDDI. The WSDL files consist of
textual description of web-service operations. Thus,
firstly we use traditional IR technique TF (term fre-
quency) and IDF (inverse document frequency) to
find service operations that are most similar to the
given description. We call these operations candi-
date operations. To do this, we extract words from
web-service operation descriptions in WSDL. These
words are pre-processed and assigned weight based
on IDF. According to these weights, the similarity
between the given description and a web-service op-
eration description can be measured. A higher score
indicates a closer similarity. For more details on mea-
suring similarity among documents interested readers
are referred to see (Salton, Wong & Yang 1975). After
obtaining candidate operations, we employ a schema-
match based method to measure similarity among
them. Based on operations matching, the candidate
operations are clustered into some operation sets. For
each operation set the operation with the minimum
cost in it is output as a search result. Since each can-
didate operation has a score, we can rank search re-
sults simply by the score of operations. Now we turn
to the main focus of this paper, which is measuring
similarity between web-service operations based on
schema matching.

4 Web-service Operation Matching

4.1 Web-service Operation Modelling

Definition 1 A web service is a triple ws =
(TpSet,MsgSet,OpSet), where TpSet is a set of
data types; MsgSet is a set of messages conform-
ing to the data types defined in TpSet; OpSet =
{opi(inputi, outputi)|i = 1, 2, ..., n} is a set of op-
erations, where inputi and outputi are parame-

WS1: Web Service: CreateOrderService
Operation: OrderBuilder
Input: UserID DataType: int
Output: ProductsList DataType: Order

WS2: Web Service: OrderGeneration
Operation: GetOrder
Input: UserName DataType: String
Output: MyProducts DataType: PurchaseOrder

Figure 1: Sample Web-service Operations

ters(messages) for exchanging data between web-
service operations.

Figure1 gives two web-service operations used as
examples in this paper. According to definition 1, a
web service can be briefly described as a set of oper-
ations.

Definition 2 Each web-service operation is a multi-
input-multi-output function of the form f :
s1, s2, ..., sn → t1, t2, ..., tm, where si and tj are data
types in according with XML schema specification.
We call f a dependency and si/tj a dependency at-
tribute.

A dependency attribute can be a complex data type
or a primitive data type. Complex data types, for ex-
ample in Order and PurchaseOrder in Figure 1, define
the structure, content, and semantics of parameters,
whereas primitive data types, like int and string, are
typically too coarse to reflect semantic information.
We can convert primitive data types to complex data
types by replacing them with their corresponding pa-
rameters. For example, in figure 1, string is con-
verted into UserName type while int is converted into
UserID type. Both UserName and UserID are con-
sidered as complex data types with semantics. Thus,
each data type defined in a web-service operation car-
ries semantic meaning.

An XML schema can be modelled as a tree of la-
belled nodes. We categorize a node n by its label:

1. Tag node: Each tag node n is associated with
an element type T. T is also the tag name of
node n.

2. Constraint node:

- Sequence node: A sequence node indi-
cates its children are an ordered set of el-
ement types. We use [“,”] to denote a se-
quence node.

- Union node: A union node represents a
choice complex-type, that is, the instance of
which can only be one of the children types
in accordance with the XML Schema spec-
ification. We use [“|”] to denote a union
node.

- Multiplicity node: Each node may op-
tionally have a multiplicity modifier [m, n]
indicating that in the instance, its occur-
rence is between m and n. This corre-
sponds to the minOccurs and maxOccurs
constraints in XML Schema. We use [m, n]
to denote a multiplicity node.

As an example, the schema tree of data type Order
is shown in Figure2.

As we can see, data types defined in web-service
operations carry semantic information. Intuitively,

O
r
d
e
r

O
r
d
e
r
I
D
 [
,

]
 P
r
o
d
u
c
t
P
a
r
t
s

C
u
s
t
o
m
e
r
N
a
m
e

E
x
p
e
c
t
e
d
S
h
i
p
D
a
t
e

[
m
,

n
]

P
a
r
t

P
a
r
t
N
a
m
e
 P
a
r
t
P
r
i
c
e
 P
a
r
t
Q
u
a
n
t
i
t
y
T
e
l
e
p
h
o
n
e

[

|

]

C
u
s
t
o
m
e
r
C
o
n
t
a
c
t
s

e
m
a
i
l

C
o
n
s
t
r
a
i
n

n
o
d
e

l
e
v
e
l
0

l
e
v
e
l
1

l
e
v
e
l
2

l
e
v
e
l
3

l
e
v
e
l
4

d
e
p
t
h
=
5

T
a
g

n
o
d
e

Figure 2: XML schema tree of Order type

we consider two web-service operations similar if they
have similar input/output data types. Thus the prob-
lem of web-service operation matching is converted to
the problem of schema tree matching.

4.2 Tree Edit Distance

Many works have been done on the similarity com-
putation on trees. Among them tree edit distance is
one of the efficient approaches to describe difference
between two trees. We introduce tree edit operations
first. Generally, the tree edit distance operations in-
clude: (a) node removal, (b) node insertion, and (c)
node relabelling. Such a set of operations can be repre-
sented by a mapping with minimum cost between the
two trees. The concept of mapping is formally defined
as follows (Reis, Golgher, d. Silva & Laender 2004):

Definition 3 Let Tx be a tree and let Tx[i] be the ith
node of tree Tx in a preorder traverse of the tree. A
mapping between a tree T1 and a tree T2 is a set M of
ordered pairs (i, j), satisfying the following conditions
for all (i1, j1),(i2, j2) ∈ M

1. i1 = i2 iff j1 = j2;

2. T1[i1] is on the left of T1[i2] iff T2[j1] is on the
left of T2[j2];

3. T1[i1] is an ancestor of T1[i2] iff T2[j1] is an an-
cestor of T2[j2]

Figure 3 gives an example of tree mapping. This
mapping also shows the way of transforming the left
tree to the right one. A dotted line from a node of T1
to a node of T2 indicates that the node of T1 should
be changed if the corresponding nodes are different,
remaining unchanged otherwise. Nodes of T1 not con-
nected by dotted lines are deleted, and nodes of T2 not
connected are inserted.

Each of these operations is assigned a cost. The
tree edit distance between two trees is defined as the
minimal set of operations to transform one tree into
the other.

Our schema matching algorithm is based on tree
edit distance. However, the problem in our case is
more complex than the traditional tree edit distance
for the following reasons:

R

T
1
 T
2

A
 C

D
 E

B
 G

A
 E

R

d
e
p
t
h
=
3

l
e
v
e
l
0

l
e
v
e
l
1

l
e
v
e
l
2

Figure 3: Example of tree mapping

1. The labels of an XML Schema tree can carry
complex type information (e.g., union, multi-
plicity) which makes simple relabelling opera-
tions inapplicable. For instance, let T1 and T2
be the schema trees of Order and Purchase-
Order respectively. Let us imagine there exits
a mapping M between T1 and T2, and there
are two node-mapping pairs (i1, j1),(i2, j2) ∈ M ,
where T1[i1] =[telephone |email], T2[j1] =email,
T1[i2]=price, and T2[j2]=quantity. The edit op-
eration of (i1, j1) should have less cost than that
of (i2, j2).But in the previous work, all tree edit
operations are considered to have same unit dis-
tance.

2. The labels of nodes carry semantic information.
So a relabelling from one node to another unre-
lated node will have more cost than to a seman-
tic related node. For example, relabelling part
to item is less costing than relabelling price to
email.

3. We argue that tree edit operations on low-level
nodes of a tree should have more influence than
operations on high-level nodes. So, for example,
if a part node on the third level of the first tree
is mapped into a part node on the fifth level of
the second tree, the edit operation cost should
not be zero. But the traditional works on tree
edit distance do not consider the difference and
assign each edit operation unit cost.

In the next section, we present a new cost model
to compute the cost of tree edit operation, as a con-
sequence, the tree edit distance of two schema trees.

4.3 Cost Model

Measuring similarity between two XML schema trees
equals to finding a mapping with minimum cost. So,
the cost of each edit operation involved in the map-
ping needs to be computed first. In this section we
introduce a new cost mode based on tree edit dis-
tance presented in (Zhang & Shasha 1989) (Xie, Sha,
Wang & Zhou 2006). The new cost model integrates
weights of nodes and semantic connections between
nodes. Let T1,T2 be two schema trees and let n,
node1 and node2 be tree nodes. Formally, the cost
model is defined as

cost(ρ) =





weight(n)/W (T1, T2), ifρ = insert(n)
weight(n)/W (T1, T2), ifρ = delete(n)
α× wd(node1, node2) ifρ relabels
+β × sd(node1, node2) node1 to node2

where ρ indicates a tree edit operation. weight(n)
shows the weight of node n. wd(node1, node2) and
sd(node1, node2) give the weight and semantic differ-
ence of node1 and node2, respectively. α and β are
weights of wd and sd, satisfying α + β = 1. W (T1, T2)
is defined as W (T1, T2) = weight(T1) + weight(T2),
where weight(Ti) is the sum of all node weights of
tree Ti(i = 1, 2). wd(node1, node2) is defined as

wd(node1, node2) =
‖weight(node1)− weight(node2)‖

W (T1, T2)

where node1 ∈ T1 and node2 ∈ T2 .
In the next two sections, we propose a set of

schema-tree transformation rules and a semantic sim-
ilarity measure to compute wd and sd, i.e. the weight
and semantic difference of nodes.

4.4 XML Schema Tree Transformation

Definition 4 The tag name of a node is typically a
sequence of concatenated words, with the first letter of
every word capitalized (e.g., ExpectedShipDate). Such
a set of words is referred to as a word bag. We use
π(n) to denote the word bag of node n.

Definition 5 Two word bags π(n1) and π(n2) are
said to be equal, only if they have same words.

Two nodes are considered different if they have dif-
ferent word bags. The word bag reflects semantic
meaning of a node. As we shall see later, using word
bags we can measure the semantic similarity between
two schema-tree nodes.

Definition 6 Let level(n) denote the level of node n
in schema tree T . The weight of node n is defined by
a weight function:

weight(n) = 2depth(T)−level(n)(∀n ∈ T)

The weights of all nodes fall in the range of
[2, 2depth(T)]. Each weight reflects the importance of
a node in schema tree T .

From section 4.2, it can be seen that traditional
tree-edit-distance algorithm is not suitable for XML
schema trees. It does not deal with constraint nodes.
We propose three transformation rules to solve this
problem. These rules are used to transform constraint
nodes, specifically, sequence nodes, union nodes and
multiplicity nodes to tag nodes. At the same time,
the weights of nodes are reassigned.

1. split : This rule is applied to sequence nodes. A
sequence node l = [l1, l2, ..., ls] is split into an
ordered list of nodes l1, l2, ..., ls, where li(i =
1, 2, ..., s) is a child node of the sequence node
l. After the split process, each sequence node is
replaced by its child nodes. Each child node li
inherits the weight of its parent node l as a new
weight. Figure 4(a) gives an example of the split
rule.

2. merge: This rule is applied to union nodes. Af-
ter the mergence process, each union node is re-
placed by all its option nodes, i.e. all its child
nodes. All child nodes of the union node l =
[l1|l2|...|ls] are merged into a new node l∗, while
the union node l is deleted. The weight of node l∗
is s times the weight of l. Each li’s(i = 1, 2, ..., s)
word bag is also merged into a new word bag.
Formally, we have weight(l∗) = weight(l) × s.
Figure 4(b) gives an example of the merge rule.

3. delete: This rule is applied to multiplicity nodes.
We delete a multiplicity node l = [m,n](m,n ∈
N) and scale up the weight of each of its child
nodes li. After the deletion process, each multi-
plicity node is replaced by its child nodes. We
have weight(li) = weight(l)× (m+n)/2. Figure
4(c) gives an example of the delete rule.

Note that the definition of complex types can
be nested according to XML schema specification.
Thus, given a schema tree, we apply the three
transformation rules to its nodes level by level,
from bottom to top. This process is formally de-
scribed as bottom-up-transformation algorithm (see
Algorithm 1). The time complexity of Bottom-up-
transformation is O(n), where n is the number of
nodes in the XML schema tree.

input : schema tree T
output: transformed schema tree T∗

d = GetDepth(T);1

for i ← d to 0 do2

foreach node p ∈ leveli do3

if p is a sequence node then4

weight(each of p’s child5

nodes)=weight(p);
add p’s child nodes to p’s parent’s6

child list;
delete p;7

end8

if p is a union node with s options9

{li|i = 1, ..s} then
merge p’s child nodes into a new10

node q;
add q to p’s parent’s child list;11

weight(q) = weight(p)× s;12

π(q) =
s⋃

i=1

π(li) ;
13

delete p;14

end15

if p is a multiplicity node [m,n] then16

add p’s child node to p’s parent’s17

child list;
weight(p’s child18

node)=weight(p)× (m + n)/2;
delete p;19

end20

end21

end22

Algorithm 1: Bottom-up-transformation

O
r
d
e
r

[
,

]

P
r
o
d
u
c
t
P
a
r
t
s

C
u
s
t
o
m
e
r
N
a
m
e

[
m
,

n
]

P
a
r
t

C
u
s
t
o
m
e
r
C
o
n
t
a
c
t
s

T
e
l
e
p
h
o
n
e

[

|

]

C
u
s
t
o
m
e
r
C
o
n
t
a
c
t
s

e
m
a
i
l

2
5

2
3

2
4

2
3

l
e
v
l
e
 0

l
e
v
l
e
 1

l
e
v
l
e
 2

O
r
d
e
r

C
u
s
t
o
m
e
r
N
a
m
e
 C
u
s
t
o
m
e
r
C
o
n
t
a
c
t
s

2
5

2
4

l
e
v
l
e
 1

l
e
v
l
e
 2

l
e
v
l
e
 3

l
e
v
l
e
 2

l
e
v
l
e
 3

l
e
v
l
e
 4

P
r
o
d
u
c
t
P
a
r
t
s

P
a
r
t

T
e
l
e
p
h
o
n
e
,

e
m
a
i
l

C
u
s
t
o
m
e
r
C
o
n
t
a
c
t
s

(
a
)

S
e
q
u
e
n
c
e

n
o
d
e

t
r
a
n
s
f
o
r
m
a
t
i
o
n

(
c
)

M
u
l
t
i
p
l
i
c
i
t
y

n
o
d
e

t
r
a
n
s
f
o
r
m
a
t
i
o
n

(
b
)

U
n
i
o
n

n
o
d
e

t
r
a
n
s
f
o
r
m
a
t
i
o
n

2
4

2
4

2
3

2
2

2
4

2
3

2
2

2
 2

2
3

2
3

2
3
*
(
m
+
n
)
/
2

Figure 4: Examples of XML schema tree transformation

4.5 Semantic Measurement between Schema-
tree Nodes

After the bottom-up transformation, schema tree T
is converted into a new schema tree T∗. Each node n
of T∗ is a tag node, whose word bag may come from
two or more word tags because of nodes mergence by
the merge rule. Formally, node n can be regarded
as a vector (W,B), where W is the weight of node n
and B is the word bag of node n. As we can see, af-
ter transformation the weight difference between two
nodes can be computed by the new cost model. In
this section, we present a strategy to determine the
semantic similarity of two schema-tree nodes, i.e. the
semantic distance between two word bags.

Our approach relies on a hypothesis that two co-
occurrence words in a WSDL description tend to have
same semantics. We exploit the co-occurrence of
words in word bags to cluster them into meaningful
concepts. To improve accuracy of semantic measure-
ment, a pre-processing step is carried out first before
words clustering. Pre-processing includes word stem-
ming, removing stop words and expanding abbrevia-
tions and acronyms into the original forms.

Let I = {w1, w2, ..., wm} be a set of words. These
words come from word bags of all schema-tree nodes
to which similarity measurement is applied. Let D
be a set of candidate web-service operation descrip-
tions available in WSDL files. We introduce associa-
tion rules to reflect the notion of word co-occurrence.

An association rule is an implication of the form
wi → wj , where wi, wj ∈ I. The rule wi → wj holds
in the descriptions set D with support s and confi-
dence c, where s is the probability that wi occurs in
an web-service operation description; c is the prob-
ability that wj occurs in an operation description,
given wi is known to occur in it. All association rules
can be found by the A-Priori algorithm (Kaufman &
Rousseeuw 1990). We are only interested in rules that
have confidence above a certain threshold t.

We use the agglomeration algorithm (Kaufman
& Rousseeuw 1990) to cluster words set I =
{w1, w2, ..., wm} into concept set C = {C1, C2, ...}.
There are three steps in the clustering process. It
begins with each word forming its own cluster and
gradually merges similar clusters.

1. Set up a confidence matrix Mm×m. Mij is a two-
dimensional vector (sij , cij), where sij and cij are
the support and confidence of association rule
wi → wj , respectively.

2. Find Mij with the largest cij in the confidence
matrix M . If cij > t and sij > t then merge
these two clusters and update M by replacing
the two rows with a new row that describes the
association between the merged cluster and the
remaining clusters. The distance between two
clusters is given by the distance between their
closest members. There are now m − 1 clusters
and m− 1 rows in M .

3. Repeat the merge step until no more clusters can
be merged.

Finally, we get a set of concepts C. Each concept
Ci consists a set of words {w1, w2, ...}. To compute
semantic similarity between schema-tree nodes, we re-
place each word in word bags with its corresponding
concept, and then use the TF/IDF measure.

After schema-tree transformation and semantic
similarity measure, the tree edit distance can be ap-
plied to match two XML schema trees by the new cost
model.

4.6 Identifying Similar Web-service Opera-
tions

As it has been mentioned before, we use tree edit dis-
tance to match two schema trees. It is equivalent to
finding the minimum cost mapping. Let M be a map-
ping between schema tree T1 and T2, let S be a subset
of pairs (i, j) ∈ M with distinct word bags, let D(I)
be the set of nodes in T1(T2) that are not mapped by
M . The mapping cost is given by C = Sp + Iq + Dr,
where p, q and r are the costs assigned to the rela-
bel, insertion, and removal operations according to
the cost model proposed in section 4.3. We call C
the match distance between T1 and T2, denoted as
C = ED(T1, T2). Match distance reflects semantic
similarity of two schema trees.

Now let us see the algorithm for matching web-
service operations. Given two web-service opera-
tions op1 : s1, s2, ..., sn → t1, t2, ..., tm and op2 :
x1, x2, ..., xl → y1, y2, ..., yk, we identify all possible
matches between two lists of schema trees, and return
the source-target correspondence that minimizes the
overall match distance between the two lists. See Fig-
ure 5. We formally describe this process in algorithm
2.

S
n

X
1

S
1
 S
i

X
l
X
i

T
m

Y
1

T
1
 T
i

Y
k
Y
i

Figure 5: Matching Web-service Operations

5 Clustering Web-service Operations

Suppose OP = {op1, op2, ..., opq} is a set of web-
service operations and each pair of operations opi and
opj (i, j = 1, 2, ..., q) match with the distance of zij .
We classify OP into a set of clusters {opc1, opc2, ...}.
The clustering algorithm is described as below. It be-
gins with each operation forming its own cluster and
gradually merges similar clusters.

input : op1 : s1, s2, ..., sn → t1, t2, ..., tm
op2 : x1, x2, ..., xl → y1, y2, ..., yk

output: The match distance Z between op1
and op2

for i ← 1 to n do1

Si = min{ED(si, xj)|j = 1, 2, ..., l};2

end3

for i ← 1 to m do4

Ti = min{ED(ti, yj)|j = 1, 2, ..., k};5

end6

Z =
n∑

i=1

Si +
m∑

i=1

Ti
7

Algorithm 2: Algorithm for matching web-
service operations

1. Set up a match matrix Mq×q. Mij is the match
distance of operation opi and opj .

2. Find the smallest Mij in the match matrix M . If
Mij < threshhold δ then merge these two clusters
and update M by replacing the two rows with a
new row that describes the association between
the merged cluster and the remaining clusters.
The distance between two clusters is given by the
distance between their closest members. There
are now q − 1 clusters and q − 1 rows in M .

3. Repeat the merge step until no more clusters can
be merged.

Finally, a set of clusters {OPC1, OPC2, ...} is ob-
tained. For example, Figure 1 shows a sample clus-
ter of two web-service operations: GetOrder and Or-
derBuilder. Given a cluster OPCi and an operation
OPCik ∈ OPCi, OPCik is called the pattern of OPCi
if it has the minimum cost among OPCi. We output
all the patterns as search results.

6 Experiments and Evaluations

We have implemented a prototype system and con-
ducted some experiments to evaluate the effectiveness
and efficiency. We measured the efficiency of our web-
service operation matching method by comparing it
with keyword search, Woogle and structure match-
ing. The experiments were conducted on a P4 Win-
dows machine with a 2GHz Pentium IV and 512M
main memory. The data set used in our tests is a
group of web-service operations whose WSDL speci-
fications are available, so we can obtain their textual
descriptions and XML schemas of input/output data
types. The data contains 223 web services including
930 web-service operations. We chose 7 web-service
operations from three domains: order(3), travel(2)
and finance(2). Each operation description was used
as the basis for desired operations.

We use recall and precision ratio to evaluate the
effectiveness of our approach. The precision(p) and
recall(r) are defined as p = A

A+B , r = A
A+C where

A stands for the number of returned relevant opera-
tions, B stands for the number of returned irrelevant
operations, C stands for the number of missing rele-
vant operations, A + C stands for the total number
of relevant operations, and A+B stands for the total
number of returned operations. Specially, the top 100
search results are considered in our experiments for
each web-service operation search.

We evaluated the efficiency of our approach by
comparing the recall and precision of operation
search with three other methods: keyword searching
method, structure matching (Wang & Stroulia 2003)
and Woogle (Dong et al. 2004). The results obtained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order
 Travel
 Finance

P
re

ci
si

o
n

Keyword search
 Structural matching
 Woogle
 WSExplore

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order
 Travel
 Finance

R
ec

al
l

Keyword search
 Structural matching
 Woogle
 WSExplore

(b)

Figure 6: Precision and recall comparisons

are shown in Figure 6. As can be seen, the precisions
of our approach are 92%, 87% and 78% respectively,
almost always outperforming that of keyword, struc-
trure and Woogle. The precision is higher on order
operations but lower in finance operations because
order operations have more complex structures and
richer semantics in input/output data types. This in-
dicates that, by combining structural and semantic
information, the precision of our approach improves
significantly, compared to the results obtained with
structural or semantic information only. It is also
can be seen that by keyword method the precision
is rather low whereas the recall is rather high. This
demonstrates textual description of operations con-
tain much useful information but also much noise at
the same time.

7 Conclusions

In this paper we have presented a novel approach to
retrieve desired web-service operations of a given tex-
tual description. The concept of tree edit distance
is employed to match web-service operations. Mean-
while, some algorithms are proposed for measuring
and grouping similar operations. Our approach can
be used for web-service searching tasks with top-k re-
quirements.

As part of on-going work, we are interested in
improving performance of the web-service operation
matching algorithm, as well as integrating more se-
mantic information to our system in order to improve
the search precision.

References

Bhiri, S., Perrin, O. & Godart, C. (2005), Ensuring
required failure atomicity of composite web ser-
vices, in ‘WWW’, pp. 138–147.

Booth, D., Haas, H., McCab, F., Newcomer,
E., Champion, M., Ferris, C. & Orchard,
D. (2004), Web services architecture.
http://www.w3.org/tr/ws-arch/.

Christensen, E., Curbera, F., Meredith, G. & Weer-
awarana, S. (2001), Web services description lan-
guage (wsdl) 1.1. http://www.w3.org/tr/wsdl.

Clement, L., Hately, A., Riegen, C. V. & Rogers, T.
(2004), Universal description discovery and inte-
gration. http://uddi.org.

Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E. &
Zhang, J. (2004), Simlarity search for web ser-
vices, in ‘VLDB’, pp. 372–383.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau,
J. J. & Nielsen, H. F. (2003), Simple
object access protocol (soap) version 1.2.
http://www.w3.org/tr/soap/.

Kaufman, L. & Rousseeuw, P. J. (1990), Finding
Groups in Data: An Introduction to Cluster
Analysis, John Wiley, New York. ID: 58.

Limthanmaphon, B. & Zhang, Y. (2003), Web ser-
vice composition with case-based reasoning., in
‘ADC’, pp. 201–208.

Limthanmaphon, B. & Zhang, Y. (2004), Web ser-
vice composition transaction management., in
‘ADC’, pp. 171–179.

Reis, D. D. C., Golgher, P. B., d. Silva, A. S. &
Laender, A. H. F. (2004), Automatic web news
extraction using tree edit distance, in ‘WWW’,
pp. 502–511.

Sajjanhar, A., Hou, J. & Zhang, Y. (2004), Algo-
rithm for web services matching, in ‘APWeb’,
Vol. 3007, pp. 665–670.

Salton, G., Wong, A. & Yang, C. S. (1975), ‘A vec-
tor space model for automatic indexing’, Com-
mun.ACM 18(11), 613–620.

Shen, Z. & Su, J. (2005), Web service discovery based
on behavior signatures, in ‘SCC’, Vol. 1, pp. 279–
286 vol.1.

Wang, H., Cao, J. & Zhang, Y. (2005), ‘A flexible pay-
ment scheme and its role-based access control’,
IEEE Trans. Knowl. Data Eng. 17(3), 425–436.

Wang, H., Zhang, Y., Cao, J. & Varadharajan, V.
(2003), ‘Achieving secure and flexible m-services
through tickets’, IEEE Transactions on Systems,
Man, and Cybernetics, Part A 33(6), 697–708.

Wang, Y. & Stroulia, E. (2003), Flexible interface
matching for web-service discovery, in ‘WISE’.

Xie, T., Sha, C., Wang, X. & Zhou, A. (2006), Ap-
proximate top-k structural similarity search over
xml documents, in ‘APWeb’, Vol. 3841, pp. 319–
330.

Zhang, K. & Shasha, D. (1989), ‘Simple fast
algorithms for the editing distance between
trees and related problems’, SIAM J.Comput.
18(6), 1245–1262.

