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Abstract
Ontology mapping seeks to find semantic correspondences
between similar elements of different ontologies. Ontology
mapping is critical to achieve semantic interoperability in
the WWW. Due to the fact that ubiquitous constraints (e.g.,
hierarchical restrictions in RDFS) caused by the
characteristics of ontologies and their representations exist
in ontologies, constraints satisfaction has become an
intriguing research problem in ontology mapping area.
Though different techniques have been examined to find
mappings, little work is made to solve constraint satisfaction
problem for ontology mapping. Currently most approaches
simply validate ontology constraints using isolate heuristic
rules instead of comprehensively considering them in a
global view. This paper proposes a neural network based
approach to search for a global optimal solution that can
satisfy ontology constraints as many as possible.
Experimental results on OAEI benchmark tests #248-#266
show the approach is promising. It dramatically improves
the performance of preliminary mapping results.

1. Introduction
The World Wide Web (WWW) is widely used as a
universal medium for information exchange. However,
semantic interoperability in the WWW is still limited due
to the heterogeneity of information. Ontology, a formal,
explicit specification of a shared conceptualization (Gruber
1993), has been suggested as a way to solve the problem.
With the popularity of ontologies, ontology mapping,
aiming to find semantic correspondences between similar
elements of different ontologies, has attracted many
research attentions from various domains. Different
techniques have been examined in ontology mapping, e.g.,
analyzing linguistic information of elements in ontologies
(Qu, Hu et al. 2006), treating ontologies as structural
graphs (Melnik, Garcia-Molina et al. 2002), using heuristic
rules (Hovy 1998) or applying machine learning
techniques (Doan 2002). Comprehensive surveys of the
state of the art ontology mapping approaches can be found
in (Euzenat, Bach et al. 2004; Kalfoglou and Schorlemmer
2003; Noy 2005; Euzenat and Shvaiko 2007).
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Though the state of the art ontology mapping approaches
have made significant progress in finding mappings, few of
them comprehensively consider ontology constraints so as
to further improve mapping accuracy. In fact, most
approaches simply validate ontology constraints using
isolate heuristic rules instead of comprehensively
considering them in a global view.

This  paper  proposes  a  neural  network  based  approach  to
search for a global optimal solution that can satisfy
ontology constraints as many as possible. Experimental
results on OAEI benchmark tests1 show  the  approach  is
promising. It dramatically improves the performance of
preliminary mapping results.

2. A Simple Scenario of Constraint
Satisfaction in Ontology Mapping

Constraint satisfaction has become an intriguing problem
in ontology mapping area due to the ubiquity of ontology
constraints. For example, the hierarchical relations in
RDFS2 do not allow crisscross mappings, the axioms such
as owl:sameAs and owl:equvalentClass in  OWL3 indicate
an equivalent relation between different elements, and the
rules in SWRL4 would be to imply or assert some
properties that are not directly available.

Figure 1. A simple scenario of constraint satisfaction in
ontology mapping

Figure 1 is a very simple real world ontology mapping case
between the taxonomy of Google directory5 and Yahoo

1 http://oaei.ontologymatching.org/2007/benchmarks/
2 http://www.w3.org/TR/rdf-schema/
3 http://www.w3.org/TR/owl-features/
4 http://www.daml.org/2003/11/swrl/
5 http://directory.google.com/
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directory6. In the example, a crisscross mapping (i.e.,
celebrities maps to celebrities & arts maps to artists)
might be incorrectly output as final results based on the
lexical analysis of the ontologies only. To eliminate such
kind of invalid mappings and thus improve the quality of
ontology mapping, it is critical to find an optimal
configuration that can best satisfy ontology constraints,
such  as  "if e1i maps to e2j is true, then e'1i maps to e'2j is
false, where exy is  an  element  (e.g.,  class  or  property)  in
ontology Ox, e'1i is the parent of e1i, and e'2j is the child of
e2j.".

Finding a configuration to satisfy the constraints as many
as possible is known as constraint satisfaction problem
(CSP). CSPs are typically solved by a form of search, e.g.
backtracking, constraint propagation or local search (Tsang
1993). In 1981, McClelland and Rumelhart proposed to use
the interactive activation and competition (IAC) neural
network to solve CSPs in word perception (McClelland
and Rumelhart 1981). In this paper, we briefly introduce
the mechanism of the IAC neural network. A
comprehensive introduction of the network can be found in
(McClelland and Rumelhart 1988).

3. Our Approach
Before  we  discourse  the  IAC  neural  network  model,  we
talk a little bit about the whole procedural of our approach.
Given a mapping task, i.e., the OAEI benchmark tests
#248-#266, first, we parse ontologies using Jena7, and
preprocess them by removing stop words, stemming, and
tokenizing. Next, we measure three kinds of similarities,
i.e., edit distance based similarity, profile similarity and
structure similarity, for each ontology. After that we
calculate the harmony for each similarity by counting the
normalized number of mapping pairs that suggest
unambiguously 1-to-1 mappings, and then we adaptively
aggregate three similarities upon their harmonies. Based on
the aggregated similarity, we activate the IAC neural
network to search for an optimal configuration that best
satisfy ontology constraints. Finally we extract mapping
results using naive descendant extraction algorithm
(Meilicke and Stuckenschmidt 2007). This paper focuses
on the implementation of the IAC network in the context of
ontology mapping. We refer interested readers to (Mao and
Peng 2006; Mao, Peng et al. 2007) for details about how
we measure and aggregate three similarities to generate
preliminary mapping results. However it is worth to
remark that our neural network based constraint
satisfaction  approach  is  a  generic  approach,  and  thus  the
preliminary results can come from any similarity-based
ontology mapping approach, not limited to ours.

6 http://dir.yahoo.com/
7 http://jena.sourceforge.net/

3.1. The IAC Neural Network
Generally speaking, an IAC neural network consists of a
number of competitive nodes that are connected to each
other. Each node represents a hypothesis. The connection
between two nodes represents constraint between their
hypotheses. If two hypotheses support each other, the
connection between them is positive (i.e., active); whereas
if two hypotheses are against each other, the connection
between them is negative (i.e., competitive). Each
connection is associated with a weight, which is
proportional to the strength of the constraint. The
activation of a node is determined locally by four sources:
its initial activation, the input from its adjacent nodes, its
bias and some external input. The mechanism of the IAC
neural network can be illustrated using the following
simple example.

Suppose we have two grids, 1 and 2, and two constraints:

1. Each grid can have one value, either A or B.
2. The values of the two grids are different.

We also have four hypotheses: A in grid 1 (HA1); B in grid
1 (HB1); A in grid 2 (HA2); B in grid 2 (HB2). Based on the
two constraints we know there are two negative
connections and one positive connection for each
hypothesis.

1. HAi is against HBi, and vice versa (i=1 or 2)
2. Hx1 is against Hx2, and vice versa (x=A or B)
3. HAi supports HBj, and vice versa (i, j = 1 or 2, and i j)

Figure 2. A simple IAC neural network

Figure 2 illustrates the simple example, in which each node
represents a hypothesis, the line with rounded head and
arrowhead represents negative connection and positive
connection between hypothesis respectively and the dashed
line with arrowhead represents a small stimulus on each
node from outside. Assume the negative weight is half the
positive weight and all nodes are inactive at start. Though
the input from three neighbors of the node will cancel out,
the small excitatory input from outside will activate the
node. All nodes are chosen to be updated sequentially in
random order. Finally, either A1 & B2 or B1 & A2 will be
active, and finally the network will reach a stable state.
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3.2. The Motivation
The common properties between the characteristic of
ontology mapping problem and the mechanism of the IAC
network motivate the work addressed in the paper. First, in
ontology mapping, the constraints between mapping
hypotheses are either active or competitive. For example,
given two mapping hypotheses, e.g., e1i maps to e2j and e'1i

maps to e'2j, the constraint "if e1i maps to e2j is true, then
e'1i maps  to e'2j is  true,  where e'1i and e'2j are the child of
e1i, and e2j respectively" is active; whereas the constraint
"if e1i maps to e2j is true, then e'1i maps to e'2j is false,
where e'1i is the parent of e1i, and e'2j is the children of e2j"
is competitive. Such characteristic is exactly the same as
that in the IAC networks. Secondly, preliminary mapping
results  can  bring  prior  knowledge to  us,  which  makes  the
IAC neural network more practical. That is, the aggregated
similarity of each mapping pair just reflects the confidence
of the mapping hypothesis, and thus it can be directly used
as  initial  activation  or  be  converted  as  external  inputs  or
bias of a node in the IAC network.

3.3. The Implementation
Figure 3 illustrates the implementation of IAC neural
network in the context of ontology mapping, where ai
denotes the activation of node i, written as ni, neti denotes
the net input of the node, istr and estr denote the parameter
of internal and external input respectively, the wij denotes
the connection weight between ni and nj, aj denotes the
activation of node nj, biasi denotes the bias of ni, and eii
denotes the external input of ni, which is a function of the
confidence of a mapping. In the picture, a node (e1i, e2j)
represents a hypothesis that indicates a mapping between
e1i and e2j. The connections between nodes represent
constraints between hypotheses. For example, the
constraint that "only 1-to-1 mapping is allowed" results in
a negative connection between nodes (e1i, e2j) and (e1i, e2k),
where k  j. Moreover, "two elements match if their
children match", results in a positive connection between

nodes  (e1i,  e2j)  and  (e1k, e2t), where e1k and e2t are the
children of e1i and e2j respectively. Currently we
implemented 12 constraints (see Table 1). The weights in
weight matrix correspond to the prior confidence of the
constraint, which are currently set as 1 for positive
constraints and -1 for negative constraints. The initial
activation of each node is set to the aggregated similarity
of (e1i , e2j) from previous processes. The bias of each node
is set as 0. The external input is set to the reliability of each
hypothesis. Currently the external input of unambiguous
hypotheses, which hold the highest similarity in its
responding row and column in the similarity matrix, is set
as  10,  otherwise  as  0.  The  activation  of  a  node  can  be
updated with the rule illustrated in the picture, where ai
denotes the activation of node i, written as ni, neti denotes
the net input of the node. Once the network starts running,
it can either be stopped after n cycles or at some goodness
point, which is the degree of how many desired constraints
are satisfied, at time t (McClelland and Rumelhart 1988).
In our implementation, we let the network stop when its
delta goodness reaches some satisfaction (i.e., 1%).
Finally, please note, in Table 2, though the number of
negative constraints is much less than the number of
positive constraints, the ratio of negative connections and
positive connections is not small due to the fact that each
node in the network will have a large amount of negative
connections introduced by the constraint that "only 1-1
mapping is allowed".

4. Evaluation

4.1. Data Sets
To evaluate our approach we use the benchmark tests
#248-#266 from OAEI ontology matching campaign
20078. The tests include 1 reference ontology, which
describes the very narrow domain of bibliography, and 15

8 http://oaei.ontologymatching.org/2007/

Figure 3. The IAC neural network in the context of ontology mapping
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Table 1. The constraints used in our approach

# Constraints Connection
1 Only 1-1 mapping is allowed. negative
2 No crisscross mapping is allowed. negative
3 If children elements match, then

their parent elements match.
positive

4 If parent elements match, then their
children elements match.

positive

5 If e1i match e2j, then e1s match e2t,
where e1i and e1s, e2j and e2t are
siblings in ontologies.

positive

6 If property elements match, then
their domain elements match.

positive

7 If property elements match, then
their range elements match.

positive

8 If class elements match, then their
direct property elements match.

positive

9 If property elements match, then
their mother-class elements match.

positive

10 If class elements match, then their
individual elements match.

positive

11 If individual elements match, then
their mother-class elements match.

positive

12 Two elements match if their
owl:sameAs or owl:equivalentClass
or owl:equivalentProperty elements
match.

positive

Figure 4. Results of the IAC neural network approach
on OAEI benchmark tests #248-#266

Table 2. The overall improvement of our approach on
#248-#266

H-Mean Precision Recall F-Measure
Before NN .76 .54 .63
After NN .88 .67 .76
NN Improvement 13% 24% 19%

artificially-made test ontologies, each of which discards
various information from the reference ontology so as to
evaluate how algorithms behave when some kind of
information is lacking.

The reasons why we choose OAEI benchmark tests #248-
#266 are: 1.The OAEI benchmark tests have become

authoritative tests in the area of ontology mapping. 2. The
ground truth of the benchmark tests is open, and thus can
be used for comprehensive evaluation. 3.  Tests #248-#266
are the most difficult tests among all benchmark tests. The
results from all participants9 on these tests are pretty lower
than their results on other benchmark tests. Therefore the
improvement on these tests can greatly contribute to the
overall performance of all kinds of ontology mapping
approaches.

4.2. Evaluation Criteria
We follow the evaluation criteria from the OAEI
campaign, calculating the precision (i.e.,  the  ratio  of
correctly found mappings to all found mappings), recall
(i.e., the ratio of correctly found mappings to all true
positive mappings) and f-measure (i.e., the weighted
harmonic means) over each benchmark test (Euzenat et al.
2007).

4.3. Experimental Methodology and Results
The experiment methodology is: Given the preliminary
mapping results, we activate the IAC neural network on
each OAEI benchmark test in #248-#266. The value of
parameter in the network is set as what we described in
§3.3.  Then  we  let  the  network  run  by  itself  and  stop  it
when its delta goodness is less than 1%. Finally we extract
mapping results using naïve descendant extraction
algorithm (Meilicke and Stuckenschmidt 2007).

Experiment results in Figure 4 show the neural network
based constraint satisfaction approach improves the f-
measure of 12 tests among 15 tests except #257, #261 and
#266. The largest improvement of f-measure (i.e., .37)
happens on #254 and #262. The decrease on #261 is due to
the extension of its structure, i.e., new classes are added as
new layers in test ontology, which makes some constraints
in neural network are not correct anymore. Meanwhile, no
linguistic information is available in #261 at all, and thus
there is no linguistic analysis that we can rely on. Table 2
shows the prominent improvement of our approach over all
tests #248-#266. They are 13%, 24%, and 19% for
precision, recall, and f-measure respectively.

5. Related Work
Different approaches have been proposed to solve the
ontology mapping problem. In this section we only review
three most related work, i.e., GLUE (Doan 2002),
Similarity Flooding (Melnik, Garcia-Molina et al. 2002),
and Falcon-AO (Qu, Hu et al. 2006), from the perspective
of constrain satisfaction. Comprehensive surveys of some
famous ontology mapping systems, such as COMA (Do
and Rahm 2002), QOM (Ehrig and Staab 2004) and

9 http://oaei.ontologymatching.org/2007/results/benchmark
  s/HTML/results.html
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PROMPT (Noy and Musen 2003), can be found in
(Euzenat, Bach et al. 2004; Kalfoglou and Schorlemmer
2003; Noy 2005; Euzenat and Shvaiko 2007).

GLUE (Doan 2002) is an instance based ontology
(specifically taxonomy) mapping approach, which
implements multiple learning based matchers to exploit
information in concepts/instances and taxonomic structure
of ontologies. From constraint satisfaction view, GLUE
adopts relaxation labeling approach to search for the
mapping configuration that best satisfies the domain
constraints. GLUE and our approach are similar in that we
both try to comprehensively consider ontology constraints
by utilizing fledged techniques from other domains.
However, we explore different approaches and different
kinds of constraints. GLUE adopts relaxation labeling
approach that has been applied successfully in computer
vision (Hummel and Zucker 1983), natural language
processing (Padro 1998) and hypertext classification
(Chakrabarti, Dom et al. 1998); whereas our approach
integrates the IAC neural network that has been used to
model visual word recognition (McClelland and Rumelhart
1981) and information retrieval tasks (Ross and Philip
1991). Furthermore, the constraints implemented in our
approach are more complex than that in GLUE. We
consider 12 constraints from hierarchical relations to OWL
axioms, all of which are general constraints and
independent to specific domain. Whereas, GLUE explores
eight constraints, and four of them are specific and
domain-dependent. The other four constraints, though
general, are about simple hierarchical relations only.
Finally, the relaxation labeling approach in GLUE needs to
estimate prior probability of data distribution, which relies
on the availability of instances in taxonomies.
Unfortunately large number of instances usually is not
available in most ontology mapping cases. Though our
neural network needs prior confidence to set parameters,
the similarity from preliminary mapping results just
reflects such confidence in some degree.

Similarity Flooding (Melnik, Garcia-Molina et al. 2002)
is a generic graph based ontology mapping approach. It
utilizes fixpoint computation to determine corresponding
nodes in the graphs. The principle of the similarity
flooding (SF) approach is that the similarity between two
nodes depends on the similarity between their adjacent
nodes. The most likeness between us is both of us utilize
graph theory either directly or indirectly when satisfying
ontology constraints. The SF employs dependency graph,
and we convert graphic relations into some rules that
neural network can take into account. However we are
different  in  several  ways.  First,  the  dependency  graph  in
SF does not support competitive constraints. Instead, our
neural network model can deal with both active and
competitive constraints. Furthermore, the dependency
graph only works for directed labeled graphs. When
labeling is uniform or undirected, or when nodes are less
distinguishable, SF degrades. Contrarily, our neural
network approach is flexible on this aspect. Finally, the

number and the complexity of the constraints implemented
in SF are much less than ours.

Falcon-AO (Qu,  Hu et al. 2006) is a similarity-based
generic ontology mapping system. It consists of three
linguistic matchers, one structure matcher, and one
ontology partitioner. The common place between us is both
approaches are measuring multiple similarities especially
when generating linguistic similarity the concept of our
profile is very similar as their virtual document. However,
we are different in many ways. From the constraint
satisfaction view, Falcon-AO uses a bipartite graph when
measuring structural similarity of two ontologies. However
bipartite graph can only explore simple hierarchical
relations instead of complex ontology axioms or rules.
Meanwhile, though Falcon-AO forms three heuristic rules
to integrate multiple similarities, they do not have any
solutions to further optimize final results so as to satisfy
various ontology constraints. Therefore, Falcon-AO can be
seen as the first step of our approach. That is, we can adopt
its results as our preliminary results for further validation.

6. Conclusion and Future Work
In this paper we proposed an IAC neural network based
approach to find a global optimal solution that best
satisfies ontology constraints. The experimental results
show the approach dramatically improves the performance
of preliminary mapping results on OAEI benchmark tests
#248-#266. Future work may include exploring more
complex constraints, optimizing weight matrix,
implementing the neural network in parallel computing
platforms to improve its efficiency etc.
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