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Abstract. In this paper we address the problem of migrating instances between
heterogeneous overlapping ontologies. The instance migration problem arises
when one wants to reclassify a set of instances of a source ontology into aseman-
tically related target ontology. Our approach exploits mappings between ontolo-
gies, which are used to reconcile both conceptual and individual level heterogene-
ity, and further used to draw the migration process. We ground the approach on
a distributed description logic (DDL), in which ontologies are formally encoded
as DL knowledge bases and mappings as bridge rules and individual correspon-
dences. From the theoretical side, we study the task of reasoning with instance
data in DDL composed ofSHIQ ontologies and define a correct and complete
distributed tableaux inference procedure. From the practical side, we upgrade the
DRAGO DDL reasoner for dealing with instances and further show how it can be
used to drive the migration of instances between heterogeneous ontologies.

1 Introduction

The semantic web steadily evolves growing into a container of multiple distributed on-
tologies. Although ontologies are supposed to provide a consensual model of the world,
those found in practice are far from being so. They rather formalize a subjective view in
accordance with diverse assumptions, such as target goals,available background knowl-
edge, biases, etc. This fact inevitably leads to a situationin which the same domain is
represented by more than one ontology inheterogeneousways.

The classical approach to the problem ofreconciling heterogeneitybetween ontolo-
gies consists of two essential steps: matching and reasoning. By matching one creates a
set ofmappings—comprising semantic correspondences—between elements of differ-
ent ontologies. For example, a mapping can express the fact that the conceptScholar in
one ontology is equivalent to the conceptStudent in another ontology, or that the indi-
vidualSamuel Clemens in one ontology corresponds to the individualMark Twain in
the other ontology. Mappings can be created manually, by domain experts, or discovered
(semi-)automatically by existing matching techniques [8]. Once mappings are stated, it
is necessary to provide a method forreasoningwith them. Formally, this amounts to
evaluating logical consequences of mappings on the mapped ontologies.

Mappings form a source to a target ontology can be used to transfer knowledge
between the two ontologies. When ontologies are representedin OWL (formally corre-
sponding to DL knowledge bases) there are two types of knowledge that can be trans-
ferred: terminological knowledge (i.e., mappings can force new concept subsumptions



in the target ontology) and assertional knowledge (i.e., mappings can assert new in-
stances of a certain concept). To motivate and explain the problem, let us consider a
scenario in which ontology mappings are used for migrating instances.

Example 1 (Motivating scenario).A computer science department of some university
employed an ontologyOCS Dept for accessing data related to organization of the de-
partment. Successively, a human resource office of the university decides to make use
of ontologies to represent data about the employees of the whole university. For this
purpose they create an ontologyOHRO Uni and further populate it with instance data.
To save time, they decide to reuse the work done by the computer science department.
However, to do that they need to solve the following two problems. First, the concep-
tualization inOHRO Uni is different from the one inOCS Dept, so the classification of
instances done inOCS Dept must be adapted to the classification schema implemented
in OHRO Uni. Second, the identifiers used inOCS Dept for people do not coincide with the
identifiers used inOHRO Uni, thus they have to provide a way to transform (regenerate)
identifiers of the people they want to insert in their ontology.

The main objective of the paper is to provide a logical characterization of the as-
sertional information enforced by a set of mappings. Based on this characterization, we
propose a sound and complete distributed tableaux algorithm that reclassifies instances
of a source ontology into a target ontology in accordance to the mappings. The feasi-
bility of this approach is shown by describing the implementation of such an algorithm
in the DRAGO DDL Reasoner1. The approach described in the paper, relies on the
logical framework of distributed description logics (DDL)[4]. In such a framework a
distributed knowledge baseconsists of a family of standard DL knowledge bases, cor-
responding to each given ontology, a set ofbridge rules, corresponding to mapping be-
tween pairs of terminologies (T-boxes), andindividual correspondences, corresponding
to rules for transforming individuals across instance storages (A-boxes). The concrete
contribution of the present work includes:

– characterization of the role that bridge rules and individual correspondences play
when reasoning with instances in DDL; in particular, we showthat they are capable
of propagating concept membership assertions across ontologies

– definition of a sound and complete distributed extension toSHIQ-A-box tableau
for reasoning with instances in DDL; the algorithm implements the backward chain-
ing strategy for computation of propagated assertions by distributed communication
with DL tableaux reasoners attached to other ontologies

– extending the DRAGO DDL Reasoner, currently limited to reasoning without in-
stances, with the algorithm proposed in this paper and further showing its applica-
tion to drive instance migrations.

The paper is organized as follows. In Section 2 we introduce the definition of a
DDL distributed knowledge base with bridge rules and individual mappings. In Section
3 we study how bridge rules and individual mappings propagate information across
knowledge bases. The implementation in DRAGO and the application to the instance
migration scenario is further outlined in Section 4. We end up with an overview of
related work and concluding remarks.

1 http://sra.itc.it/projects/drago



2 Distributed Knowledge Bases

As introduced by Borgida and Serafini in [4], DDL is a formalism for representing
multiple ontologiespairwise interconnected by directional semantic mappings. In this
section we recall and extend the basic definitions of DDL.

2.1 Syntax and Semantics

A distributed knowledge base formalizes a set of ontologiesinterconnected by semantic
mappings. The first component of a distributed knowledge base is a family of knowl-
edge basesK = {Ki}i∈I . According to a standard DL definitions, eachKi consists
of a terminological componentTi (T-box) and an assertional componentAi (A-box).
Since the very same symbol can be used in two knowledge bases with different mean-
ing, to unambiguously refer to elements ofKi, they are prefixed with the indexi of
the knowledge base. The notationsi : a i : C, i : C ⊑ D, i : C(a) andi : R(a, b),
stand for an individuala, conceptC, subsumptionC ⊑ D, assertionsC(a) andR(a, b),
respectively in the knowledge baseKi.

Mappings fromKi toKj knowledge bases with (i 6= j) are encoded as bridge rules
and individual correspondences, which are expressions of the following forms:

– i : C
⊑
−→ j : D (into-bridge rule)

– i : C
⊒
−→ j : D (onto-bridge rule)

– i : a 7−→ j : b (individual correspondence)

whereC andD are concept names ofTi andTj , anda andb are individuals ofAi and
Aj respectively2.

Both bridge rules and individual correspondences fromKi to Kj express relations
betweenKi andKj viewed from thej-th subjectivepoint of view. Intuitively, the into-

bridge rulei : PhDThesis
⊑
−→ j : Thesis states that, from thej-th point of view

the conceptPhDThesis in i is less general than its local conceptThesis. Similarly,

the onto-bridge rulei : InProceedings
⊒
−→ j : ConferencePaper expresses the

more generality relation. The individual correspondencei : mario phd thesis 7−→
j : mario thesis expresses the fact theAj ’s individual mario thesis is one of the
possible translations in the language ofKj of theAi’s individualmario phd thesis. In
the general case we admit that an individual can have more than one translation.

A distributed T-boxT consists of T-boxesTi and a collectionB of bridge rules be-
tween them. Adistributed A-boxA consists of A-boxesAi and a collection of individual
correspondencesC. A distributed knowledge baseK is then a tuple〈T,A〉.

The semantics of DDL is defined with a fundamental assumptionthat each knowl-
edge baseKi in the family islocally interpretedon its local interpretation domain. To
support directionality, (i.e., mappings fromi to j only propagate in thei-to-j-direction),

2 In this work we concentrate only on individual correspondences, anddon’t consider complete
correspondences which does not have any additional effect in data migration



 
 


Fig. 1.Visualized semantics of DDL framework

we admit the hole interpretationIǫ with empty domain (see more details in [15])3. By
definition, we impose thatIǫ satisfies any knowledge base. To resolve heterogeneity
between different domains the DDL defines a binarydomain relationr between pairs
of these domains. Figure 1 intuitively depicts component elements of DDL semantics.

A distributed interpretationI of a distributed knowledge baseK = 〈T,A〉 consists
of a family of local interpretationsIi on local interpretation domains∆Ii and a family
of domain relationsrij ⊆ ∆Ii × ∆Ij between pairs of local domains.

A distributed interpretationI satisfiesa distributed knowledge baseK = 〈T,A〉, is
called a model ofK, if all its’ components are satisfied according to the following rules:

– Ii satisfiesKi

– rij(C
Ii) ⊇ DIj for all i : C

⊒
−→ j : D

– rij(C
Ii) ⊆ DIj for all i : C

⊑
−→ j : D

– bIj ⊆ rij(a
Ii) for all i : a 7−→ j : b

2.2 Inference services

Although both in DL and Distributed DL the fundamental reasoning services lay in ver-
ification of concept satisfiability/subsumption and instance checking/retrieval within a
certain ontology, in DDL, besides the ontology itself, the other ontologies and map-
pings between them should be taken into account. Given a distributed knowledge base
K = 〈T,A〉, thedistributed inference servicescan be defined as follows:

3 Classically, DL interpretation maps every individual into anelementof the domain, while
the hole maps everything into the emptyset. To allow homogeneous treatment of standard
DL interpretations and holes, we require that any individualx is standardly interpreted into a
singleton set, rather than into an element of the domain. Hence,Ii |= C(a) ⇐⇒ aIi ⊆ CIi ,
rather thanaIi ∈ CIi . We thank the anonymous reviewer for pointing at this mismatch



Satisfiability: A conceptC is satisfiablein i with respect toK if there exists a dis-
tributed interpretationI of K such thatCIi 6= ∅.

Subsumption: A conceptC is subsumedby a conceptD in i with respect toK if for
every distributed interpretationI of K we have thatCIi ⊆ DIi . In this case we
will write K |= i : C ⊑ D.

Instantiation: An individual a is aninstance ofa conceptC in i with respect toK if
for every distributed interpretationI of K we have thataIi ⊆ CIi . In this case we
will write K |= i : C(a).

Retrieval: Computing the individuals inKi that instantiate a given conceptC in i with
respect toK.

The group of concept satisfiability/subsumption services is typically referred to as
terminological reasoning services, while the remaining instantiation/retrieval services
are grouped into assertional reasoning services.

The question of providing terminological services for DDL has been already stud-
ied in [15]. It has been shown that certain combinations of into- and onto-bridge rules
can lead to the propagation of knowledge in form of subsumption axioms across ontolo-
gies participating in DDL. Moreover, in case of DDL withSHIQ components without
instances adding these additional propagation rules to existing DL tableaux algorithms
leads to a correct and complete reasoning in DDL. The presented method has been also
implemented in the DRAGO DDL reasoner.

In the consequent sections, we investigate the assertionalreasoning services.

3 Reasoning with Instances in Distributed Knowledge Bases

For the sake of clarity, we start considering the case of DDL with two component knowl-
edge bases and unidirectional sets of bridge rules and individual correspondences. For
the general results and proofs we refer the interested reader to the technical report [16].

3.1 Inference patterns

In the following we characterize the knowledge propagated from a knowledge basei
(the source) toj (the target) by a set ofpropagation rulesof the form:

(1) facts ini, (2) bridge rules fromi to j, (3) individual mappings fromi to j

(4) fact in j

which must be read as: if the facts in (1) are true inKi, the bridge rules in (2) are
contained inBij , the individual correspondences in (3) are contained inCij , then the
fact in (4) must be true inKj .

Following the semantics of mappings in DDL outlined in the previous section, it
can be observed that the individual correspondences can interact with into-bridge rules
with the effect of propagating concept membership assertions:

i : C(a), i : C
⊑
−→ j : D, i : a 7−→ j : b

j : D(b)
(1)



Indeed,bIj ⊆ rij(a
Ii) ⊆ rij(C

Ii) ⊆ DIj .
In practice, this means that if an ontologyO1 defines an instancemario of a con-

ceptPhDStudent, and an ontologyO2 has some individual nameperson 123, then

a bridge rule1 : PhDStudent
⊑
−→ 2 : Student and an individual correspondence

1 : mario 7−→ 2 : person 123 entail theO2’s assertion thatperson 123 is an in-
stance ofStudent.

In languages that support disjunction, the above propagation can be generalized to
the propagation of instance membership over a disjunction of n > 0 concepts:

i : (C1 ⊔ . . . ⊔ Cn)(a), i : Ck
⊑
−→ j : Dk (1 6 k 6 n), i : a 7−→ j : b

j : (D1 ⊔ . . . ⊔ Dn)(b)
(2)

Several observations on the stated propagation pattern require a specific attention.

Generality Rule (2) appears to be themost generalform of assertion propagation in
DDL when individual correspondences are restricted to befunctional. A set of indi-
vidual correspondencesCij is functional if for every individuala of Ai the setCij

contains at most one individual correspondencei : a 7−→ j : b. For the sake of pre-
sentation, in this paper we restrict ourself to functional individual correspondences,
leaving the most general case to the technical report [16])4.

Inconsistency propagation When n = 0, the inference pattern in (2) becomes the
following inference rule:

i : ⊥(a), i : a 7−→ j : b

j : ⊥(b)
(3)

which states that to propagate the inconsistency ofKi to Kj it’s enough to have
one single individual correspondence. From the representational point of view this
inference rule is very fragile. We currently do not see an easy solution to fix this
sensitivity to inconsistency propagation. This topic willbe subject for further stud-
ies.

Instance migration Up to now, we have supposed that individual correspondencesare
explicitly enumerated inCij . However in real situation, with thousands of indi-
viduals, one cannot expect to pre-compile all the individual mappings. However,
the formalism support a more compact approach of declaring individual correspon-
dences via a translation functionfij , defined on the domain of the source ontology
i and producing individuals in the domain of target ontologyj. For example,fij

can be the identity function, hence its application yields all instances fromKi to be

4 To give an intuition of the effect of non functional individual mappings,consider the case in

which there are two into-bridge rulesi : C1

⊑
−→ j : D1 andi : C2

⊑
−→ j : D2 and, the

non functional set of individual mappings{i : a 7−→ j : b, i : a 7−→ j : c}. Then the fact
thatKi |= C1 ⊔C2(a) entails the disjunctive assertion(D1(b)∧D1(c))∨ (D2(b)∧D2(c)).
This implies that, for the general case we have to introduce the technicalities for disjunctive
A-boxes



copied toKj . Such an approach is practically applicable to the instancemigration
scenario described in the introduction.

Once a translation functionfij is defined, we can revisit propagation pattern (2):

i : (C1 ⊔ . . . ⊔ Cn)(a), i : Ck
⊑
−→ j : Dk (1 6 k 6 n)

j : (D1 ⊔ . . . ⊔ Dn)(fij(a))
(4)

This later means that a fresh individualfij(a) is injected intoKj and asserted as an
instance of the disjunction of theDk ’s.

3.2 Soundness and completeness

To demonstrate the correctness and completeness of the inference pattern presented in
Section 3.1, we follow the approach similar to the one taken in [15]. The main idea con-
sists in construction of an operator which essentially applies the generalized inference
pattern (2) to extend knowledge bases with new assertions induced by mappings.

Given a set of bridge rulesB12 and set of individual correspondencesC12 fromK1

toK2, theindividual correspondence operatorC12(·), taking as input a knowledge base
K1 and producing an A-box ofK2, is defined as follows:

C12(K1) =







(D1 ⊔ . . . ⊔ Dn)(b)

∣

∣

∣

∣

∣

∣

K1 |= (C1 ⊔ . . . ⊔ Cn)(a)

1 : Ck
⊑
−→ 2 : Dk ∈ B12 (1 6 k 6 n)

1 : a 7−→ 2 : b ∈ C12







It is remarkable thatonto-bridge rules do not affect instance propagation. The reason is
that onto-bridge rules impose only existence of preimages of objects that already exists
in the target ontology. Into-bridge rules, instead, constraint the individual mappings to
be defined whithin a certain range. The individual correspondence operator formalizes
the assertional knowledge that is propagated across ontologies.

The characterization of the propagation of the terminological knowledge is charac-
terized by an analogous operator, calledbridge operator, introduced in [15] and defined
as follows:B12(·), taking as input a knowledge baseK1 and producing a T-box ofK2:

B12(K1) =











B ⊑ D1 ⊔ . . . ⊔ Dn

∣

∣

∣

∣

∣

∣

∣

T1 |= A ⊑ C1 ⊔ . . . ⊔ Cn

1 : Ck
⊑
−→ 2 : Dk ∈ B12 (1 6 k 6 n)

1 : A
⊒
−→ 2 : B ∈ B12











With the remarkable exception of inconsistency propagation—by rule (3)—the individ-
ual correspondences do not affect the propagation of terminological knowledge. The
inferences formalized by the two operators described abovecompletelydescribe the
possible propagations that are forced by a set of bridge rules and individual correspon-
dences. This is formally stated in the following theorem.

Theorem 1 (Soundness and completeness).LetK12 be a distributed knowledge base
consisting ofK1, K2 SHIQ knowledge bases, andB12, C12 mappings between them.
For any statementφ (of the formC ⊑ D or C(a)) in the language ofK2

K12 |= 2 : φ ⇐⇒ 〈T2 ∪ B12(K1), A2 ∪ C12(K1)〉 |= φ



The proof of the generalization of the Theorem 1 is fully described in the technical
report. Some remarks are necessary.

Independence between terminological and assertional propagation From the char-
acterization above, one can see that propagation of terminological and assertional
knowledge are orthogonal. The two effects can be computed inparallel and inde-
pendently. What is more important, however, is that the change of the A-box does
not affect the propagation of the terminological knowledge. This means that if the
source T-box does not change the terminological propagation is computed once for
all.

Local propagation of assertional knowledgeAssertional propagation operator ensures,
if a change of the source A-box involves only the set of individuals{a1, . . . , an},
then assertional propagation must be computed only for the portion of the target
A-boxA2 concerning the set of individuals{b | 1 : ai 7−→ 2 : b ∈ C12}.

Upper bound and complexity If the mapping from1 to2 is finite and containsm into-
bridge rules,n onto-bridge rules, ando individual correspondences, then the bridge
operatorB12 applied to any knowledge base generates at mostn ∗ 2m subsump-
tion statements, and the individual correspondence operator C12 generates at most
o∗2m instantiation statements. In total, the maximal number of statements that can
propagate fromK1 to K2 via mappings is(n + o) ∗ 2m. Since the propagation of
statements needs checking subsumption and instantiation in the source knowledge
base, which is EXPTIME complete, we have that computing subsumption and in-
stantiation in a distributed setting is EXPTIME complete in the dimension of the
source knowledge base plus mappings.

Vanilla implementation The above theorem supports a vanilla implementation offor-
ward chaininginference engine for DDL. The implementation consists of three
steps: computation of propagation operatorsB12(K1) andC12(K1), construction
of extended version of knowledge baseK2 as 〈T2 ∪ B12(K1), A2 ∪ C12(K1)〉,
and finally applying to this knowledge base one of existing DLreasoners, such
as FaCT++ [18], Racer [10], or Pellet [17].

This approach to reasoning has a strong advantage of reuse ofexisting highly opti-
mized DL reasoners, however it can be very costly for situations when semantic map-
pings are changed dynamically or when the required number ofreasoning questions to
be verified is relatively small. In the next section, we propose an alternative,backward
chainingreasoning approach, which does “lazy”, or on demand, computation of propa-
gated axioms and hence better fits to instable and short-living distributed environments.

3.3 Distributed tableaux algorithm

In this section we present a distributed tableaux algorithmfor reasoning with instances
in DDL. The main design idea consists in constructing a network of standard DL
tableaux, one for each ontology in DDL, which communicate via mappings in a back-
ward fashion.

Since we restricted the expressivity of ontologies participating in DDL toSHIQ
DL, we will consider in the following that ontologiesK1 andK2 from a distributed



knowledge baseK12 = 〈T12,A12〉 are attached withSHIQ-tableau reasoning proce-
duresTab1 andTab2 [13]. Due to the reduction of reasoning with concepts to reasoning
with instances [2], we suppose that each procedureTabi(α) can check the satisfiability
of any statementα of form i : C ⊑ D, i : C(a).

As described in [13], theSHIQ-tableau works on a so called “completion for-
est”, a collection of trees whose root nodes correspond to instances in A-box. Given a
knowledge base, the algorithm initializes a completion forestF with a set of root nodes
x0 = {xk

0} corresponding to a set of instancesbk in A-box, labels eachxk
0 with a set

L(xk
0) of conceptsC for each concept assertionC(bk) in A-box, and finally draws an

edge betweenxk
0 andxm

0 for each role assertionR(hk, hm) in A-box. After that, the
set ofSHIQ completion rules expanding the forestF is applied. The fully expanded
forest then represents a model of the knowledge base. To testentailment of arbitrary
assertionX(a), ¬X(a) is added to A-box and further the tableau is expanded to see
whether a model of such knowledge base can be constructed or not.

To accommodate the knowledge propagation fromK1 to K2 in K12, we intervene
in the completion process ofTab2 in order to capture new facts induced by bridge rules
and individual correspondences. Hence, we get adistributed tableaux procedureDTab2

which extendsTab2 with two additional expansion rules:

C12-rule:

if 1. x ∈ x0, such thatx is a node corresponding to individualb and1 : a 7−→ 2 : b,

H ⊆ {Hk | 1 : Bk
⊑
−→ 2 : Hk ∈ B12},

B = {Bk | Hk ∈ H, 1 : Bk
⊑
−→ 2 : Hk ∈ B12},

2. Tab1((
⊔

B) (a)) = true for
⊔

H 6∈ L(x),
then L(x) −→ L(x) ∪ {

⊔

H}

B12-rule:

if 1. G ∈ L(x), such that1 : A
⊒
−→ 2 : G ∈ B12,

H ⊆ {Hk | 1 : Bk
⊑
−→ 2 : Hk ∈ B12},

B = {Bk | Hk ∈ H, 1 : Bk
⊑
−→ 2 : Hk ∈ B12},

2. Tab1(A ⊑
⊔

B) = true for
⊔

H 6∈ L(x),
then L(x) −→ L(x) ∪ {

⊔

H}

The principle idea of these additional expansion rules consists in implementing
backward versions of bridge and individual correspondences operators introduced in
Section 3.2. According to ruleC12, if DTab2 encounters a root nodex connected by an
individual correspondence, then a disjunction of concepts

⊔

H should be added to the
labelL(x) if

⊔

H(x) is entailed by interaction of individual correspondence with into-
rules. To determine this entailment,DTab2 remotely requests foreignTab1 to check if
it is the case that

⊔

B(b) in K1.
The role ofB12-rule is to analyse the nodes of completion forest and importcon-

sequences of subsumption propagations. IfDTab2 encounters a nodex which contains



a labelG connected by an onto-bridge rule, then ifG ⊑
⊔

H is entailed by the bridge
rules, the label

⊔

H is added tox. While in order to determine the entailment,DTab2

invokes the procedureTab1 with a question whether a subsumptionA ⊑
⊔

B holds in
K1.

Graphically, the distributed execution ofDTab2 can be depicted as follows:

Tab1(Θ)

y1
0 y2

0
. . .

yn
0

Tab1(Φ)

z1
0 z2

0
. . .

zn
0

Tab1(Ω)

w1
0 w2

0
. . .

wn
0

. . .

DTab2(α)

x1
0 x2

0
. . .

xm
0

x

C12

C12

B12

Theorem 2 (Termination, Soundness, Completeness).GivenSHIQ DL knowledge
basesK1 andK2, letK12 = 〈〈{T1, T2},B12〉 , 〈{A1,A2},C12〉〉 be a distributed knowl-
edge base. Then, given aSHIQ statementα

1. a distributed procedureDTab2(α) terminates, and
2. α is satisfiable inK2 with respect toK12 if and only ifDTab2(α) yields a complete

and clash-free completion forest.

It can be shown that the proposed algorithm enjoys generalization to arbitrary num-
ber ofSHIQ knowledge bases participating in DDL, and moreover can be extended
to distributed knowledge bases containing cyclical pathesof bridge rules and individual
correspondences. For the sake of clarity, we omit the discussion of these generalizations
and refer the reader to the technical report [16] for details.

4 Implementation and Application

In this section we first outline the implementation of the distributed tableaux procedure
on top of the DRAGO DDL Reasoner; second we describe its application to a problem
of instance migration between heterogeneous ontologies.
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Fig. 2.DRAGO Architecture

4.1 DRAGO DDL Reasoner

DRAGO DDL Reasoner implements a peer-to-peer architecturefor reasoning with a
set of ontologies{Oi}i∈I interconnected by semantic mappings{Mij}i6=j∈I . The prin-
cipal component of DRAGO is theDRAGO Reasoning Peer, or shortly DRP. Each
DRP P can host a setOP = {Oi}i∈IP

(whereIP ⊆ I) of ontologies, and a set of
mappingsMP = {Mij}i∈I,j∈IP

incoming intoOP . Mappings can come both from
ontologies of the peerP , or from ontologies of other peers. Each DRPP supports both
local anddistributedreasoning tasks on each ontology inOP . Local reasoning tasks
are standard DL reasoning tasks defined on one single ontology. Distributed reasoning
tasks are those defined on the distributed knowledge base induced by the ontologies and
mappings managed by all the DRP’s. When the DRPP executes a distributed reasoning
task on an ontology with mappings coming from another peerQ, P submits the reason-
ing sub-tasks toQ. Figure 4.1 sketches the overall architecture of DRAGO and displays
principle components forming the Reasoning Peer.

The Reasoneris the central component of DRP. It is implemented by extending a
standard tableaux based DL reasoner with additional completion rules that implements
the distributed reasoning. DRAGO is based on the Pellet reasoner, an open-source Java
implementation of tableau for reasoning with OWL ontologies[17]. In accordance with
algorithm presented in Section 3.3, these new completion rules comprise the bridge rule
and individual correspondence. Due to the remark to Theorem1 on independence of
terminological and assertional propagation, we reused thebridge completion rule from
available purely terminological version of DRAGO, and implemented an individual
completion rule, new due to the present paper.



Practically, DRAGO works with ontologies represented in OWL[3] and semantic
mappings encoded in C-OWL [5]. Syntactically, C-OWL extends OWL with constructs
for specification of semantic mappings, while semanticallyit is founded on the pre-
sented DDL framework.

4.2 Execution of migrations with DRAGO

In the following we describe how to use DRAGO to execute the task of instance mi-
gration between heterogeneous ontologies. Given a source ontology Os and a target
ontologyOt, the task of instance migration fromOs to Ot can be encoded into the
following steps:

1. Match concepts ofOt with concepts ofOs and then encode discovered semantic
relations into a setBst of bridge rules betweenOt andOs. This task can be done
manually or with the help with some (semi-)automatic ontology matcher.

2. Choose a translationfst from individuals ofOs to individuals ofOt, and generate
the set of individual correspondencesCst = {s : x 7−→ t : fst(x)|x individual ofOs}.
The simplest case of translation function is the identity function, when exactly the
same set of individuals ofOs are included into the target ontologyOt. However,
this is not always the case. E.g., ifOs andOt follow different naming conventions,
then individuals ofOs are needed to be renamed in accordance with rulesOt.

3. Instantiate DRAGO Reasoning PeerDRPs for Os andDRPt for Ot with semantic
mappingBst ∪ Cst.

4. AskDRPt to classify translated individuals in accordance withOt.

4.3 Experimental run

To see the instance migration in work and get the practical impression from the im-
plemented distributed tableaux, we emulated and executed the motivating scenario de-
scribed in the introduction. As a source of instances, we used a publicly available ontol-
ogy populated with data on publications at the Semantic Web Conference5. To evidence
the correctness of migration, as a target ontology we used a source ontology with all
instance data removed from it. As required, the establishment of into-bridge rules be-
tween the same concepts of source and target and the application of identity function
to translation of source ontology instances yields the exactly the same classification of
migrated instances in target ontology.

Besides the correctness, the performed practical run demonstrated the necessity of
developing optimization strategies for completion of distributed tableaux for instance
migration. This is due to the relatively slow speed of migration (e.g., the reclassification
of 50 instances of the selected source ontology through 30 established into-bridge rules
takes around 5 minutes). The slow speed is a consequence of the necessity to consider
all possible disjunctions of concepts connected by into-bridge rules when completing
distributed tableaux. In the next study, we investigate possible optimization strategies
for reducing the amount of disjunctions to be considered to still guarantee the complete
reasoning result.

5 http://annotation.semanticweb.org/iswc/iswc.owl



5 Related Work

The problem of heterogeneity is one of the crucial issues to be resolved on the semantic
web. This explains the big research interest to devising frameworks capable of rep-
resenting and reasoning with multiple ontologies interrelated by semantic mappings.
While DL is already a standard for working with web ontologies, the question of for-
mal representations and reasoning with mappings is still a subject to the standardization.
Hence, multiple frameworks co-exist.

In OntoEngine[7], the authors address the problem of translating instances from
a source ontology into a heterogeneous target. In their approach mappings between
ontologies are represented using the same primitives as forencoding knowledge within
ontologies themselves, i.e., using “subClassOf”,“subPropertyOf”, etc. axioms. The rea-
soning with mapping is based on idea of merging ontologies together with the mappings
into a single ontology, in which further the standard reasoner can execute instantiation
queries over vocabulary of target ontology. The main drawback of this approach is its
strong centralization, which is not typically affordable on the web.

In contrast, theSomeWhere[9] targets a question of decentralized approach to
querying heterogeneous ontologies. Similarly toOntoEngine, mappings inSomeWhere
has a form of a subsumption statements, but the reasoning is based on rewriting tech-
niques for combining reasoning over heterogeneous ontologies. The big advantage of
the presented approach is its scalability, while the disadvantage is its limitation to a
“propositional” ontologies, containing only disjunction, conjunction and negation.

Another recent example of decentralized infrastructure for querying distributed on-
tologies isKAONp2p[11, 12]. The authors adopt the approach of [6] to express map-
pings as correspondences between conjunctive queries overontologies. The querying
further requires the terminologies and mapping to be mergedinto a single global ontol-
ogy, while instance data is then retrieved from distributedinstance storages.

The recent study of query answering indistributed description logicshas been pro-
posed in [1]. The main idea consist in constructing a closureontology by forward prop-
agating, via DDL mappings, relevant axioms contained in other mapped ontologies (in
a vein of vanilla implementation of DDL reasoner discussed in the current study). Do-
ing so, further enables reformulation of distributed queryanswering problem into local
query answering. Although the approach of [1] is sound, the authors point out the in-
completeness of their study.

Another important framework isE-connections[14]. Original purpose ofE-connections
is to aggregate ontologies that model different (non-overlapping) aspects of the world,
rather then integrate those overlapping as in DDL. Nonetheless, it has been shown in
[14] that mathematically DDL constructs can be simulated inE-connections, however
sacrificing the directionality of knowledge propagation. Another difference concerns
with reasoning approach. In contrast to distributed coordinating tableaux in DDL, inE-
connections a global tableau, both theoretically and practically, needs to be constructed.

6 Conclusion

In the present study, we investigated a task of correct and complete migration of in-
stances of one ontology into another heterogeneous ontology. We formally grounded



our approach on DDL framework, which allowed us to instantiate the problem of migra-
tion into the problem of reasoning with instances in DDL distributed knowledge base.
We theoretically formalized this inference and defined the distributed tableau algorithm
for reasoning with multipleSHIQ DL onotlogies. Do demonstrate the feasibility, we
implemented the preliminary version of the algorithm in DRAGO Reasoner and applied
it to a simple migration task.
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