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Abstract. In this paper we address the problem of migrating instances between
heterogeneous overlapping ontologies. The instance migration problses a
when one wants to reclassify a set of instances of a source ontologysatnan-
tically related target ontology. Our approach exploits mappings betweaeioen
gies, which are used to reconcile both conceptual and individual letetdgene-
ity, and further used to draw the migration process. We ground the agpian

a distributed description logic (DDL), in which ontologies are formally emcbd
as DL knowledge bases and mappings as bridge rules and individuespon-
dences. From the theoretical side, we study the task of reasoning withdasta
data in DDL composed a$ HZ Q ontologies and define a correct and complete
distributed tableaux inference procedure. From the practical sidepgrade the
DRAGO DDL reasoner for dealing with instances and further show hoanit®
used to drive the migration of instances between heterogeneous ongologie

1 Introduction

The semantic web steadily evolves growing into a contaihemdtiple distributed on-
tologies. Although ontologies are supposed to provide aeosual model of the world,
those found in practice are far from being so. They rathenédize a subjective view in
accordance with diverse assumptions, such as target gualgble background knowl-
edge, biases, etc. This fact inevitably leads to a situatiawhich the same domain is
represented by more than one ontologh@terogeneouways.

The classical approach to the problenmrexfonciling heterogeneityetween ontolo-
gies consists of two essential steps: matching and reggsdBymmatching one creates a
set ofmappings—comprising semantic correspondences—between elemeniffenf d
ent ontologies. For example, a mapping can express thénttdhie concepbcholar in
one ontology is equivalent to the conc&ttident in another ontology, or that the indi-
vidual Samuel Clemens in one ontology corresponds to the individiérk Twain in
the other ontology. Mappings can be created manually, byadoexperts, or discovered
(semi-)automatically by existing matching techniques (hce mappings are stated, it
is necessary to provide a method feasoningwith them. Formally, this amounts to
evaluating logical consequences of mappings on the mappetbgies.

Mappings form a source to a target ontology can be used tsfamknowledge
between the two ontologies. When ontologies are represent@d/L (formally corre-
sponding to DL knowledge bases) there are two types of krdyelehat can be trans-
ferred: terminological knowledge (i.e., mappings can éanew concept subsumptions



in the target ontology) and assertional knowledge (i.e ppirays can assert new in-
stances of a certain concept). To motivate and explain toklgm, let us consider a
scenario in which ontology mappings are used for migratirsgainces.

Example 1 (Motivating scenariof computer science department of some university
employed an ontology)©S PeP* for accessing data related to organization of the de-
partment. Successively, a human resource office of the rgailyelecides to make use
of ontologies to represent data about the employees of tlebewniversity. For this
purpose they create an ontolo@y'R° U" and further populate it with instance data.
To save time, they decide to reuse the work done by the comgcitence department.
However, to do that they need to solve the following two peofd. First, the concep-
tualization inOHRO Ui is different from the one irOCSPePt, so the classification of
instances done iW®S PeP must be adapted to the classification schema implemented
in OHRO Uni _second, the identifiers useddfs PPt for people do not coincide with the
identifiers used iR YN thus they have to provide a way to transform (regenerate)
identifiers of the people they want to insert in their ontglog

The main objective of the paper is to provide a logical chiaézation of the as-
sertional information enforced by a set of mappings. Basetthis characterization, we
propose a sound and complete distributed tableaux algothhat reclassifies instances
of a source ontology into a target ontology in accordanc&¢éonmtappings. The feasi-
bility of this approach is shown by describing the implenagioh of such an algorithm
in the DRAGO DDL Reasonér The approach described in the paper, relies on the
logical framework of distributed description logics (DD[4)]. In such a framework a
distributed knowledge basmnsists of a family of standard DL knowledge bases, cor-
responding to each given ontology, a sebatige rules corresponding to mapping be-
tween pairs of terminologies (T-boxes), andividual correspondencesorresponding
to rules for transforming individuals across instanceagdes (A-boxes). The concrete
contribution of the present work includes:

— characterization of the role that bridge rules and indigidtorrespondences play
when reasoning with instances in DDL; in particular, we stioat they are capable
of propagating concept membership assertions acrossogigsl

— definition of a sound and complete distributed extensioSHY Q-A-box tableau
for reasoning with instances in DDL,; the algorithm implensghe backward chain-
ing strategy for computation of propagated assertionsdtyibuted communication
with DL tableaux reasoners attached to other ontologies

— extending the DRAGO DDL Reasoner, currently limited to oeasg without in-
stances, with the algorithm proposed in this paper anddéuhowing its applica-
tion to drive instance migrations.

The paper is organized as follows. In Section 2 we introdheedefinition of a
DDL distributed knowledge base with bridge rules and irdiii&l mappings. In Section
3 we study how bridge rules and individual mappings propagabrmation across
knowledge bases. The implementation in DRAGO and the agtjiic to the instance
migration scenario is further outlined in Section 4. We epdwith an overview of
related work and concluding remarks.

Yhttp://sra.itc.it/projects/drago



2 Distributed Knowledge Bases

As introduced by Borgida and Serafini in [4], DDL is a formadigor representing
multiple ontologiegairwiseinterconnected by directional semantic mappings. In this
section we recall and extend the basic definitions of DDL.

2.1 Syntax and Semantics

A distributed knowledge base formalizes a set of ontoloigitesconnected by semantic
mappings. The first component of a distributed knowledge lima family of knowl-
edge base& = {K,}.c;. According to a standard DL definitions, eakh consists
of a terminological componerif; (T-box) and an assertional componetit (A-box).
Since the very same symbol can be used in two knowledge batedifferent mean-
ing, to unambiguously refer to elements /6f, they are prefixed with the indexof
the knowledge base. The notationsa i : C,i: C C D, i : C(a) andi : R(a,b),
stand for an individuat, concepC, subsumptior C D, assertion§’(a) andR(a, b),
respectively in the knowledge bakg.

Mappings from/C; to K; knowledge bases withi & ;) are encoded as bridge rules
and individual correspondences, which are expressiorteedbilowing forms:

—i:C =5 j: D (into-bridge rule)
—i:C 2 j = D (onto-bridge rule)
—1:a +— j:b (individual correspondence)

whereC andD are concept names @f and7;, anda andb are individuals ot4; and
A; respectively.

Both bridge rules and individual correspondences f#io IC; express relations
betweent’; and/C; viewed from thej-th subjectivepoint of view. Intuitively, the into-

bridge rulei : PhDThesis £ j : Thesis states that, from thg-th point of view
the concepPhDThesis in i is less general than its local concdptesis. Similarly,

the onto-bridge rule : InProceedings = j : ConferencePaper expresses the
more generality relation. The individual correspondencemario_phd_thesis ——
J : mario_thesis expresses the fact thd;’s individual mario_thesis is one of the
possible translations in the language@fof the.A;’s individual mario_phd_thesis. In
the general case we admit that an individual can have moreatha translation.

A distributed T-box¥ consists of T-boxeg; and a collections of bridge rules be-
tween them. Alistributed A-boxX( consists of A-boxesl; and a collection of individual
correspondences. A distributed knowledge baseis then a tupldT, 2().

The semantics of DDL is defined with a fundamental assumkiaheach knowl-
edge baséC; in the family islocally interpretedon itslocal interpretation domainTo
support directionality, (i.e., mappings franto j only propagate in théto-j-direction),

2 In this work we concentrate only on individual correspondencesgdand consider complete
correspondences which does not have any additional effect in dgttation



Fig. 1. Visualized semantics of DDL framework

we admit the hole interpretaticf with empty domain (see more details in [15]By
definition, we impose thaf. satisfies any knowledge base. To resolve heterogeneity
between different domains the DDL defines a bindoynain relationr between pairs
of these domains. Figure 1 intuitively depicts componeatnents of DDL semantics.

A distributed interpretatiorii of a distributed knowledge base= (%, 2() consists
of a family of local interpretationg; on local interpretation domaind?: and a family
of domain relations;; C A% x A%i between pairs of local domains.

A distributed interpretatio¥ satisfiesa distributed knowledge base= (T, 2l), is
called a model oR, if all its’ components are satisfied according to the follogwules:

— 7, satisfiesC;

—ry;(CT) D DTiforalli: C = j: D
— r;(CTyC DZiforalli: C = j: D
— b5 Crij(a®i) foralli:a — j:b

2.2 Inference services

Although both in DL and Distributed DL the fundamental regisg services lay in ver-
ification of concept satisfiability/subsumption and inseehecking/retrieval within a
certain ontology, in DDL, besides the ontology itself, thtbey ontologies and map-
pings between them should be taken into account. Given abditgd knowledge base
£ = (%, ), thedistributed inference servicesin be defined as follows:

3 Classically, DL interpretation maps every individual into elementof the domain, while
the hole maps everything into the empgt To allow homogeneous treatment of standard
DL interpretations and holes, we require that any individuga standardly interpreted into a
singleton set, rather than into an element of the domain. HéRde, C(a) <~ ati C CF,
rather tham®: € C%. We thank the anonymous reviewer for pointing at this mismatch



Satisfiability: A conceptC is satisfiablein i with respect taR if there exists a dis-
tributed interpretatio¥ of & such thatCZ: # ().

Subsumption: A conceptC' is subsumedby a conceptD in i with respect tog if for
every distributed interpretatioh of & we have thatCZi C DZ:. In this case we
willwrite R =i: C C D.

Instantiation: An individual a is aninstance ofa conceptC in ¢ with respect toR if
for every distributed interpretatidhof £ we have that?: C C%:. In this case we
will write R =i : C(a).

Retrieval: Computing the individuals ifC; that instantiate a given conceptin ¢ with
respect taR.

The group of concept satisfiability/subsumption servieetypically referred to as
terminological reasoning services, while the remainirgidntiation/retrieval services
are grouped into assertional reasoning services.

The question of providing terminological services for DDashbeen already stud-
ied in [15]. It has been shown that certain combinations tif-iand onto-bridge rules
can lead to the propagation of knowledge in form of subsumnpkioms across ontolo-
gies participating in DDL. Moreover, in case of DDL wii{Z Q components without
instances adding these additional propagation rules &tiegiDL tableaux algorithms
leads to a correct and complete reasoning in DDL. The predanéethod has been also
implemented in the DRAGO DDL reasoner.

In the consequent sections, we investigate the assertieasbning services.

3 Reasoning with Instances in Distributed Knowledge Bases

For the sake of clarity, we start considering the case of Dith two component knowl-
edge bases and unidirectional sets of bridge rules andidhdilvcorrespondences. For
the general results and proofs we refer the interested réatiee technical report [16].

3.1 Inference patterns

In the following we characterize the knowledge propagatechfa knowledge base
(the source) tg (the target) by a set gfropagation rulesof the form:

(1) facts ini, (2) bridge rules from to j, (3) individual mappings fromi to j
(4) factiny

which must be read as: if the facts in (1) are truekin the bridge rules in (2) are
contained in3;;, the individual correspondences in (3) are contained;jnthen the
fact in (4) must be true iiC;.

Following the semantics of mappings in DDL outlined in theypous section, it
can be observed that the individual correspondences caraattwith into-bridge rules
with the effect of propagating concept membership assestio

i:C(a), i:C’ij:D, i:a—j:b @
J:D(b)




Indeedp?i C rij(azi) C 1y (C*) C D%,
In practice, this means that if an ontolo@y defines an instanamario of a con-
ceptPhDStudent, and an ontology), has some individual namgerson_123, then

a bridge rulel : PhDStudent £, 9. Student and an individual correspondence
1 : mario — 2 : person_123 entail theO-’s assertion thaperson_123 is an in-
stance ofStudent.

In languages that support disjunction, the above propagatn be generalized to
the propagation of instance membership over a disjunctien® 0 concepts:

i:(C1U...UCy)(a), i:Ckij:Dk(lékgn), irar—j:b )
Jj:(D1U...uD,)(b)

Several observations on the stated propagation pattenireeg specific attention.

Generality Rule (2) appears to be thmost generaform of assertion propagation in
DDL when individual correspondences are restricted tfubetional A set of indi-
vidual correspondence; is functional if for every individuak of A; the setg;;
contains at most one individual correspondeince — 5 : b. For the sake of pre-
sentation, in this paper we restrict ourself to functiondividual correspondences,
leaving the most general case to the technical report{16])

Inconsistency propagation Whenn = 0, the inference pattern in (2) becomes the
following inference rule:

i:1l(a), i:ar—j:b
710 ®)

which states that to propagate the inconsistenciCofo K; it's enough to have
one single individual correspondence. From the representd point of view this
inference rule is very fragile. We currently do not see ary eadution to fix this
sensitivity to inconsistency propagation. This topic Ww#l subject for further stud-
ies.

Instance migration Up to now, we have supposed that individual correspondearees
explicitly enumerated ir¢;;. However in real situation, with thousands of indi-
viduals, one cannot expect to pre-compile all the individuappings. However,
the formalism support a more compact approach of declanidigidual correspon-
dences via a translation functigf);, defined on the domain of the source ontology
¢ and producing individuals in the domain of target ontolggyror example f;;
can be the identity function, hence its application yieldignatances froniC, to be

4 To give an intuition of the effect of non functional individual mappingsnsider the case in
which there are two into-bridge rulés: C, £ j: Dyandi: Cy = j : Dy and, the
non functional set of individual mappind$ : a — j : b, i : a — j : c}. Then the fact
thatC; = C1 U C2(a) entails the disjunctive assertid®, (b) A D1(c)) V (D2(b) A D2(c)).
This implies that, for the general case we have to introduce the technicatitidssjunctive
A-boxes



copied tokC;. Such an approach is practically applicable to the instamigeation
scenario described in the introduction.

Once a translation functiofi; is defined, we can revisit propagation pattern (2):

i (ChU...UCW)(a), i:Ck—>j:Dp(1<k<n) 4
j: (D1 U...d Dn)(fm(a))
This later means that a fresh individu&) («) is injected intoC; and asserted as an
instance of the disjunction of thig;’s.

3.2 Soundness and completeness

To demonstrate the correctness and completeness of thierinéepattern presented in
Section 3.1, we follow the approach similar to the one takda%]. The main idea con-
sists in construction of an operator which essentially i@gpthe generalized inference
pattern (2) to extend knowledge bases with new asserticheéd by mappings.

Given a set of bridge rule® 5 and set of individual correspondenags from £y
to K, theindividual correspondence operat@i,(-), taking as input a knowledge base
K1 and producing an A-box df,, is defined as follows:

KiE(CLU...UC)(a)
1:Cy = 2: D eB(1<k<n)

@12(’C1) = {(D1 I_Ian)(b)
l:a ——2:b €€y

It is remarkable thabnto-bridge rules do not affect instance propagation. The re&so
that onto-bridge rules impose only existence of preimadedjects that already exists
in the target ontology. Into-bridge rules, instead, caristrthe individual mappings to
be defined whithin a certain range. The individual corresleoce operator formalizes
the assertional knowledge that is propagated across gjigslo

The characterization of the propagation of the terminaalgknowledge is charac-
terized by an analogous operator, caltedige operatoyintroduced in [15] and defined
as follows:%B15(+), taking as input a knowledge bakg and producing a T-box df,:

TTEACCHU...UC,
%12(/C1): BCDyU...uD, le£>2Dk€‘Bu(1<k<n)
1: A4 i 2:B €98y
With the remarkable exception of inconsistency propagatiby rule (3)—the individ-
ual correspondences do not affect the propagation of tedogical knowledge. The
inferences formalized by the two operators described albovepletelydescribe the

possible propagations that are forced by a set of bridgs an€ individual correspon-
dences. This is formally stated in the following theorem.

Theorem 1 (Soundness and completenesgkt &2 be a distributed knowledge base
consisting ofCy, K2 SHZQ knowledge bases, a5, €12 mappings between them.
For any statemenyp (of the formC' C D or C(a)) in the language oK

ﬁlg ':2(23 s <’T2U%12(’C1), A2U€12(IC1)> ':¢



The proof of the generalization of the Theorem 1 is fully dixd in the technical
report. Some remarks are necessatry.

Independence between terminological and assertional pr@mation From the char-
acterization above, one can see that propagation of tetogjival and assertional
knowledge are orthogonal. The two effects can be computediallel and inde-
pendently. What is more important, however, is that the charighe A-box does
not affect the propagation of the terminological knowledbieis means that if the
source T-box does not change the terminological propagaticomputed once for
all.

Local propagation of assertional knowledgeAssertional propagation operator ensures,
if a change of the source A-box involves only the set of irdlinls{a, ..., a,},
then assertional propagation must be computed only for ¢tinéop of the target
A-box A, concerning the set of individual® | 1 : a; — 2 : b € €5}

Upper bound and complexity If the mapping fromi to 2 is finite and contains: into-
bridge rulesy onto-bridge rules, andindividual correspondences, then the bridge
operatorB,, applied to any knowledge base generates at mes2™ subsump-
tion statements, and the individual correspondence apetat generates at most
o* 2™ instantiation statements. In total, the maximal numbetatesnents that can
propagate fronk; to Ky via mappings ign + o) * 2. Since the propagation of
statements needs checking subsumption and instantiatitwe isource knowledge
base, which is EPTIME complete, we have that computing subsumption and in-
stantiation in a distributed setting isXETIME complete in the dimension of the
source knowledge base plus mappings.

Vanilla implementation The above theorem supports a vanilla implementatidoref
ward chaininginference engine for DDL. The implementation consists oé¢h
steps: computation of propagation operat#s, (K1) and€;5(K1), construction
of extended version of knowledge bakg as (75 U B15(K1), Az U E12(Kq)),
and finally applying to this knowledge base one of existing i@asoners, such
as FaCT++ [18], Racer [10], or Pellet [17].

This approach to reasoning has a strong advantage of reesésting highly opti-
mized DL reasoners, however it can be very costly for situetivhen semantic map-
pings are changed dynamically or when the required numbeasioning questions to
be verified is relatively small. In the next section, we pregpan alternativdgackward
chainingreasoning approach, which does “lazy”, or on demand, coatioutof propa-
gated axioms and hence better fits to instable and shongldistributed environments.

3.3 Distributed tableaux algorithm

In this section we present a distributed tableaux algoriidineasoning with instances
in DDL. The main design idea consists in constructing a ndtwaf standard DL
tableaux, one for each ontology in DDL, which communicatemiappings in a back-
ward fashion.

Since we restricted the expressivity of ontologies paytiting in DDL toSHZ Q
DL, we will consider in the following that ontologies; and X from a distributed



knowledge bas&;, = (%12,2,2) are attached witlsHZ O-tableau reasoning proce-
duresTab; andTab, [13]. Due to the reduction of reasoning with concepts tosaag)
with instances [2], we suppose that each proce@alg(«) can check the satisfiability
of any statement of formi : C C D, i : C(a).

As described in [13], th&&HZ O-tableau works on a so called “completion for-
est”, a collection of trees whose root nodes correspondstamees in A-box. Given a
knowledge base, the algorithm initializes a completioe$t# with a set of root nodes
xo = {z£} corresponding to a set of instandgsin A-box, labels eachf with a set
L(zk) of conceptsC for each concept asserti@ryb,) in A-box, and finally draws an
edge between"g andz{ for each role assertioR(hy, h.,) in A-box. After that, the
set of SHZ Q completion rules expanding the foreBtis applied. The fully expanded
forest then represents a model of the knowledge base. Tern&stment of arbitrary
assertionX (a), =X (a) is added to A-box and further the tableau is expanded to see
whether a model of such knowledge base can be constructest.or n

To accommodate the knowledge propagation fiémto o in K12, we intervene
in the completion process &b, in order to capture new facts induced by bridge rules
and individual correspondences. Hence, we ghstibuted tableaux procedui@Tab,
which extenddrab, with two additional expansion rules:

C1o-rule:

if 1. x € xq, such that: is a node corresponding to individuadnd1 : a — 2 : b,
H C{H,|1: B, = 2: H, € B},
B :{Bk|Hk€H,1:Bk£>2:Hk€$B12},

2. Tab;((|UB) (a)) = truefor | |H ¢ L(z),
then L(z) — L(x) U{ |H}

Bo-rule:

if1. G € £(z),suchthatl : A =5 2: G € Byo,
H C{H,|1: B, —=2: Hy € By},

B = {By|H,cH,1: B, — 2: Hy, € By},
2. Tab; (A C | |B) =truefor | |H ¢ L(x),
then £(z) — L(z) U {||H}

The principle idea of these additional expansion rules istsisn implementing
backward versions of bridge and individual corresponderaperators introduced in
Section 3.2. According to rulé,,, if DTab, encounters a root nodeconnected by an
individual correspondence, then a disjunction of concgpH should be added to the
label £(x) if | |H(z) is entailed by interaction of individual correspondencénrnito-
rules. To determine this entailmeltTab, remotely requests foreigfab, to check if
it is the case thgt| B(b) in ;.

The role ofB5-rule is to analyse the nodes of completion forest and impant
sequences of subsumption propagationB.Tab, encounters a nodewhich contains



a labelG connected by an onto-bridge rule, theifC | | H is entailed by the bridge
rules, the labe] | H is added tor. While in order to determine the entailmeB(Tab,
invokes the procedurab; with a question whether a subsumptidrC | | B holds in
K.

Graphically, the distributed execution bffab, can be depicted as follows:
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Theorem 2 (Termination, Soundness, CompletenesskivenSHZ Q DL knowledge
basesC; andfCq, letR1o = ({71, 72}, B12) , ({ A1, A2}, €12)) be adistributed knowl-
edge base. Then, givenS#{Z Q statementy

1. adistributed procedurBTab.(«) terminates, and
2. «is satisfiable infCo with respect ta’,, if and only ifDTabs(«) yields a complete
and clash-free completion forest.

It can be shown that the proposed algorithm enjoys genatalizto arbitrary num-
ber of SHZ Q knowledge bases participating in DDL, and moreover can beneed
to distributed knowledge bases containing cyclical patfiésidge rules and individual
correspondences. For the sake of clarity, we omit the dison®f these generalizations
and refer the reader to the technical report [16] for details

4 Implementation and Application

In this section we first outline the implementation of theritisited tableaux procedure
on top of the DRAGO DDL Reasoner; second we describe its eguphin to a problem
of instance migration between heterogeneous ontologies.
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Fig. 2. DRAGO Architecture

4.1 DRAGO DDL Reasoner

DRAGO DDL Reasoner implements a peer-to-peer architedtauresasoning with a
set of ontologieg O; };c interconnected by semantic mappidds;; }:-;cr. The prin-
cipal component of DRAGO is thBRAGO Reasoning Peeor shortly DRP. Each
DRP P can host a se®p = {O;}icr. (Wherelp C I) of ontologies, and a set of
mappingsMp = {M;;}icr,jer, iNncoming intoO p. Mappings can come both from
ontologies of the peeP, or from ontologies of other peers. Each DRRBupports both
local anddistributedreasoning tasks on each ontology@n-. Local reasoning tasks
are standard DL reasoning tasks defined on one single ogtdigtributed reasoning
tasks are those defined on the distributed knowledge basegddy the ontologies and
mappings managed by all the DRP’s. When the DR&Xecutes a distributed reasoning
task on an ontology with mappings coming from another ggeP submits the reason-
ing sub-tasks tq). Figure 4.1 sketches the overall architecture of DRAGO asplalys
principle components forming the Reasoning Peer.

The Reasoneis the central component of DRP. It is implemented by extemdi
standard tableaux based DL reasoner with additional cdiopleules that implements
the distributed reasoning. DRAGO is based on the Pellebreasan open-source Java
implementation of tableau for reasoning with OWL ontolodie4. In accordance with
algorithm presented in Section 3.3, these new completi@s comprise the bridge rule
and individual correspondence. Due to the remark to Thedrem independence of
terminological and assertional propagation, we reusetidge completion rule from
available purely terminological version of DRAGO, and iemplented an individual
completion rule, new due to the present paper.



Practically, DRAGO works with ontologies represented in Oy8lL.and semantic
mappings encoded in C-OWL [5]. Syntactically, C-OWL extend8lOwith constructs
for specification of semantic mappings, while semanticilig founded on the pre-
sented DDL framework.

4.2 Execution of migrations with DRAGO

In the following we describe how to use DRAGO to execute tls& @&f instance mi-

gration between heterogeneous ontologies. Given a somtodogy O, and a target

ontology Oy, the task of instance migration from, to O, can be encoded into the
following steps:

1. Match concepts aof); with concepts of0; and then encode discovered semantic
relations into a seB; of bridge rules betwee®; andO;. This task can be done
manually or with the help with some (semi-)automatic orgglanatcher.

2. Choose a translatiofy; from individuals ofO; to individuals ofO;, and generate
the set of individual correspondencgs = {s : x — t : fs(z)|z individual of O, }.
The simplest case of translation function is the identityction, when exactly the
same set of individuals a; are included into the target ontology;. However,
this is not always the case. E.g.(f andO, follow different naming conventions,
then individuals ofD, are needed to be renamed in accordance with jes

3. Instantiate DRAGO Reasoning Pé2R P for O, andD R P, for O; with semantic
mappingB; U €.

4. Ask DRP; to classify translated individuals in accordance wiith

4.3 Experimental run

To see the instance migration in work and get the practicaréssion from the im-
plemented distributed tableaux, we emulated and exechéshbtivating scenario de-
scribed in the introduction. As a source of instances, wed aggublicly available ontol-
ogy populated with data on publications at the Semantic Wakféence. To evidence
the correctness of migration, as a target ontology we usenii@es ontology with all
instance data removed from it. As required, the establisitimoiinto-bridge rules be-
tween the same concepts of source and target and the ajgplichtidentity function
to translation of source ontology instances yields the tx#te same classification of
migrated instances in target ontology.

Besides the correctness, the performed practical run dstnaded the necessity of
developing optimization strategies for completion of wlgtted tableaux for instance
migration. This is due to the relatively slow speed of migma{e.qg., the reclassification
of 50 instances of the selected source ontology throughta®leshed into-bridge rules
takes around 5 minutes). The slow speed is a consequence wétessity to consider
all possible disjunctions of concepts connected by intdga rules when completing
distributed tableaux. In the next study, we investigatesiids optimization strategies
for reducing the amount of disjunctions to be consideredili@siarantee the complete
reasoning result.

Shttp://annotation.semanti cweb. org/i swe/i swe. ow



5 Related Work

The problem of heterogeneity is one of the crucial issueg tebolved on the semantic
web. This explains the big research interest to devisingéwsorks capable of rep-
resenting and reasoning with multiple ontologies intated by semantic mappings.
While DL is already a standard for working with web ontologitkee question of for-
mal representations and reasoning with mappings is stilbgest to the standardization.
Hence, multiple frameworks co-exist.

In OntoEnging[7], the authors address the problem of translating ingsifiom
a source ontology into a heterogeneous target. In theiroagpr mappings between
ontologies are represented using the same primitives antmrding knowledge within
ontologies themselves, i.e., using “subClassOf”,“subBrtyOf”, etc. axioms. The rea-
soning with mapping is based on idea of merging ontologigsttter with the mappings
into a single ontology, in which further the standard reas@an execute instantiation
queries over vocabulary of target ontology. The main draktud this approach is its
strong centralization, which is not typically affordable the web.

In contrast, theSomeWherg9] targets a question of decentralized approach to
guerying heterogeneous ontologies. SimilarlyttoEngine mappings irSomeWhere
has a form of a subsumption statements, but the reasoniragédion rewriting tech-
niques for combining reasoning over heterogeneous origdoghe big advantage of
the presented approach is its scalability, while the diaathge is its limitation to a
“propositional” ontologies, containing only disjunctiaconjunction and negation.

Another recent example of decentralized infrastructurejeerying distributed on-
tologies isKAONp2p[11, 12]. The authors adopt the approach of [6] to express map
pings as correspondences between conjunctive querient@pgies. The querying
further requires the terminologies and mapping to be meirged single global ontol-
ogy, while instance data is then retrieved from distributetiance storages.

The recent study of query answeringdistributed description logickas been pro-
posed in [1]. The main idea consist in constructing a closatelogy by forward prop-
agating, via DDL mappings, relevant axioms contained ireothapped ontologies (in
a vein of vanilla implementation of DDL reasoner discussethe current study). Do-
ing so, further enables reformulation of distributed quemgwering problem into local
query answering. Although the approach of [1] is sound, titeas point out the in-
completeness of their study.

Another important framework iS-connection$14]. Original purpose of -connections
is to aggregate ontologies that model different (non-agming) aspects of the world,
rather then integrate those overlapping as in DDL. None#i®lit has been shown in
[14] that mathematically DDL constructs can be simulated-iconnections, however
sacrificing the directionality of knowledge propagatiomother difference concerns
with reasoning approach. In contrast to distributed cowting tableaux in DDL, it€-
connections a global tableau, both theoretically and malbt, needs to be constructed.

6 Conclusion

In the present study, we investigated a task of correct antplaie migration of in-
stances of one ontology into another heterogeneous ontoldg formally grounded



our approach on DDL framework, which allowed us to instaatihe problem of migra-
tion into the problem of reasoning with instances in DDL wligited knowledge base.
We theoretically formalized this inference and defined tis&ributed tableau algorithm
for reasoning with multiple&SHZ Q DL onotlogies. Do demonstrate the feasibility, we
implemented the preliminary version of the algorithm in DBR®@ Reasoner and applied
it to a simple migration task.
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