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Abstract. The benefit of light-weight reasoning in ontology matching
has been recognized by a number of researchers resulting in alignment
repair systems such as Alcomo and LogMap. While the general benefit
of logical reasoning has been shown in principle, there is no systematic
empirical evaluation analyzing (i) the impact of completeness of the rea-
soning methods and (ii) whether approximate or optimal solutions to the
conflict resolution problem have to be preferred. Using standard bench-
mark data sets, we show that increasing the expressive power does im-
prove the matching results and that optimal resolution methods slightly
outperform approximate ones.
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1 Introduction

Research in ontology matching has been strongly influenced by earlier results in
schema matching [19]. There are several approaches that aim at being universally
applicable across ontologies and database schemas by relying on a representation
of ontologies and schemas as directed graphs [1]. While various studies have ver-
ified the benefit of explicit, logical schema semantics such as description logics
and logical reasoning (e.g. [17]), there is only a limited number of approaches
that exploit schema semantics to improve matching results in a principled man-
ner. Early approaches exploiting the logical structure of class descriptions were
based on specialized similarity measures that take logical operators into account
(e.g. [2]). Additional methods avoid structural properties that mimic unwanted
reasoning results [6] or require user interaction [18]. More recently, a number of
approaches have been proposed that explicitly use ontological reasoning. Meil-
icke et al., for instance, compute and leverage logical inconsistencies to eliminate
conflicts between alignment hypotheses [11]. A related approach was proposed
by Jiménez-Ruiz et al. [7]. Additional debugging strategies remove incoherent
alignments during a post-processing step [20, 13]. Giunchiglia and colleagues use
reasoning over logic-based representations of class labels but solely focus on the



problem of matching class hierarchies [4]. Most of these approaches exploit re-
stricted forms of reasoning so as to ensure the scalability to large models. While
these approaches demonstrated the benefits of logical reasoning for matching ex-
pressive ontologies, there has not been a systematic investigation of the impact
logical reasoning has on matching results. In particular, it is not obvious whether
more expressive reasoning methods provide more benefits than less expressive
ones. Furthermore, the impact of applying different strategies for resolving de-
tected logical conflicts, has not been analyzed in details. Within this paper we
report about experiments that shed light on both research questions. Another
systematic evaluation is provided in [8], where the authors focus on the need of
debugging and provide a comparison of two debugging systems, while we focus
on completeness and optimality.

The paper is structured as follows. In Section 2 we explain alignment inco-
herence and introduce the notion of completeness and optimality with respect to
alignment debugging. Moreover, we describe three existing debugging systems
that we use in our experiments. We discuss the setting of our experiments in
Section 3 with a focus on data sets and evaluation metrics. The results of these
experiments are presented in Section 4. We close with a discussion in Section 5.

2 Incoherence in Ontology Matching

Ontology Matching is the task of finding correspondences between entities of two
ontologies O1 and O2. According to [3], a correspondence between an entity e1
defined in O1 and an entity e2 defined in O2 is a 4-tuple 〈e1, e2, r, n〉 where r is a
semantic relation (such as equivalence), and n is a real-valued confidence value. A
set of correspondences is called an alignment. In line with most matching systems
and benchmarks, we focus on equivalence correspondences, i.e., (〈e1, e2,≡, n〉),
where the matched entities are either both classes or properties. However, the
overall approach can also be applied to any kind of axioms as long as these
axioms are supported by the debugging system (e.g., all three systems used in
our experiments support also subsumption axioms as correspondences).

An alignment A can be created by a human expert or by an automated
matching system. In both cases, A might include erroneous correspondences.
However, it is reasonable to assume that O1 and O2 do not contain erroneous
axioms. For that reason, an alignment A can be interpreted as a set of uncertain,
weighted equivalence axioms, while O1 ∪ O2 will comprise the certain axioms.
Merging A, O1, and O2 can then result into an incoherent ontology, i.e. some of
the classes of O1 or O1 might be unsatisfiable due to the additional information
encoded in A. The following example shows an incoherent alignment.

O1 = {Jaguar1 v Cat1, Cat1 v Animal1},
O2 = {Jaguar2 v Brand2, Animal2 v ¬Brand2}
A = {〈Jaguar1 ≡ Jaguar2, 0.9〉, 〈Animal1 ≡ Animal2, 0.95〉}

In this example the classes Jaguar1 and Jaguar2 are unsatisfiable in the merged
ontology. There are three possible ways to resolve this incoherence: (1) Dis-



card both correspondences, (2) discard 〈Jaguar1 ≡ Jaguar2, 0.9〉, or (3) discard
〈Animal1 ≡ Animal2, 0.95〉. Obviously, we prefer (2) and (3) over (1). Moreover,
it seems to make more sense to remove the correspondence that is less confident,
i.e., the most reasonable decision is (2) given no further information is available.

However, with larger matching problems a solution to the debugging prob-
lem becomes more complex for two reasons. First, not all conflicts (= subsets
of correspondences resulting in incoherence) might be detected. This might be
caused by using an incomplete reasoning technique, for example, because only
a certain type of axioms are analyzed. Second, the detected conflicts might be
overlapping and there are several ways to resolve the incoherence. In such a sit-
uation a solution should be preferred that removes as less confidence as possible.
We call such a solution an optimal solution and define it as a subset ∆ ⊆ A
such that A \ ∆ is coherent and there exist no other ∆∗ such that A \ ∆∗ is
coherent and

∑
c∈∆ conf(c) >

∑
c∈∆∗ conf(c). This definition corresponds to

the definition of a global optimal diagnosis given in [9].
Note that optimality and completeness are independent characteristics of a

debugging system. It is possible to construct a debugging system that is complete
in terms of reasoning but cannot guarantee the optimality of the solution, while it
is also possible to construct a system that is incomplete and optimal, in the sense
that the solution is optimal with respect to all detected conflicts, even though
these conflicts are only a subset of all conflicts due to the incompleteness. Note
also that the notion of optimality is a technical notion, i.e., an optimal solution
might not always be the best solution in terms of precision and recall.

3 Experimental Set-Up

3.1 Datasets

The ontologies we use for the experiments are from the ontology alignment
evaluation initiative (OAEI) [5]. We selected the conference and the large
Biomed ontologies because these benchmarks are not artificially created (unlike,
for instance, the benchmarks dataset), are not focused on a narrow alignment
problem (unlike, for instance, the multifarm dataset which is concerned with
multilingual ontology matching), and provide coherent reference alignments.
Moreover, the size of the large Biomed ontologies allows us to assess the
scalability of the presented approach.

The conference dataset consists of 15 ontologies which model the domain
of conference organization [21]. The number of classes, properties, and axioms
of a particular type of 7 ontologies are listed in Table 1 ordered by increasing
expressiveness. Every row in the table, with the exception of the last row, corre-
sponds to one expressiveness level we used for the experiments (see Section 4.1).
For the 7 listed ontologies, reference alignments were created for each possible
pair, resulting in 21 ontology pairs with a reference alignment.

Since the ontologies in the Conference dataset are relatively small, we also
performed experiments with the large BioMed ontologies. The corresponding
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classes 36 60 38 104 77 140 49
properties 59 64 36 50 33 41 28

subsumption 25 49 33 84 71 132 41
+ disjointness 52 63 76 491 145 133 41
+ domain and range restrictions 149 149 100 543 184 193 73
+ all other EL++ axioms 263 331 293 865 309 505 186
every axiom 318 408 335 903 341 539 193

Table 1. Number of classes, properties, and axioms of the conference ontologies.

data set consists of the Foundational Model of Anatomy (fma)3, National Cancer
Institute Thesaurus (nci)4, and SNOMED clinical terms5 ontologies. Semanti-
cally rich and with thousands of classes, the problem of aligning these ontologies
is one of the computationally most challenging in the OAEI campaign. For the
2013 OAEI campaign, only 12 out of 21 participating system configurations
were able to compute results for the three combinations. We used the “small
fragment” matching problems of the track. For more details on these data sets
we refer the reader to the OAEI track website6. The properties of the ontologies
are summarized in Table 2.

3.2 Alignment Aggregation

For each of the matching tasks described above, there are several alignments
available that have been generated by different matching system. We decided to
aggregate these alignment for each matching task in a preprocessing step. Thus,
we can work with large input alignments and can avoid an additional subsequent
aggregation of the debugging results. We aggregated the results of all matchers
participating in the 2013 OAEI campaign. For the conference benchmark,
we included all matchers which performed better than the string equality base-
line [5]. For the large BioMed benchmark, we included the results of the 6
matchers which were able to compute a solution for every combination [5]. The
participants in the large BioMed track were allowed to submit results for dif-
ferent settings of their system. We always used the best results of each system
in terms of f-measure.

The method of alignment aggregation resembles the approach described in [9].
For each pair of ontologies, we union the alignments A1, . . . ,Ai, . . . ,An of each
matching system i to one alignment A. To that end, we first span the confidence
values w of each correspondence 〈w, a〉 in alignment Ai to the range of (0, 1].
This ensures that the confidence values of the individual matchers are scaled
identically. We then compute the aggregated a-priori confidence values for a

3 http://sig.biostr.washington.edu/projects/fm/
4 http://ncit.nci.nih.gov/
5 http://www.ihtsdo.org/index.php?id=545
6 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/
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classes 3696 10157 6488 23958 13412 51128
properties 24 24 63 82 18 51

subsumption 3693 10154 4917 18946 16287 31299
+ disjointness 3732 10196 5022 19099 16287 31299
+ domain and range restrictions 3732 10196 5130 19233 16287 31299
+ all other EL++ axioms 7521 20449 14269 50218 33673 122221
every axiom (without annotations) 7548 20478 15634 54452 47104 122221

Table 2. Number of classes, properties, and deterministic axioms of the large
BioMed ontologies. For each ontology there exists two fragments. In case of the fma
ontology, for example, one fragment contains the axioms overlapping with the nci on-
tology and one fragment contains the axioms overlapping with the snomed ontology.

correspondence as the normalized sum of all a-priori confidences of that corre-
spondence. The average size of one alignment for the conference benchmark
is 42 ranging from at least 29 to at most 60 correspondences. For the large
BioMed benchmark, we obtain 3396 correspondences for the ontology pair nci
and fma; 10760 for the pair fma and snomed; and 18842 for snomed and nci.

3.3 Debugging Systems

In our evaluation we present results for the debugging systems ELog, LogMap
and Alcomo that we apply on the ontologies and alignments described so far.

– ELog [16] is a reasoner for log-linear description logics, which offers com-
plete reasoning capabilities for EL++. ELog can be used for debugging
ontology alignments (details can be found in [15]). Since ELog transforms
the debugging problem to finding the MAP state of a Markov Logic Network,
it guarantees the optimality of the solution, i.e., the MAP state corresponds
to an optimal solution. However, ELog is not complete with respect to the
full expressiveness of OWL DL.

– LogMap [7] is a matching system including a component for alignment
debugging. In our experiments we report only about applying this component
and refer to it, for the sake of simplicity, as LogMap. This component
translates the ontologies into a set of Horn clauses and applies the linear
Dowling-Gallier algorithm for propositional Horn satisability multiple times
for repairing. The algorithm is not optimal and to our knowledge also not
complete against the OWL DL profile. LogMap is known to be the most
efficient debugging tool currently available (see for example [8]).

– Alcomo [9] has specifically been developed for the purpose of debugging
ontology alignments. Alcomo can be used in a setting that ensures the com-
pleteness (for OWL DL) and the optimality of the solution. The optimality
of the solution is guaranteed by applying an exhaustive search algorithm to
check potential solutions. However, this setting is applicable only to small



matching problems. Using a lightweight setting, Alcomo can also be ap-
plied to larger matching problems loosing both the features of optimality
and completeness.

3.4 Metrics

F-Measure Precision and recall of an alignment A measure the correctness
of A and the completeness of A, respectively. Both measures are defined with
respect to a given reference alignment or gold standard G. The F-measure is the
harmonic mean of precision an recall. Precision P , recall R, and F-measure F
can be formally defined as

P =
|A ∩ G|
|A|

, R =
|A ∩ G|
|G|

, and F =
2 · P ·R
P +R

.

Number of Unsatisfiable Classes The number of unsatisfiable classes is pro-
posed as a quality measure for ontology matching in [10]. It refers to the number
of classes that are unsatisfiable in the merged ontology A ∪ O1 ∪ O2 where O1

and O2 are the matched ontologies and A is the alignment between them. The
smaller the number of unsatisfiable classes the higher the quality of the align-
ment. We computed the number of unsatisfiable classes with the HermiT [12]
reasoner since it is known from previous work [8] that HermiT outperforms
other reasoners in the computation of unsatisfiable classes. Unfortunately, we
were not able to compute the unsatisfiable classes for the nci and snomed pair
under 5 hours and, thus, cannot provide the number of unsatisfiable classes for
the large BioMed benchmark.

The conference benchmark experiments were performed on a virtual ma-
chine with 8 GB RAM and 2 cores with 2,4 Ghz. The large BioMed experi-
ments were executed on a virtual machine with 60 GB RAM and 2 cores.

4 Experimental Results

4.1 Expressiveness

Within this section we report about experiments that include axiom types with
increasing expressiveness. Within these experiments we use the ELog debug-
ging system. For the lowest level of expressiveness, we only include subsumption
axioms A v B. For the second level, we add disjointness axioms A u B v ⊥.
For the third level, we include domain and range restrictions. Finally, for the
most expressive level, we include all axioms representable with the DL EL++.
The size of the resulting ontologies is shown in Table 1 and 2 presented in the
previous section. The ELog debugging system is complete with respect to each
of the resulting matching problems. However, with this approach we simulate
different types of debugging systems that are restricted to exploit different lev-
els of expressiveness. For example, on the second level we simulate a debugging
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Fig. 1. Results for the conference benchmark. With increasing expressiveness, F-
measure and runtime (in seconds) are increasing. Contrary, the incoherent classes de-
crease. This effects are stronger for lower thresholds since more conflicts occur. For
thresholds lower than 0.12 the hermiT reasoner failed in computing the number of
incoherent classes. In total, the conference benchmark contains 2.973 classes.

system that bases its reasoning techniques only on the inter-dependencies be-
tween subsumption and disjointness axioms. Note that we analyze results for the
ontologies in their full expressiveness in the subsequent section.

Figure 1 and Figure 2 depict the results for the various levels of expressiveness
and for different thresholds for the conference and large BioMed bench-
marks, respectively. The x-axis shows the different thresholds that we applied
prior to the debugging step. The results show that the differences between the
various levels are less pronounced for lower thresholds. Hence, we put a special
emphasis on the threshold areas below 0.2 (for the conference benchmark) and
below 0.7 (for the large BioMed benchmark) since results for higher thresh-
olds were nearly identical. Please note that in Figure 1 the stepsize in each chart
changes at threshold 0.2 from 0.01 to 0.1 since, beyond that threshold, there are
only very few logical conflicts.

We observe a positive correlation between increased expressiveness and F-
measure scores. Considering only subsumption axioms results in lower scores
compared to the setting with additional disjointness axioms. Even higher F-
measures scores are achieved if domain and range restrictions are taken into
account. The highest F-measure scores are obtained if we incorporate all EL++

axioms. This holds also true for the choice of a well-suited threshold in the range
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Fig. 2. Results for the large BioMed benchmark. With increasing expressiveness, F-
measure scores and running time (in seconds) are increasing. These effects are stronger
for lower thresholds since more conflicts occur. We do not provide the number of
incoherent classes because the hermiT reasoner did not terminate within 5 hours.

of 0.15 to 0.2 in case of the conference benchmark, where we clearly observe
the benefits of exploiting the full expressiveness of EL++.

As expected, the number of unsatisfiable classes (center figure of Figure 1)
is higher for settings with decreased expressiveness. For the subsumption only
configuration, we observe the highest number of unsatisfiable classes in the final
alignment. On the other hand, there are only few unsatisfiable classes for the
EL++ setting. Aside from the F-measure results, this is another indication of an
improved alignment quality. The reason why we obtain unsatisfiable classes at all
for EL++ expressiveness is that the expressiveness of our underlying ontologies
is higher than EL++. In case of the large BioMed benchmark the Hermit
reasoner was not able to determine the number of unsatisfiable classes within 5
hours. Thus, we do not provide a graphic for this benchmark.

Also as expected, we observe an increase in running time (right figures) when
the number of resolved conflicts increases, since runtimes are higher for low
thresholds. Furthermore, runtimes also increase with increasing expressiveness.
This is in line with our expectation, because a higher level of expressiveness
results also in the generation of a more complex optimization problem that
needs to be solved when computing the most probable coherent ontology query.

In summary, the results show that the alignment quality increases with an
increase in expressiveness. F-measure scores are higher and the number of un-
satisfiable classes is lower if expressiveness increases. We can also conclude that



0 0.05 0.1 0.15 0.20.5 1.0
threshold

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
f-

m
ea

su
re

0 0.05 0.1 0.15 0.20.5 1.0
threshold

0

10

20

30

40

50

60

70

su
m

of
un

sa
ti

sfi
ab

le
cl

as
se

s

0 0.05 0.1 0.15 0.20.5 1.0
threshold

0

5

10

15

20

ru
nt

im
e

ELog EL++ Alcomo Optimal Alcomo Greedy LogMap

Fig. 3. Results for ELog compared with other approaches on the conference bench-
mark. For lower thresholds, optimal approaches achieve a higher F-measure than ap-
proximate approaches but require a longer runtime. The number of unsatisfiable classes
is low (1.7% or lower) for all systems. For thresholds lower than 0.12 the hermiT rea-
soner failed in computing the number of incoherent classes. In total, the conference
benchmark contains 2.973 classes. Runtimes are given in seconds.

a debugging system that is more complete in terms of the supported expressivity
will generate better results compared to a less complete system. Runtimes, how-
ever, increase with higher expressiveness. This shows a trade-off between runtime
and alignment quality depending on the choice of the supported expressiveness.

4.2 Approximate vs. optimal solutions

In this section, we experimentally address the question if optimal algorithms lead
to higher quality than approximate algorithms. To that end, we compare the
log-linear description logic system ELog and the optimal algorithm of Alcomo
against the approximate algorithms of LogMap and Alcomo.7

The results for the conference and large BioMed benchmark are de-
picted in Figure 3 and Figure 4, respectively. Again, we focus on the discussion

7 Alcomo can be executed in different settings. We refer to the setting using the
parameters METHOD OPTIMAL/REASONING COMPLETE as optimal algorithm. We refer to
the setting METHOD GREEDY/REASONING EFFICIENT as approximate algorithm. How-
ever, this settings is both incomplete and does not generate an optimal solution.
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Fig. 4. Results for ELog compared with other approaches on the large BioMed
benchmark. For lower thresholds, optimal approaches achieve a higher F-measure than
approximate approaches but require a longer runtime. We do not provide the number
of incoherent classes because the hermiT reasoner did not terminate within 5 hours.
Runtimes are given in seconds.

of results for thresholds below 0.2 (for the conference benchmark) and 0.7
(for the large BioMed benchmark).

The system ELog and the optimal algorithm of Alcomo gains the highest
F-measure scores (left figures). The approximate algorithms of Alcomo and
LogMap reach lower F-measure scores. The difference in F-measure results be-
tween ELog and the optimal algorithm of Alcomo is due to the fact that the
associated optimization problems often have more than one solution. Each of this
optimal solution has the same objective, i.e. the confidence total of the resulting
alignments is the same, but sometimes different F-measure scores. Thus, ELog
might choose a different optimum than the optimal algorithm of Alcomo.

ELog has the highest number of unsatisfiable classes (center figure of Fig-
ure 3) of all three algorithms. However, having 53 inconsistent classes is only
1.7% compared to the total sum of classes of 2,973. As explained above, ELog
is complete only for EL++. Thus, all inconsistencies were caused from axioms
which are out of the scope of EL++. The results indicate that the restricted ex-
pressivity seems to be less important than the optimality of the solution, since
ELog generates at the same time results with the best F-measure.



The approximate algorithms of LogMap and Alcomo are more efficient, es-
pecially for lower thresholds. In case of the conference benchmark, ELog out-
performs the approximate Alcomo algorithm for thresholds higher than 0.15.
Except for the thresholds of 0.11 and 0.12, the exact Alcomo algorithm is slower
than ELog and does not terminate within one hour for thresholds below 0.09.
For the large BioMed benchmark, the approximate algorithms are faster. For
thresholds below 0.7 the exact Alcomo algorithm does not terminate within one
hour. LogMap achieves by far the best runtime results, which is also supported
by the results reported in [8]. This is (at least partially) caused by incomplete
reasoning and non-optimal conflict resolution techniques.

The non-optimal variant of Alcomo and LogMap generate very similar
alignments. This becomes obvious when comparing the F-measure scores pre-
sented in the left plots of Figure 3 and 4. Obviously, the systems show a similar
bevaviour and seem to apply a similar conflict resolution strategy. The same ob-
servation can be made for the optimal variant of Alcomo and ELog. Thus, the
distinction between optimal and non-optimal algorithms becomes visible in the
threshold/F-measure plots, which supports the importance of this distinction.

Overall, we can conclude that optimal systems achieve higher F-measure
scores than the approximate algorithms. With respect to runtime, the approxi-
mate algorithms are faster than the optimal approaches. In particular LogMap
outperforms all other systems. Furthermore, ELog has shorter runtimes than
the optimal algorithm of Alcomo. This is remarkable since LogMap and Al-
como are specialized on ontology matching. They leverage the fact that weighted
axioms can only occur between ontologies and that those axioms are either sub-
sumption or equivalence axioms.

5 Conclusions

Our experiments indicate that an increase in expressiveness leads to an increase
in F-measure scores. Furthermore, the comparison of approximate and optimal
ontology alignment repairing systems shows that optimal approaches achieve
better F-measure scores. However, we observe a trade-off between F-measure and
runtime. Runtimes are longer for higher expressiveness and optimal approaches
have, on average, longer runtimes than approximate approaches. Thus, we advice
users to employ optimal approaches for non-time critical data integration tasks. If
real-time ontology alignment is required, we recommend the use of approximate
approaches combined with reasoning techniques that might be incomplete.
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