On fixing semantic alignment evaluation measures

Jérôme David, Jérôme Euzenat

Workshop Ontology Matching 2008
Problems of precision and recall

These two alignments are equivalent:

- $A_3 \sqsubseteq B_5$ and $A_3 \sqsupseteq B_5 \iff A_3 \equiv B_5$
- $A_3 \equiv B_5 \mid= A_{10} \equiv B_5$

But with the classical model: Precision $= 0$ and Recall $= 0$!
Semantic properties

A solution: proposing measures respecting semantic properties

[Euzenat, 2007]

\[
\begin{align*}
A_r & \models A_e \Rightarrow \text{Precision} = 1 \\
& \text{max-correctness}
\end{align*}
\]

\[
\begin{align*}
A_e & \models A_r \Rightarrow \text{Recall} = 1 \\
& \text{max-completeness}
\end{align*}
\]

\[
\begin{align*}
A_r & \equiv A_e \Leftrightarrow \text{Precision} = 1 \text{ and Recall} = 1 \\
& \text{definiteness}
\end{align*}
\]
1 - Ideal precision and recall

Replace A_e and A_r by their semantic closure $Cn(A_e)$ and $Cn(A_r)$

Semantic closure $Cn(\ldots) = \text{set of correspondences deduced from alignment and ontologies}$

$$P_i = \frac{|Cn(A_e) \cap Cn(A_r)|}{|Cn(A_e)|}$$

$$R_i = \frac{|Cn(A_e) \cap Cn(A_r)|}{|Cn(A_r)|}$$

+ The three properties are satisfied

− Not always defined: $Cn(\ldots)$ could be infinite
2 - Semantic precision and recall

Use both alignments and their semantic closure

\[P_s = \frac{|A_e \cap Cn(A_r)|}{|A_e|} \]
\[R_s = \frac{|Cn(A_e) \cap A_r|}{|A_r|} \]

+ The three properties are satisfied
+ Always defined (contrarily to ideal precision and recall)
− But they still have some drawbacks...
Limitations of semantic precision and recall

Semantic precision and recall have **two drawbacks**:

1. Two semantically equivalent alignments could have different precision values
2. An alignment can have null precision and recall even if its semantic closure intersects those of the reference alignment
Limitations of semantic precision and recall

Semantic precision and recall have **two drawbacks**:

1. Two semantically equivalent alignments could have different precision values
2. An alignment can have null precision and recall even if its semantic closure intersects those of the reference alignment

Two other properties that a perfect semantic model must satisfies :

1. the **semantic-equality** property :
 \[Cn(A_{e1}) = Cn(A_{e2}) \Rightarrow \begin{cases}
 P(A_{e1}, A_r) = P(A_{e2}, A_r) \\
 R(A_{e1}, A_r) = R(A_{e2}, A_r)
\end{cases} \]

2. the **overlapping-positiveness** property:
 \[P(A_e, A_r) = 0 \text{ and } R(A_e, A_r) = 0 \text{ iff } Cn(A_e) \cap Cn(A_r) = Cn(\emptyset) \]
Limitations of semantic precision and recall

1st problem: Two semantically equivalent alignments could have different precision values

Case 1: problem occurring at alignment level:
a correspondence could be split into several correspondances

\[A_{e_1} \equiv A_{e_2} \text{ but: }
\begin{align*}
P_s(A_{e_1}, A_r) &= 1/2 \\
P_s(A_{e_2}, A_r) &= 2/3
\end{align*} \]
1st problem: Two semantically equivalent alignments could have different precision values

Case 1: problem occurring at alignment level:
a correspondence could be split into several correspondances

\[A_{e1} \equiv A_{e2} \text{ but:} \]
\[P_s(A_{e1}, A_r) = \frac{1}{2} \]
\[P_s(A_{e2}, A_r) = \frac{2}{3} \]

A solution: normalize alignments
Syntactic normalisation of alignments

Goal of normalization: allows measures to satisfy the semantic-equality property when reasoning only at alignment level.

1. Use **alignment relation algebra**, i.e., write each alignment relation as a disjunction of elementary relations [Euzenat, 2008]
 - Elementary relations: \(\Gamma = \{ \sqsubseteq, \sqsupseteq, \equiv, \notin, \perp \} \)
 - Operators: meet (\(\cup \)), join (\(\cap \)), compose(\(. \)), inverse(\(-1 \))

2. A pair of entities or formulas appear at most once in each alignment

Examples:

- \(x \sqsubseteq y \) becomes \(x\{\sqsubseteq, \equiv\}y \)
- \(x \sqsubseteq y \) and \(x \sqsupseteq y \) become \(x\{\sqsubseteq, \equiv\} \cap \{\sqsupseteq, \equiv\}y \), i.e., \(x\{\equiv\}y \)
Limitations of semantic precision and recall

1st problem: Two semantically equivalent alignments could have different precision values.

Case 2: problem occurring at ontological level (redundancy)

\[
P_s(A_{e1}, A_r) = \frac{1}{2}
\]
\[
P_s(A_{e2}, A_r) = \frac{2}{3}
\]
Limitations of semantic precision and recall

1st problem: Two semantically equivalent alignments could have different precision values

Case 2: problem occurring at ontological level (redundancy)

\[x \equiv y \equiv x' \]

\[u \equiv v \equiv u' \]

\[A_{e_1} \]

\[x \equiv y \equiv x' \equiv u \equiv v \equiv u' \]

\[A_{r} \]

\[\Lambda-bounded \ precision \ and \ recall \]

\[P_s(A_{e_1}, A_r) = 1/2 \]

\[P_s(A_{e_2}, A_r) = 2/3 \]

A solution: \(\Lambda \)-bounded precision and recall
Idea: Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures

Classical evaluation model:

\[
P = \frac{|A_e \cap A_r|}{|A_e|} \quad R = \frac{|A_e \cap A_r|}{|A_r|}
\]
Λ-bounded precision and recall

Idea: Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures

Ideal evaluation model (not always defined):

\[P_i = \frac{|Cn(A_e) \cap Cn(A_r)|}{|Cn(A_e)|} \quad R_i = \frac{|Cn(A_e) \cap Cn(A_r)|}{|Cn(A_r)|} \]
Idea: Restricting semantic closures to a set of alignments for enabling ideal precision and recall measures

Bounded evaluation model (always defined):

\[
P_i = \frac{|Cn(A_e) \cap Cn(A_r) \cap \Lambda|}{|Cn(A_e) \cap \Lambda|}
\]

\[
R_i = \frac{|Cn(A_e) \cap Cn(A_r) \cap \Lambda|}{|Cn(A_r) \cap \Lambda|}
\]
Limitations of semantic precision and recall

2nd problem: the semantic closures of A_e and A_r intersects but A_e has null semantic precision and recall values.

\[A_e \models x \sqsubseteq y \]
\[A_r \models x \sqsubseteq y \]

\[Cn(A_e) \cap Cn(A_r) = \{x \sqsubseteq y\} \]

but $P_s(A_e, A_r) = 0$ and $R_s(A_e, A_r) = 0$
Idea: introducing semantics in relaxed precision and recall [Ehrig and Euzenat, 2005]

- Relaxed measures are function of proximity functions σ between individual correspondences.
- New σ measures based on relation algebra

Example on σ precision: $\sigma_{\text{prec}}(x \cup u\{\sqsubseteq, \equiv\} y, x\{\equiv\} y)$?

\[
\sigma_{\text{prec}} = \frac{|\{\sqsubseteq, \equiv\}|}{|\{\sqsubseteq, \equiv\}|} \cap \frac{|\{\sqsubseteq, \equiv\}|}{|\{\sqsubseteq, \equiv\}|} = 0.5
\]
Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
 - semantic-equality
 - overlapping-positiveness
- Defined two specific measures for countering them
 - Λ-bounded measures: do not provide absolute values
 - Relaxed semantic measures: properties are respected only at correspondence level
- Work to integrate them in a common framework
Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
 - semantic-equality
 - overlapping-positiveness
- Defined two specific measures for countering them
 - Λ-bounded measures: do not provide absolute values
 - Relaxed semantic measures: properties are respected only at correspondence level
- Work to integrate them in a common framework
Conclusion

- Identified specific problems remaining with semantic precision and recall
- Expressed them as properties
 - semantic-equality
 - overlapping-positiveness
- Defined two specific measures for countering them
 - λ-bounded measures: do not provide absolute values
 - Relaxed semantic measures: properties are respected only at correspondence level
- Work to integrate them in a common framework
Marc Ehrig and Jérôme Euzenat.
Relaxed precision and recall for ontology matching.

Jérôme Euzenat.
Semantic precision and recall for ontology alignment evaluation.

Jérôme Euzenat.
Algebras of ontology alignment relations.