Ontology mapping needs context

Frank van Harmelen Vrije Universiteit Amsterdam

vrije Universiteit

introductory comments on ontologies & contexts

Ontologies

- we know what they are "consensual, formalised models of a domain"
- we know how to make and maintain them (methods, tools, experience)
- we know how to deploy them (search, personalisation, data-integration, ...)

Main remaining open questions
Automatic construction (learning)
Automatic mapping (integration)

Contexts

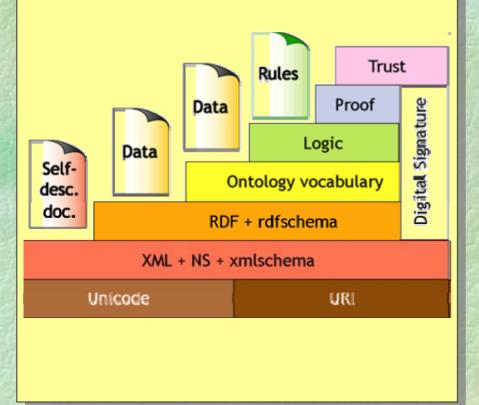
I don't really know what they are...
Quote from CfP: "Earlier workshops were mostly focused on what contexts and ontologies are".

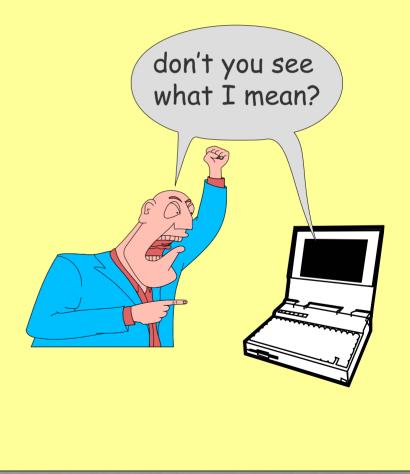
At least (?) two views:

- ontext as "module", ist(p,c)
- context as "relevant knowledge", "contextual meaning"
- I will use 2nd meaning

context-specific nature of knowledge

Opinion poll left

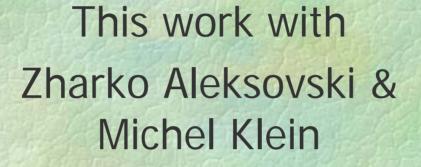

meaning of a sentence is only determined by the sentence itself, and **not** influenced by the surrounding sentences, and not by the situation in which the sentence is used


right

meaning of sentence is not only determined by the sentence itself, but is **also** influenced by by the surrounding sentences, and also by the situation in which the sentence is used

Opinion poll left

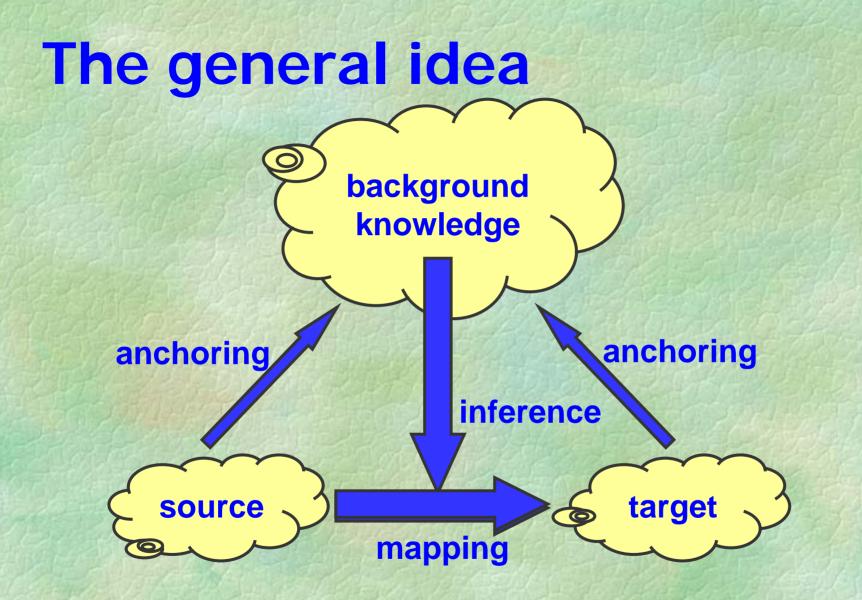
right


Agenda for talk

Does this "context dependency" also hold for ontology mapping?

Intuitively: yes, obviously
 More precisely:

- can context compensate for lack of structure in source and target?
- is more context knowledge better?
- is richer context knowledge better?



vrije Universiteit

Does context knowledge help mapping?

source and target vocab's

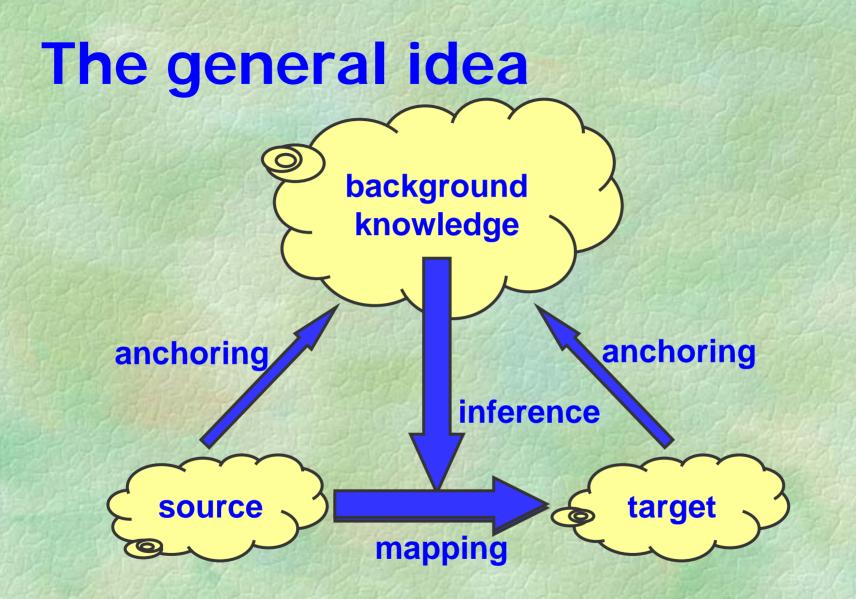
OLVG "problem-list":

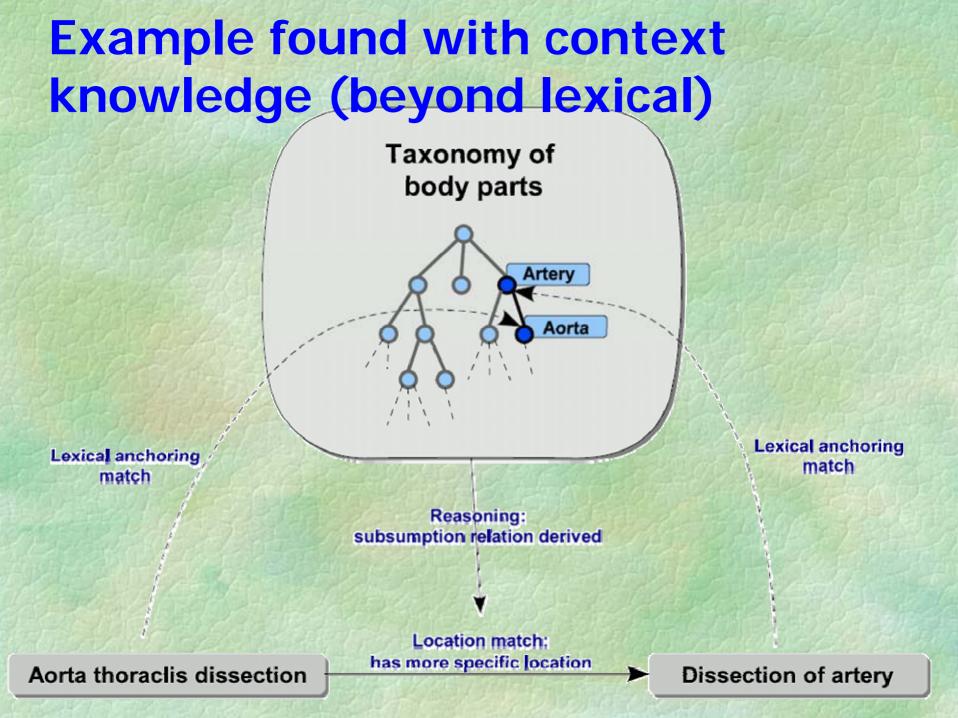
- around 3000 problems in a flat list
- based on ICD9 + "classificatie van verrichtingen"
- contains general and specific categories
 - implicit hierarchy
 - e.g.6 types of Diabetes Mellitus, many fractures
- some redundancy because of spelling mistakes
- used to keep track of the problems of patients during the whole stay at the ICU

olvg

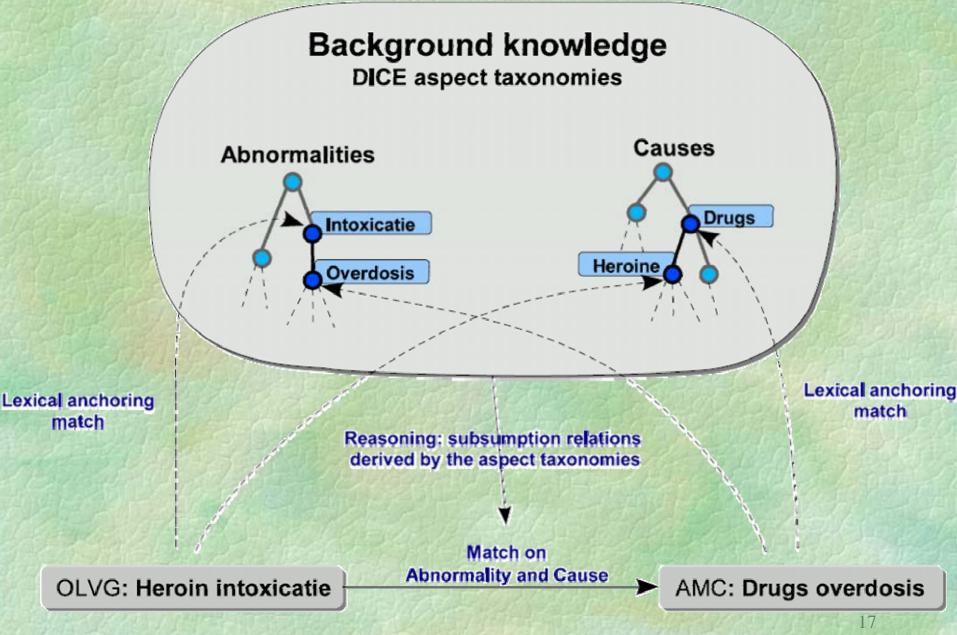
OLVG-1400:

- the subset used in the first 24 hour of stay since 2000 (contains data about 3602 patients)
- AMC: similar list, but from different hospital 12


Context ontology used


DICE:

- 2500 concepts (5000 terms), 4500 links
- Formalised in DL
- five main categories:
 - tractus (e.g. nervous_system, respiratory_system)
 - aetiology (e.g. virus, poising)
 - abnormality (e.g. fracture, tumor)
 - action (e.g. biopsy, observation, removal)
 - anatomic_location (e.g. lungs, skin)


Baseline: Linguistic methods

- Combine lexical analysis with hierarchical structure
 First round
 - compare with complete DICE
 - 313 suggested matches, around 70 % correct
- Second round:
 - only compare with "reasons for admission" subtree
 - 209 suggested matches, around 90 % correct
- → High precision, low recall ("the easy cases")

Example 2

Anchoring strength

Anchoring = substring + trivial morphology

anchored on N aspects	OLVG	AMC	
N=5	0	2	
N=4	0	198	
N=3	4	711	
N=2	144	285	
N=1	401	208	
total nr. of anchored terms	549 39%	1404 96%	
total nr. of anchorings	1298	5816	

Experimental results

Source & target = *am* flat lists of ±1400 ICU terms each
 Background = DICE (2300 concepts in DL)

Manual Gold Standard (n=200)

	Sen	nantic	Own Lexical	F	OAM	Falcon-A	0
	mat	tching	matching				
agreement on single best match	65 (*	=32%)	43		35	22	
agreement among top 5 matches	8 (=	= 4%)					
agreement on no match possible	43 (*	=22%)	43		26	32	
improvement over expert match	35 ((18%)	6		6	6	
TOTAL POSITIVE:	151	=76%)	92 (=46%)	67	=33%)	60 (=30%	ó
wrong match found			5		4/	/8	
incorrectly found no match	49(=	=24%)	103		86	62	
TOTAL NEGATIVE:	49(=24%)	108 (=54%)	133	(=67%)	140 (=70%	%)

olvg

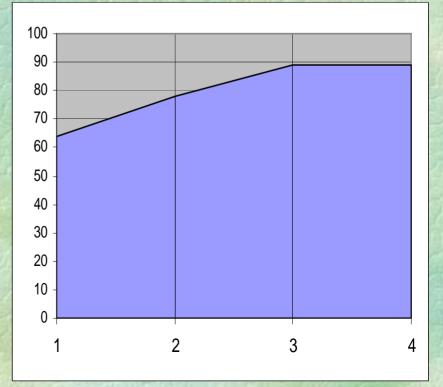
The OLVG & AMC terms get their meaning from the context in which they are being used.

 Different background knowledge would have resulted in different mappings
 Their semantics is not context-free
 See also: S-MATCH by Trento Does more context knowledge help?

Adding more context

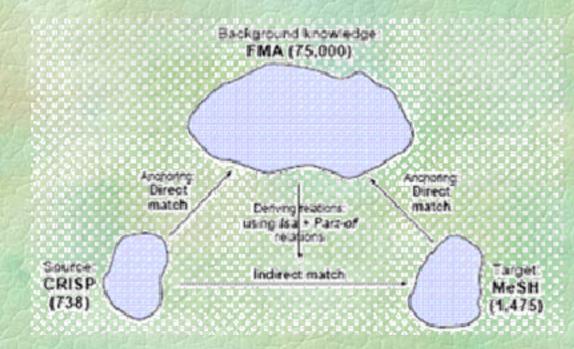
Only lexical
 DICE (2300 concepts)
 MeSH (22000 concepts)
 ICD-10 (11000 concepts)
 Anchoring strength:

	DICE	MeSH	ICD10
4 aspects	0	8	0
3 aspects	0	89	0
2 aspects	135	201	0
1 aspect	413	, 694	80
total	548	992	80


22

Results with multiple ontologies

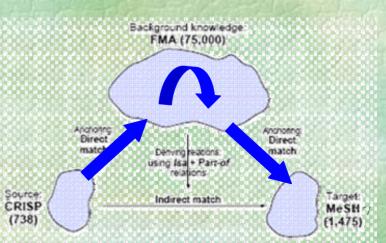
Separate	Lexical	exical ICD-10		MeSH	
Recall	64%	64%	76%	88%	
Precision	95%	95%	94%	89%	


Joint

Monotonic improvement
Independent of order
Linear increase of cost

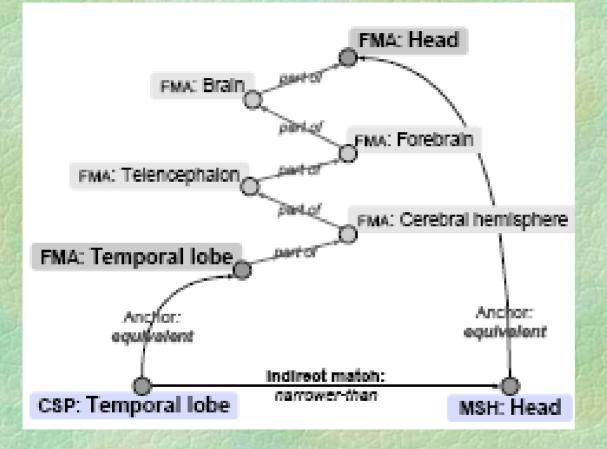
does structured context knowledge help?

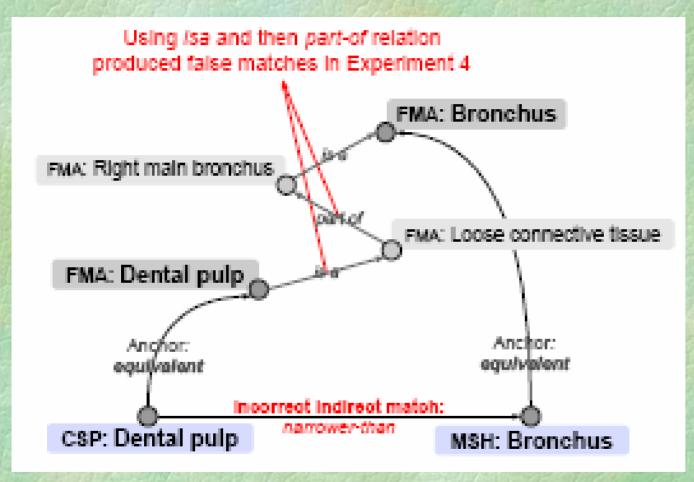
Exploiting structure CRISP: 700 concepts, broader-than MeSH: 1475 concepts, broader-than FMA: 75.000 concepts, 160 relation-types (we used: is-a & part-of)


Direct vs. inferred matches **U**using only: source-target lexical matches relations inside source or target: e.g: $(S < ^{d} T) \& (T < T') \rightarrow (S < ^{d} T')$ e.q: CRISP:brain = d MESH:brain MESH:brain > MESH:temp lobe → CRISP:brain >^d MESH:temp lobe FMA (75,000)

Direct vs. inferred matches

Using:


- Lexical anchorings with background
- Relations inside background knowledge
- Matches inferred via anchorings: (S <^a B) & (B < B') & (B' < ^a T) \rightarrow (S < ⁱ T)


Using the structure or not $(S < ^{a} B) & (B < B') & (B' < ^{a} T) \rightarrow (S < ^{i} T)$

2 Only stated is-a & part-of
3 Transitive chains of is-a, and transitive chains of part-of
4 Transitive chains of is-a and part-of
5 One chain of part-of before one chain of is-a

Examples

Examples

Anchoring strength

	Anchoring concepts	=	\leq	\geq	Anchored concepts
CRISP to FMA	738	483	607	1474	730
MeSH to FMA	1475	1042	1545	2227	1462

Matching results (CRISP to MeSH) (Golden Standard n=30)

Recall		\leq	\geq	total	incr.
Exp.1:Direct	448	417	156	1021	-
Exp.2:Indir. is-a + part-of	395	516	405	1316	29%
Exp.3:Indir. separate closures	395	933	1402	2730	167%
Exp.4:Indir. mixed closures	395	1511	2228	4143	306%
Exp.5:Indir. part-of before is-a	395	972	1800	3167	210%
OF LETE OF LACEOFT LETE	135 T-1	1 1-15	756 / 12	1110	
Precision	, =	\leq	\geq	total	correct
Exp.1:Direct	17	18	3	38	100%
Exp.4:Indir. mixed closures	14	39	59	112	94%
Exp.5:Indir. part-of before is-a	14	37	50	101	100%

wrapping up

Related work

Context knowledge for mapping is mostly linguistic (WordNet)
 Notable exception is S-Match using UMLS, but: we have shown source/target structure

is not needed

Conclusions

Structured investigation on:

- The role of source/target structure: we can even do without, given good context
- The role of context structure (it helps, but be careful with its semantics)
- The amound of context knowledge (surprisingly robust monotonic improvements)