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Motivation
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® Semantic segments e
® High-level consepts
@® Strongly supervised

General
Semantic
Segmentatlon

® Generic segments
® Low-level features
® Unsupervised
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Backgrounds
Low-level Segmentation
Partitioning an image based on the low-level image features:
® Graph-based approaches (e.g, EGS[1])
® Gradient-ascent-based approaches (e.g., SLIC[2]) _
Problems Lack of semantlc not invariant to |IIum|nat|on and occlu5|on .

Semantic Segmentatlon
Partitioning a scene into semantic regions and a unique object label is
assigned to each region:
® Supervised Fully Convolutional Neural Network [3].
Problems: Supervision is biased, non-comprehensive and not scalable
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Goal Narrow down the semantic gap between low-level segmentation ﬁf
and semantic segmentation:

By: Inject semantics (inherited from generic CNN representations trained
on smaller set of categories) into general segmentation, while maintain-
|ng the method compIeX|ty in @ manageable level.
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# Binary Quantlzatlon Layer
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partitioning with hashing techniques embedded as layer for end-to-end training of the net.

Binary Encoding: Binarizing CNN feature maps by a linear transformation (implemented
simply as convolution) where the weights are initialized with Locality Sensitive Hashing (LSH).
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Proposed Framework

* Intuition: The nearby pixels should have similar visual attributes unless they undergo a large semantic
change. We proposed a Binary Convolutional Neural Network which provide the means to represent the
visual attributes as the binary patterns.
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Algorithm

® Given input image to a Fully Convolutional
Neural Network (FCN) obtaining a CNN

4096 4096 8

384 384 256

® Generate compact binary representation
of the CNN features maps through the Binary

® Refine the binary bit maps by averaging
over superpixels.

® Partition the image by merging the
superpixels with the similar binary pattern.

Extracting super-pixels

Our method is compared with EGS [1], and SLIC[2] in
terms of Intersection over Union (loU) measure.
Datasets:

Berkeley Segmentation Dataset (BSDS500), Microsoft
Research Cambridge database (MSRC).

MSRC

Method
EGS [1 50.3%
SLIC [2] 48.7%

Our method 55.03 %

Berkeley

Method loU
EGS [1 45.19%
SLIC [2] 43.70%

Our method 48.35%

loU

Ground truth EGS

Our method Segmentation-loU on Berkely
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