CNN-AWARE BINARY MAP FOR GENERAL SEMANTIC SEGMENTATION

Mahdyar Ravanbakhsh Mohammad Rastegari Hossein Mousavi Moin Nabi Carlo Regazzoni mahdyar.ravan@ginevra.dibe.unige.it mohammadr@allenai.org carlo@dibe.unige.it moin.nabi@unitn.it hossein.mousavi@iit.it

University of Genova

General

Italian Institute of Technology (IIT)

University of Trento

Allen Institute for Artificial Intelligence (AI2)

Proposed Framework

Intuition: The nearby pixels should have similar visual attributes unless they undergo a large semantic

Generic segments Low-level features Unsupervised

Semantic segments High-level consepts Semantic Strongly supervised Segmentation

Backgrounds

Motivation

Low-level Segmentation Partitioning an image based on the low-level image features: • Graph-based approaches (e.g, EGS[1]) Gradient-ascent-based approaches (e.g., SLIC[2]) **Problems**: Lack of semantic, not invariant to illumination and occlusion.

Semantic Segmentation

Partitioning a scene into semantic regions and a unique object label is assigned to each region:

 Supervised Fully Convolutional Neural Network [3]. **Problems**: Supervision is biased, non-comprehensive, and not scalable change. We proposed a Binary Convolutional Neural Network which provide the means to represent the 🔤 visual attributes as the binary patterns.

Extracting super-pixels

0%

.35%

Algorithm

Results

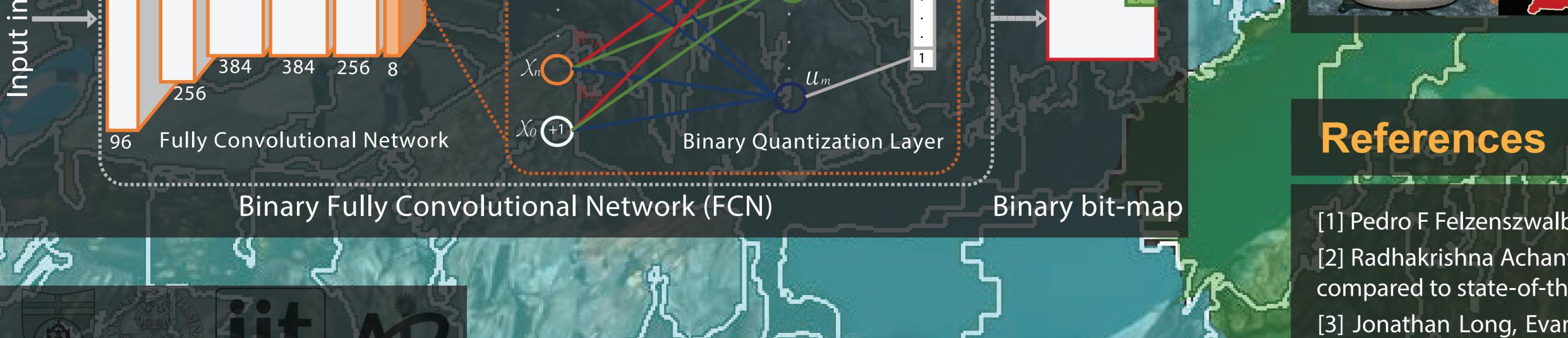
Given input image to a Fully Convolutional Neural Network (FCN) obtaining a CNN feature map.

 Generate compact binary representation of the CNN features maps through the Binary Encoding Layer.

Refine the binary bit maps by averaging over superpixels.

Partition the image by merging the superpixels with the similar binary pattern.

General Idea


Goal: Narrow down the semantic gap between low-level segmentation and semantic segmentation:

By: Inject semantics (inherited from generic CNN representations trained on smaller set of categories) into general segmentation, while maintaining the method complexity in a manageable level.

Binary Quantization Layer

Strength: Compact binary representation instead of high-dimensional CNN features, Effici partitioning with hashing techniques embedded as layer for end-to-end training of the net Binary Encoding: Binarizing CNN feature maps by a linear transformation (implement simply as convolution) where the weights are initialized with Locality Sensitive Hashing (LS

122 248	The literature of California Party	STALL.				9		
	Our method is	compared with	EGS [1], and SL	IC[2] in	MSRC		Berkeley	
	terms of Intersection over Union (IoU) measure.			re.	Method	IoU	Method	lol
	Datasets:	y y	3 5 6	5	EGS [1]	50.3%	EGS [1]	45.19
1 16	Berkeley Segme	entation Datase	et (BSDS500), N	Aicrosoft	SLIC [2]	48.7%	SLIC [2]	43.70
	Research Camb	oridge database	(MSRC).	2	Our method	55.03%	Our method	48.
	Original image	Ground truth	EGS	Binary map	visualization Ou	ir method	Segmentation-l	loU on B
R L							60 % Xog 55	- Our - EGS - SLI
PA JAS							50 50	
- marine				<u> </u>			45 40	
ient			3				Seguration 25	
et.							30 100 200 30 Number of	00 400 Super-pix
nted					S.F.		Segmentation	-loU on
SH).							00 % 60 % % % % % % % % % % % % % % % %	- Ou EGS - SLI
. 1							40 40	
		Sra /	Mar Martin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			₩ 35	

10

[1] Pedro F Felzenszwalb and Daniel P Huttenlocher, "Efficient graph-based image segmentation," in IJCV 2004. [2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," in PAMI 2012. [3] Jonathan Long, Evan Shelhamer, and Trevor Darrell, "Fully convolutional networks for semantic segmentation," in CVPR 2015.