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Binary Quantization Layer
Strength: Compact binary representation instead of high-dimensional CNN features, E�cient 
partitioning with hashing techniques embedded as layer for end-to-end training of the net.
Binary Encoding: Binarizing CNN feature maps by a linear transformation (implemented 
simply as convolution) where the weights are initialized with Locality Sensitive Hashing (LSH).

Proposed Framework

Intuition: The nearby pixels should have similar visual attributes unless they undergo a large semantic 
change. We proposed a Binary Convolutional Neural Network which provide the means to represent the 
visual attributes as the binary patterns.

Low-level Segmentation 
Partitioning an image based on the low-level image features:
 - Graph-based approaches (e.g, EGS[1]) 
 - Gradient-ascent-based approaches  (e.g., SLIC[2]) 
Problems:  Lack of semantic, not invariant to illumination and occlusion.

Backgrounds

Semantic Segmentation 
Partitioning a scene into semantic regions and a unique object label is 
assigned to each region:
 - Supervised Fully Convolutional Neural Network [3]. 
Problems:  Supervision is biased, non-comprehensive, and not scalable

General Idea
Goal: Narrow down the semantic gap between low-level segmentation 
and semantic segmentation:
By: Inject semantics (inherited from generic CNN representations trained 
on smaller set of categories) into general segmentation, while maintain-
ing the method complexity in a manageable level.

MSRC Berkeley
Method IoU Method IoU
EGS [1] 50.3% EGS [1] 45.19%
SLIC [2] 48.7% SLIC [2] 43.70%

Our method 55.03 % Our method 48.35%
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Extracting super-pixels
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Algorithm

   Given input image to a Fully Convolutional 
Neural Network (FCN) obtaining a CNN 
feature map.
   Generate compact binary representation 
of the CNN features maps through the Binary 
Encoding Layer. 
   Re�ne the binary bit maps by averaging 
over superpixels.
   Partition the image by merging the 
superpixels with the similar binary pattern.

Results
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Motivation
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Person?
Generic segments
Low-level features
Unsupervised

Semantic segments
High-level consepts
Strongly supervised

Our method is compared with EGS [1], and SLIC[2] in 
terms of Intersection over Union (IoU) measure.
Datasets: 
Berkeley Segmentation Dataset (BSDS500),  Microsoft 
Research Cambridge database (MSRC).

 Original image  Ground truth     EGS       Binary map visualization  Our method Segmentation-IoU on Berkely

Segmentation-IoU on MSRC
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