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ABSTRACT

In this paper we introduce a novel method for general se-
mantic segmentation that can benefit from general semantics
of Convolutional Neural Network (CNN). Our segmentation
proposes visually and semantically coherent image segments.
We use binary encoding of CNN features to overcome the
difficulty of the clustering on the high-dimensional CNN fea-
ture space. These binary codes are very robust against noise
and non-semantic changes in the image. These binary encod-
ing can be embedded into the CNN as an extra layer at the
end of the network. This results in real-time segmentation.
To the best of our knowledge our method is the first attempt
on general semantic image segmentation using CNN. All the
previous papers were limited to few number of category of
the images (e.g. PASCAL VOC). Experiments show that our
segmentation algorithm outperform the state-of-the-art non-
semantic segmentation methods by large margin.

Index Terms— Image Segmentation, Convolutional Neu-
ral Networks.

1. INTRODUCTION

Image segmentation is a challenging task in computer vision
that can specify the visual elements in an image. These ele-
ments can be used as the building blocks for any image under-
standing method. Traditionally, these image segments are op-
timized to be semantic (e.g. be an object, part of an object, or
part of a scene) and visually coherent; This means that nearby
pixels in each segment must have similar intensity [1, 2, 3].
Semantic image segmentation has been proposed in several
articles [4, 5, 6, 7, 8]. All of these methods are limited to a
narrow scope of semantics. They can only find the segments
belong to few categories of objects (e.g. 20 categories in PAS-
CAL VOC dataset). In this paper a method is proposed that
can find general semantic segments.

Recently there has been a remarkable progress in com-
puter vision through Deep Neural Networks. More specifi-
cally, with Convolutional Neural Networks (CNNs) an end-
to-end object recognition has been created [9, 10, 11] that
outperformed all of the previous recognition systems. These
learning methods recently became more popular than tradi-
tional statistical learning techniques. CNN is a multi-layer
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Fig. 1. Method overview: given an image the semantic binary map
is extracted by forward-pass of image through the net (a), a low-
level superpixel is extracted (b), the binary code of each superpixel
is assigned using the corresponding region on the binary map (c),
finally semantic segmentation is generated merging superpixels with
similar binary patterns (d).

neural network; in each layer the weights are in the shape of
filters. The output of each layer is the result of convolution
of filters on that layer with the input. After several layers
of convolution the output can be used as a feature represen-
tation of an image. For example, in AlexNet [9] architec-
ture the output of fc7 layer has been used extensively as a
generic image descriptor. Moreover, [12] showed that these
features are so powerful that can be used for a variety of tasks
in computer vision. Given an image as input we can apply a
fully-convolutional neural network to obtain a feature vector
per each receptive-field in the image[5]. Since these features
carry semantical information about the input image, they can
be used to find image segments that are semantically coherent.
In this paper, we show how these segments can be extracted
from such CNN features.

CNN features are very high-dimensional (namely, 4096).
Traditional segmentation approaches that are mainly based on
clustering techniques [13] are not feasible. Since we want
each segments corresponds to a meaningful visual element,
large number of cluster centers are essential. That makes the



segmentation process further more complex. To overcome
such computational complexities, binary encoding of CNN
features has proposed instead. A CNN feature is converted to
a short binary code: each bit pattern represents a cluster cen-
ter in the original CNN feature space. For example, an 32-bit
binary code can generate 232 clusters. Each bit corresponds
to a visual attribute. Nearby pixels should have similar bi-
nary patterns unless they undergo a large semantical change.
This is a perfect property to be used for semantic segmenta-
tion. Iterative-Quantization [14] is employed to learn these
binary codes. A powerful feature of the ITQ is that it gener-
ates bits in a simple way and the transformation is linear. This
is perfect setting to be embedded in the CNN networks as a
new layer. Once the binary map of the CNN features is avail-
able, a low-level superpixel extraction method is applied on
the whole image and then the superpixels with the similar bi-
nary patterns (under Hamming distance) are merged together.

Our major contributions in this work can be summarized
as; first: We proposed a semantic segmentation which can
be used in a general setting, unlike the all previous methods
that are limited to specific categories. second: We introduced
a compact representation of high-dimensional CNN features
in the form of binary codes, to preserve semantic informa-
tion, thus can be used for semantic segmentation. Hence, we
present a binary encoding layer in our network, which can
updates using back-propagation. This new layer is able to be
attached to any other deep-nets for encoding purposes.

2. RELATED WORK

Despite a large body of works on low-level segmentation,
there few works target semantic segmentation, and to the best
of our knowledge, there is no work doing general semantic
segmentation utilizing high-level CNN features.
Low-level segmentation: Low-level segmentation refers to
partitioning an input image into a set of perceptually mean-
ingful atomic regions, considering the low-level image fea-
tures, like intensity, edge, or texture. This step is usually con-
sidered as a pre-processing step which can effectively be em-
ployed to reduce complexity of subsequent visual recognition
tasks. In literature, apart from the core low-level feature used,
a substantial debate has been mainly posed over the optimiza-
tion algorithms employed to efficiently solve this partition-
ing problem. In this context, two classes of approaches can
be identified [2]. On one hand, graph-based methods treat
pixels as nodes in graph, connected each other via edges re-
flecting their similarity in the feature space. Then, the graph
is partitioned into a set of sub-graphs corresponding to im-
age segments by minimizing a cost function. Among the best
performing methods, Normalized-Cuts [13], Super-pixel Lat-
tices [15], and Efficient Graph-based Segmentation (EGS) [1]
can be quoted. Here in this work, our method is compared
with the last work, selected as one of the best performing non-
semantic graph-based segmentation methods.
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Fig. 2. Architecture of our proposed segmentation network.

On the other hand, a different set of methods, named
gradient-ascent-based approaches, starts with an initial clus-
ters of pixels, then refines iteratively until convergence in
visual consistency. In this line of research, Mean-shift [16],
Turbo-pixel [17] and state-of-the-art SLIC [2] should be men-
tioned. Note that, SLIC has picked as one of our baselines
and compare our method with.

Semantic segmentation: Recently, visual recognition task
has come to rely increasingly on segmentation, and region
extraction, accordingly, emerged to play a key role in ob-
ject detection [18] and activity recognition[19, 20]. Due to
the fact that the quality of initial segmentation affects sig-
nificantly the subsequent tasks, providing segments capturing
higher-level semantics became crucial. Semantic segmenta-
tion often formulated as combining low-level segments with
region-based object detectors either in a cascade [21, 22, 23]
or joint [24, 25, 26] manner. Convolutional Neural Networks
have recently resurfaced as a powerful tool for learning to seg-
ment semantically [4, 5, 7, 6]. Nevertheless, learning such su-
pervised deep structures for higher number of categories (and
samples) is so supervision-demanding and computationally-
expensive. Very recently, ADE20K [27] has been introduced
in which a wider variety of scenes and objects are annotated.
Even in this case, extending the current supervised DNNs
to work in a zero-shot fashion (namely, the categories other
than the ones exist in the dataset) is not trivial. In this work,
however, a completely different perspective to semantic seg-
mentation is picked out. We specifically propose a method to
narrow down the semantic gap (between pixels and concepts)
in images, namely, trying to inject semantic inherited from
generic CNN representations, so leading to more general se-
mantic segmentation while maintaining the method complex-
ity to a manageable level.

3. CNN-AWARE BINARY MAP OF IMAGE
SEGMENTS

In this section, the two major parts of our proposed method
are described in details: 1) Spatial-aware fully convolutional
network, 2) Binary map encoding layer and 3) Semantic seg-
mentation using binary maps. Figure 1 illustrates a general
work-flow of the method.



3.1. Spatial-aware fully convolutional network

Early convolutional layers in CNNs represent more local
information of the image, while deeper ones contain more
global information. The fully-connected layers capture
higher-level information and usually employed for recog-
nition purposes. It has been shown that the deep nets which
trained on ImageNet [28], are rather semantic; they can ad-
dress wide range of recognition problems [29, 12]. Fully
convolutional Nets also can preserve relative spatial coordi-
nates between input image and output feature map. These
properties motivated us to use such structures for general
semantic segmentation.

For the sake of generalization, we adopted a pre-trained
network (Namely, AlexNet [9]) and simply converted it to
a fully convolutional net. It provides us with general, yet
spatially-consistent semantic representations. Due to the se-
mantic power of the fc7 layer in case of AlexNet, we exploited
the corresponding layer in our network (denoted by conv7) to
extract feature maps.

3.2. Binary map encoding layer

Clustering the extracted high-dimensional feature maps from
conv7 comes with high computational cost. It leads to con-
verge to a limited number of clusters. One possible solution
to avoid this problem is partitioning high-dimensional fea-
tures into a set of buckets (instead of clusters) using hashing
techniques. It provide use with generating small binary codes
for each feature vector, taking into account their distance
simultaneously. Assuming 24-bits of binary code can address
224 buckets. Moreover, this binary map can be represented
as a 3-channels RGB image, providing a better illustration on
partitions. Obviously, dealing with binary codes comes with
lower computational cost and higher efficiency with respect
to other clustering methods. However, the most advantage of
hashing comparing to clustering, is the capability of embed-
ding it simply as a layer inside the network.
Binary encoding layer: Encoding feature maps to bi-
nary codes is computed by Iterative Quantization Hashing
(ITQ)[30]. It is a unsupervised binary codes method, which
projects each high-dimensional feature vector into a binary
space. The last layer of our network (denoted by hconv8)
is built by the hashing linear transformation, learned initially
by ITQ. During testing, for each input image to the network,
a spatial-aware binary map would be generated. For this
purpose, we forward-pass the image through all the convolu-
tional layers as well as the final binary encoding layer. Such
binary map is eventually used for the segmentation purpose.

3.3. Semantic segmentation using binary map

The generated binary maps have two important aspects: first;
it preserves the spatial relation between input image and out-
put features. In other word, each region on the binary map
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Fig. 3. Our segmentation method compare with EGS [1]

corresponds to a patch on the input image. second; binary
maps are generated using the convolutional feature maps of
the deep-net, hence they capture the semantics of the scene.
Binary pattern with different values represent areas with
different semantics. It specifically interesting because, any
changes in the binary code patterns on binary maps can be
interpreted as a semantics change on the corresponding areas
on the image.
We take advantage of these two properties to employ the
binary map for semantic segmentation. To this purpose, we
initialized the segmentation by low-level superpixels, then
merged superpixels with the similar binary codes in the bi-
nary map. This simple yet effective criteria on semantic
features has shown to be much more powerful compares
to the previous state-of-the-art methods which utilized the
sophisticated partitioning algorithms but relaying only on
low-level visual information.

4. EXPERIMENT

A set of experiments has designed to evaluate our method.
This section, explains the experimental setup, evaluation pro-
tocol, datasets, and finally elaborate on the results.
Experimental Setup: Set of comparative experiments has
been done to demonstrate the advantage of using our bi-
nary map for semantic segmentation compares to two best-



performing low-level segmentation methods: Efficient Graph-
Based Segmentation (EGS)[1] and gradient-ascent-based
SLIC[2]. Since there is no pre-processing step or param-
eter setting in our method, For the baselines, we used
the publicly available codes with the default parameters
(σ = 1.0, k = 100). In this means, we aims at showing
the strength of the semantic segmentation compares to low-
level segmentation without any parameter tuning.
Dataset: We choose two datasets; The first dataset is the
Berkeley Segmentation Dataset (BSDS500), includes 300
training samples as and 200 images for testing. The other,
Microsoft Research Cambridge database (MSRC), includes
510 images. Both evaluation has been performed with the
original setups of datasets.
Evaluation Protocol: we adopted the Segmentation Intersec-
tion over Union (IoU) as one of the most commonly used eval-
uation measure for segmentation task. IoU describe as:

IoU(Pm, Pgt) =
|Pm

⋂
Pgt|

|Pm
⋃

Pgt|

Where Pgt is ground truth segment annotation, and Pm is pre-
dicted segment. As the predicted segments, we select the seg-
ments with the maximum IoU with each segment in Pgt. The
final value of Segmentation-IoU is computed as the average
over all the segments of all the images of the dataset.
Segmentation Network Details: The designed deep-net con-
sist of two major parts; 1) Fully convolutional network: As re-
viewed in 3.1 at first we utilized a pre-trained AlexNet model
on ImageNet. Original AlexNet, contains 5 convolutional lay-
ers and two fully connected layers. In order to obtain spatial-
aware feature maps, we convert the last two fully connected
layers into convolutional layers. By transforming fully con-
nected layers into convolutional layers we could enable the
net to output a multi dimensional feature map disregard to
input image size and produce an efficient model for spatial-
aware patch pooling. In our experiment we used images with
higher size to produce finer feature maps. High dimensional
feature maps(28x44x4096) extracted from the last convolu-
tional layer feed to a new layer which we called Binary bit-
map Layer to compress into a lower dimension binary bit map
(28x44x8). 2) Binary Bit-map layer: Bit-map layer is de-
signed for convolutional feature map quantization. In order
to build the layer, we first extract convolutional maps from
conv7 over PASCAL 2007 images to train an unsupervised
ITQ hash to model 4096 dimensional feature maps into 8-bits
binary codes. Hashing weights obtain from ITQ applied into
a Depth Normalization Layer. We embedded the Depth Nor-
malization Layer with pre-trained weights to the network to
build Binary Bit-map layer. Output of the network is a set of
8-bit binary maps. Figure 1 shown a visualization example of
extracted binary map in the form of grayscale image, which
is spacial aware and contains semantic information about the
image. This bit-mat image is eventually utilized for image
segmentation.
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Fig. 4. Segmentation-IoU over superpixel variation

MSRC Berkeley

Method IoU Method IoU
EGS [1] 50.3% EGS [1] 45.19%
SLIC [2] 48.7% SLIC [2] 43.70%

Our method 55.03 % Our method 48.35%

Table 1. Quantitative results on MSRC and Berkeley datasets.

Segmentation Strategy: For segmentation, we first extract
the binary maps for each input image. For each superpixel a
binary code is assigned by the corresponding region on binary
map. Then we merged the superpixels with the similar binary
codes on the bit maps (i.e., zero distance in Hamming space),
Figure 3(c). The final segmentation is obtained as the result
of such merging of superpixels, Figure 3(e).
Experimental Result: Our proposed semantic segmentation
significantly outperform previous low-level segmentation
methods, both quantitatively, and qualitatively. A comparison
results on two datasets demonstrated in Table 1. The first
column shows a comparison of average segmentation-IoU for
the algorithms in the MSRC dataset, and the second columns
compares the algorithms on BSDS500. Qualitative compari-
son with EGS method, Figure 3, also shows the better results
achieved by our approach. Figure 3 visualize the results of
our method and EGS method. We outperform both baseline
methods by large margins in term of segmentation − IoU
over different superpixel sizes (Figure 4). Such evaluation
shows the robustness of the proposed method to the number
of super-pixels.We observe that segmentation on images con-
taining “things” (objects) are significantly better as compared
to images containing “stuffs” (scenes). It also supports our
hypothesis that binary patterns preserved semantic informa-
tion and the understanding objects in the scene.

5. CONCLUSION

In this work a novel approach to general semantic-aware im-
age segmentation has been presented which does no require
category-specific training a deep-net. We employed AlexNet
as pre-trained model and convert fully connected layers into
convolutional layers. An efficient ITQ hashing layer is at-



tached as the final layer to the net to quantity high dimen-
sional feature maps in form of binary code representation.
Such model provides both spatial consistency as well as low
dimensional semantic embedding. Our experimental results
shown using these binary maps can improve the performance
of the segmentation comparing to several low-level segmen-
tation methods. As future work, we will study fine tuning
the hashing layer with back-propagation and end-to-end train-
ing of semantic segmentation net with recent Region Proposal
Network (RPN) in a joint manner.
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