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ABSTRACT

Abnormal detection in crowd is a challenging vision task due
to the scarcity of real-world training examples and the lack of
a clear definition of abnormality. To tackle these challenges,
we propose a novel measure to capture the commotion of a
crowd motion for the task of abnormality detection in crowd.
The unsupervised nature of the proposed measure allows to
detect abnormality adaptively (i.e. context dependent) with
no training cost. The extensive experiments on three different
levels (e.g. pixel, frame and video) show the superiority of
the proposed approach compared to the state of the arts.

Index Terms— Video analysis, abnormal detection, mo-
tion commotion, tracklets

1. INTRODUCTION

Abnormal behavior detection in highly-crowded environ-
ments plays an important role in public surveillance systems,
as a result of worldwide urbanization and population growth.
Abnormality detection in crowd is challenging put down to
the fact that the movements of individuals are usually random
and unpredictable, and occlusions caused by overcrowding
make the task even more difficult.

Abnormal events often defined as irregular events devi-
ated from normal ones and vice-versa. The intrinsic ambi-
guity in this chicken-and-egg definition leads to convert the
abnormality detection to an ill-posed problem. For exam-
ple, slowly walking in a subway station is a normal behav-
ior, but it appears as totally abnormal in the rush hours at the
same place due to creating stationary obstacles. This observa-
tion demands an in-the-box viewpoint about the abnormality
in which introducing a context-dependent irregularity mea-
sure seems crucial. For this purpose, the abnormal behaviors
in crowded scenes usually appear as crowd commotion, so
that anomaly detection is in general a problem of detection of
crowd commotion [1, 2]. This school of thought investigated
a wide range of unsupervised criteria for this purpose and in-
troduced different commotion measures to the literature. It
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has also been shown that the measure-based (unsupervised)
methods may outperform supervised methods, because of the
subjective nature of annotations as well as small size of train-
ing data [2, 3, 4, 5].

Literature review: Mehran et al. [1] introduce a method
to detect abnormal behaviors in crowd scenes using a social
force model. Similarly in terms of capturing commotion, in
[2] a energy-based model approach has been presented for
abnormal detection in crowd environments. In [6] force field
model has been employed in a hierarchical clustering frame-
work to cluster optical flows and detect abnormality. Lu et
al. [7] introduced a correlation-based measure across spatio-
temporal video segments extracted by clustering. Authors in
[8] selected a region of interest utilizing the motion heat map
and measured the abnormality as the entropy of the frames.

Overview: In this paper, we introduce an unsupervised
context-dependent statistical commotion measure and an effi-
cient way to compute it, to detect and localize abnormal be-
haviors in crowded scenes. For this purpose, the scene of in-
terest is modeled as moving particles turned out from a Track-
let algorithm, which can be viewed as motion field distributed
densely over foreground. The particles are grouped into a
set of motion patterns (prototypes) according to their motion
magnitude and orientation, and a tracklet binary code is es-
tablished to figure out how the particles are distributed over
the prototypes. Here, a novel statistical commotion measure
is computed from the binary code for each video clip to char-
acterize the commotion degree of crowd motion.

Contributions: Most of the related works only pay at-
tention to either short-period motion information (e.g optical
flow) or long-term observation (e.g. trajectory), we instead
employed tracklet as an intermediate-level motion represen-
tation. The closest recent work to us is HOT [9, 10]. These
two works, however, are different not only because we are
unsupervised but also introducing the efficient tracklet assign-
ment method employing binary representation of the motion
along with a hash function. We specifically shorten the ma-
jor contributions of this work as following. First, we pro-
pose Motion Pattern to represent the statistics of a tracklet at
each frame in terms of magnitude and orientation. Second,
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Fig. 1. (a) Four tracklets extracted from corresponding salient points tracked over five frames. (b) A polar histogram of magni-
tude and orientation of a salient point at the ¢-th frame of a tracklet (motion pattern). (c) Tracklet binary code is constructed by
concatenating a set of motion patterns corresponding salient point over L + 1 frames.

we propose Tracklet Binary Code representation to model the
movement of a salient point over its corresponding tracklet in
both spatial and temporal spaces. Third, we introduce a new
unsupervised measure to evaluate the commotion of a crowd
scene in pixel, frame and video levels.

2. THE PROPOSED FRAMEWORK

In this section, we explain the proposed pipeline to measure
abnormality of a given video v = {f;}Z_, with T frames.

Tracklet Extraction: The first step involves extracting
all tracklets of length L + 1 in video v. Towards this purpose,
SIFT algorithm is first applied to detect salient points at each
frame f; [11]. Then a tracking technique (we employed the
KLT algorithm [12]) is used to track each salient point over
L + 1 frames. Tracklets whose length is less than L + 1 are
considered as noise and, thus, eliminated. The output is a
set of tracklets 7 = {tr"}flvzl, where N is the number of
extracted tracklets and ¢r™ refers to the n-th tracklet. Fig. 1
(a) illustrates a video example and four tracklets which are
computed by tracking a set of corresponding salient points
over a sequence of five frames.

Motion Pattern: Each tracklet ¢r™ is characterized by
a set of spatial coordinates of its corresponded salient point
tracked over L + 1 frames {(z}", y/*)}*'. These spatial co-
ordinates are employed to compute the motion orientation and
magnitude of the salient point at [-th frame as:

o] = arctan 7@2 _ yln_l) (1)
(af — 2 y)
my = (ap =2 y) + (v —vi) 2

where 2 < | < L + 1. This step computes a temporary or-
dered set of L orientations and magnitudes of the salient point

corresponded to n-th tracklet { (o, m)}£ | (we reset | = 1
for simplicity).

The motion orientations and magnitudes {(o}', my)}- ,
are used to form a histogram representation of the n-th track-
let. First, a polar histogram A" is computed using the orienta-
tion and magnitude of the n-th tracklet at frame I, (o', m}’).
This can be easily done by a simple hashing function in O(1)
whose input is (o', m}') and returns a binary polar histogram
with only one ”1” value at sector (o}*, m}") and zeros for the
rest. The polar histogram then is vectorized to a vector of
length b, x b,,, where b, and b,,, are respectively the num-
ber of quantized bins for magnitude and orientation. This is
illustrated in Fig. 1 (b). The color spectrum of each sector
indicates the quantized bin of magnitude. Each arc represents
the quantized bin of orientation. We called each vectorized
hj' a motion pattern.

Tracklet Binray Code: Given a set of orientations and
magnitudes, {(o]',m]")} - we can correspondingly com-
pute L motion patterns {h” , for the n-th tracklet. Finally,
all the (vectorized) motion patterns {hP}E | are concatenated
to compute a tracklet histogram H™ = [h%, ..., k%] of length
bo X by, x L (T is transpose operator). H is referred to as
tracklet binary code, Fig. 1 (c).

Commotion Measuring: To compute commotion mea-
sure, each frame f; is divided into a set of non-overlapped
patches {p!}, where i indexes the i-th patch in the ¢-th frame.
For each patch pf, a subset of tracklet binary codes is selected
from {H™}]_, whose corresponding tracklets spatially pass
from patch pf, and p! is temporally located at the middle
of the selected tracklets (i.e. if the length of a tracklet is
L + 1, tracklets which start/end L/2 frames before/after
frame ¢ passing from patch p! are selected). Suppose that N,
tracklet motion codes are selected for patch p! denoted by

{H"r }7]:/::1. Then, we statistically compute the aggregated
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Fig. 2. Results on UMN dataset. The blue and green signals respectively show the commotion measure computed by our
approach and LDA+HOT over frames of 11 video sequences. The pink columns indicate the abnormal frames of each sequence.
Each sequence starts with normal frames and ends with abnormal frames.

tracklet binary code for patch p! as H! = ij;’zl H"». The
aggregated histogram H!, which contains the distribution of
motion patterns of p!, is used to compute the commotion
assigned to patch p! as:

3
Comm pz = Z .7 Jmax X HH ( ) H:(]maw)H% (3)

where |.| returns the length of vector and j,,4, indicates the
index of maximum value in H! (i.e. H!(jmaz) is the maxi-
mum value in H!). ||.||2 is the L2-norm. As mentioned ear-
lier, H captures the motion patterns distribution of tracklets
passing from a sampled patch. As a result, the maximum
value of H indicates the dominant motion pattern over the
patch of interest. The amount of commotion of a patch, there-
fore, can be measured by the difference (deviation) between
the occurrences of the dominant motion pattern and the other
motion patterns wighted by w (4, jmaz)-

w(J, jmaz) € [0, ..., 1] is a scalar weight which controls
the influence of the j-th motion pattern on the commotion
measure respect to the dominant (j,,4,-th) motion pattern.
The motivation behind using w is to assign higher(lower)
weights to pattern which are less(more) similar to the dom-
inant pattern. The weight w(4, jmaz) is defined using a
two-variants Gaussian function as:

' (0 = 0j,0,)% (mj—1
e 202 202,
2T0,Om

’LU(] ’jmaz) =
“
where 0; is the middle of the orientation bin that the j-th mo-
tion pattern belongs to. For example, if the j-th motion pat-
tern falls in [0 — 7/4], then 0; is 7/8. Similarly, m; is the
middle of the magnitude bin that the j-th motion pattern falls
in (e.g. if the j-th motion pattern falls in [3 — 6], then /m; is
9/2). The definitions can be identically apply for éjm” and
Mj,...- The values of ¢, and o, are set to 1/b, and 1/b,,

Fig. 3. Qualitative results on sample sequences selected from
SocialForce, UCSD and York datasets. The commotion mea-
sure of each patch is represented by a heat-map.

3. EXPERIMENTS

In this section, we validate the proposed method in all three
settings for abnormality detection including (i) pixel-level,
(i) frame-level and (iii) video-level.

Pixel-level: In this experiment, we evaluated our ap-
proach qualitatively on a subset of video sequences se-
lected from standard datasets (UCSD [13], SocialForce[1]
and York [14]). For a given video, we first extract a set of
tracklets of length L = 10. The magnitude and orientation
bins are set to 5 and 6 respectively to form the polar his-
togram (motion pattern). Then each frame is divided to a set
of non-overlapped patches in which for each patch the com-
motion measure is computed using Eq. 3. Qualitative results
are shown in Fig. 3 in terms of heat-map respect to the lo-
cally computed commotion measure. The selected sequences
characterized by different magnitude and orientation, camera
view points, different type of moving objects (e.g. human and
bike) over scarce-to-dense crowded scenarios. As illustrated
in Fig 3 the proposed measure can be effectively exploited for
abnormality localization along with a per-defined threshold.
Furthermore, the commotion measure can be used as spatial-



temporal interest point for video level abnormality detection
(details in video level experiment).

Frame-level: The goal of this experiment is to compute
a single commotion measure for each frame of a given video.
Toward this purpose, we modified the procedure of comput-
ing the commotion measure in three ways: First, each whole
frame is considered as a single patch (there is not frame patch-
ing). Second a commotion measure is computed for each
tracklet passing over the frame of interest. Finally, The mea-
sures computed from all the tracklets are summed up as the
frame’s commotion measure. We evaluated our method on
UMN dataset [1] including 11 sequences filmed in 3 different
scenes. Fig. 2 shows commotion measure computed for each
frame and illustrated as a signal (Green). We compare our
method with LDA log-likelihood on HOT, selected as a base-
line measure (blue). Since the HOT approach is a supervised
technique, unlike the new approach which is unsupervised,
these two techniques are not directly comparable. Thus, we
divided the dataset into two subsets of video sequences (e.g.
A and B). We performed training and testing two times, at
each time, a subset (A or B) is selected for training and the
other one (B or A) for testing. The LDA log-likelihood for
each frame was considered as its commotion measure. Obvi-
ously, both approaches perform well and assign lower(higher)
commotion measures to normal(abnormal) frames. The dif-
ference, however, is that our approach is unsupervised. This
is an supreme characteristic for the task of abnormal detec-
tion where in most cases there is not a clear definition of
abnormality and gathering real-world training videos are in-
tractable. We also obtained the scene-based ROC of our pro-
posed method illustrated in Fig. 4 and the overall Area Under
ROC (AUC) in Table 1 comparing with the the leading exist-
ing approaches. According to Table 1, our approach achieved
the superior detection speed (in terms of frame per second)
with very competitive detection performance.

Video-level: In this experiment, we show the effective-
ness of the proposed measure when employed as spatio-
temporal interest point detector along with one of the best
performing descriptors (HOT). In this setting, we adopt the
commotion measure to be used in a video-level abnormal-
ity detection on Violence-in-Crowd dataset [15]. For this
purpose, we first apply a spatio-temporal grid on the video,
then for each 3D cell of the grid we compute our proposed
measure. For evaluation, we deployed the standard BOW
representation pipeline used in most video level works [9, 3].
We enriched the standard setting with a weight vector comes
from commotion measure. We simply defined a weight vector
with the same length of codebook’s size. The weight of each
codeword is computed as summation over the commotion
measures of the 3D cells belong to its corresponding cluster.
Our result outperformed all previous methods including HOT
as reported in Table 2.
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Fig. 4. AUC on 3 scenes of UMN.

Method AUC | Speed (fps)
Optical Flow [1] 0.84 5
SFM[1] 0.96 3
Chaotic Invariants [16] 0.99 1
Sparse Reconstruction [17] | 0.978 <1
Proposed Scheme 0.9889 5

Table 1. Performance of the proposed scheme on UMN.

4. CONCLUSION

The problem of abnormality detection in crowd scenes was
addressed in this paper. We proposed a new measure to com-
pute the commotion of a given video and we showed that the
new measure can be effectively exploited to detect/localize
abnormal events in crowded scenarios. The qualitative and
quantitative results on the standard dataset show that our ap-
proach outperformed the state of the arts in terms of detec-
tion speed and performance. The future direction involves
quantitatively evaluate the new approach on more challeng-
ing datasets in the pixel level. Moreover, exploring of the
proposed approach for the task of action recognition would
be a potential direction.

Method Accuracy

Local Trinary Patterns [18] 71,53%
Histogram of oriented Gradients [19] 57,43%
Histogram of oriented Optic-Flow [20] | 58,53%
HNF [19] 56,52%

Violence Flows ViF [15] 81,30 %

Dense Trajectories [21] 78,21 %

HOT [9] 78,30%

Our Method 81.55%

Table 2. Classification results on crowd violence dataset, us-
ing linear SVM in 5-folds cross validation.
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