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Abstract. Recently the histogram of oriented tracklets (HOT) was shown
to be an efficient video representation for abnormality detection and
achieved state-of-the-arts on the available datasets. Unlike standard video
descriptors that mainly employ low level motion features, e.g. optical
flow, the HOT descriptor simultaneously encodes magnitude and ori-
entation of tracklets as a mid-level representation over crowd motions.
However, extracting tracklets in HOT suffers from poor salient point
initialization and tracking drift in the presence of occlusion. Moreover,
count-based HOT histogramming does not properly take into account
the motion characteristics of abnormal motions. This paper extends the
HOT by addressing these drawbacks introducing an enhanced version
of HOT, named Improved HOT. First, we propose to initialize salient
points in each frame instead of the first frame, as the HOT does. Second,
we replace the naive count-based histogramming by the richer statistics
of crowd movement (i.e., motion distribution). The evaluation of the Im-
proved HOT on different datasets, namely UCSD, BEHAVE and UMN,
yields compelling results in abnormality detection, by outperforming the
original HOT and the state-of-the-art descriptors based on optical flow,
dense trajectories and the social force models.

Keywords: Histogram of Oriented Tracklets, Abnormality Detection,
Tracklets, Crowd Motion Analysis.

1 Introduction

The study of human behavior has become an active research topic in the areas
of human-computer interaction, robot learning, user interface design, intelligent
surveillance and crowd analysis. The task of crowd behavior detection refers to
identifying the behavioral patterns of individuals involved in a crowd scenario.
It is well noted in the sociological literature that a crowd goes beyond a set of
individuals that independently display their personal behavioral patterns [1, 2].
In other words, the behavior of each individual in a crowd may be influenced
by “crowd factors” (e.g., dynamics, goal, environment, event, etc.), thus, the
individuals behave in a different way than if they were alone.
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Based on the above explanation, existing computer vision techniques designed
for the detection of individual behavioral patterns are not suitable for modeling
and detecting events in crowd scenes. This has encouraged the vision community
to design tailored techniques for modeling and understanding behavioral pat-
terns in crowd scenarios. A large portion of recent works is dedicated to model
and detect abnormal behaviors in video data. Existing works in the literature
are basically different in terms of the type of abnormal behavior (e.g. panic [3],
violence [4], escape [5]), types of features (histograms of low level features [6–
8], optical flow [9, 10], trajectories [11], spatio-temporal features [12, 13], etc.),
modeling frameworks and learning techniques such as markov model based [10],
bayesian models [14], clustering based [15, 16], commotion measure [17] and so-
cial force models [9].

Recently, a new video descriptor called Histogram of Oriented Tracklets,
HOT, is proposed to detect abnormality in crowd scenarios [18]. The HOT de-
scriptor encodes the motion patterns in the form of 2-dimensional histogram
utilizing the magnitude and orientation of tracklets. The extensive experiments
over abnormality datasets showed the superiority and simplicity of the HOT com-
pared to the state-of-the-art descriptors. The promising performance achieved
by HOT is mainly provided by: i) exploiting tracklets as mid-level motion rep-
resentation, and ii) the capability of HOT descriptor to simultaneously encode
the statistics of tracklet’s orientation and magnitude in a unified descriptor.

This approach, however, suffers form two major drawbacks. First, the most
of tracklets are extracted by tracking the salient points initialized in the first
frame. Therefore, it is not able to extract new tracklets corresponded to salient
points appearing in the next frames. Besides, since the tracklets are generated
over long term salient points tracking, there is always the possible danger of
drifting in the presence of occlusion. For instance, tracklets corresponded to an
individual’s hand can be wrongly drifted to another individual’s hand due to the
occlusion of hand shaking. Second, crowd motion statistics are naively encoded
by counting the number of tracklets fall into each HOT bin. Such histogramming
strategy has shown to be effective for feature description. In HOT, however, we
empirically observed that it can drastically degrade the effect of magnitudes
belong to abnormal motions. The dilemma here is to efficiently address these
disadvantages by proposing Improved HOT.

Contribution. The major contributions of this work are listed as below:

1. We propose to extract tracklets by initializing salient points in each frame
(i.e., frame level initialization), instead of the first frame (i.e., video level
initialization) applied in HOT [18]. In this strategy, the potential salient
points are detected at each frame and then tracked over the next L frames.

2. we propose to construct HOT histograms by exploiting richer statistics of
crowd motions. In particular, the magnitude distribution (mean and vari-
ance) of tracklets are exploited in histogramming as opposed to the simple
counting in the original HOT.
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We extensively conduct a set of experiments over abnormal detection datasets
including USCD [19], UMN [9] and Behave [20]. The results demonstrate the su-
periority of Improved HOT compared to HOT and the state-of-the-arts descrip-
tors. The paper is organized as follows. Section 2 introduces the improved HOT
and a short overview of the original HOT. Section 3 presents the experimental
results followed by conclusions in Section 4.

2 Improved HOT

In order to have a comprehensive study, we recognize two main components in
HOT including tracklet extraction and HOT histogram computation. For each
component, we first briefly explain the original HOT and elaborate its drawbacks.
Then, we introduce new strategies to improve the existing limitations.

2.1 Tracklet Extraction

The existing approaches for motion representation in crowds can be generally
classified into two main categories: local motion based (e.g., optical flows) [14,
9, 10] and complete trajectories of objects [21, 22] based. Both have some limita-
tions. Without tracking objects, the information represented by local motions is
limited, which weakens the models power. The crowd behavior recognized from
local motions are less accurate, tend to be in short range and may fail in certain
scenarios. The other type of approaches assumed that complete trajectories of
objects were available and crowd video can be represented using the point tra-
jectories. The accurate long-term observation is hard to be guaranteed due to
scene clutter and tracking errors, but can effectively capture the global structure
of crowd motions [23].

Tracklets exploited in the HOT [18], however, are mid-level representations
between the two extremes discussed above. A tracklet is a fragment of a tra-
jectory and is obtained by a tracker within a short period. Tracklets terminate
when ambiguities caused by occlusions and scene clutters arise. They are more
conservative and less likely to drift than long trajectories [23].

The tracklet extraction strategy employed in the original HOT is illustrated
in Fig. 1(top). In this strategy, called video-level initialization [18], tracklets are
initialized using the salient points detected in the first frame of the video, and
then tracked until the tracker fails. The main drawback of this strategy is that
tracklets are limited to the salient points which were extracted from the first
frame or the salient points detected over re-initialization process (which only
happens when tracker fails). This means that the new salient points appearing
in the subsequent frames will not be fully detected, and thus, not considered for
tracklet extraction. Moreover, such long term salient point tracking may lead to
“drifting” problem. The drifting problem mainly occurs if a salient point miss-
detected/tracked in presence of two particles occlusion. Such occlusions are not
avoidable in real world crowd scenarios.



4 Hossein Mousavi et al.

W

f
f+1 f+1+W

f+W

HOT
Temporally Dense Tracklets - TDT
[This paper]

W

f
f+1

Tracklets - [Mousavi et al. WACV 2015]

HOT

Fig. 1. Top: Video level tracklet initialization in HOT [18]. Bottom: Frame level tracklet
extraction which is called Temporally Dense Tracklets.

We, on the other hand, proposed to re-initialize salient points in each single
frame of the video and track the points over W frames, we called this Tempo-
rally Dense Tracklets (TDT) (Fig. 1(bottom)). This strategy is not limited to
the points detected at the first frame and is capable of detecting all possible
salient points over a given video. In other words, no matter how long is the
captured video, this strategy is able to detect the salient points of all the ap-
pearing objects/individuals over the time. This results in producing a large pool
of tracklets which can summarize the motion-patterns observed in the scene in
each frame. we reset interest points in each frame and track it over W frames.
In video-based tracklet extraction in HOT, on the other hand, an initial set of
points are detected at the first frame of the video and tracked for the entire
length of the tracklet.

2.2 Histogram of Tracklets Computation

The process of HOT computation explained in [18] starts by splitting the video
in spatio-temporal cuboids. The magnitude (M i,s) and orientation (θi,s) of track-
let i passing from cuboid s are computed as:

M i,s = max
t∈T

{
m

(i,s)
t

}
θi,s = arctan

(yi,send − y
i,s
begin)

(xi,send − x
i,s
begin)

(1)

where (xt, yt) indicates the two-dimensional coordinates of the tth point of the
tracklet i and T indicates the length of each tracklet. mt is the magnitude of

the tth point computed as mt =

√
(xt+1 − xt)2 + (yt+1 − yt)2. (xi,sbegin, y

i,s
begin)

and (xi,send, y
i,s
end) respectively show the entry and exit points of tracklet i in/from

cuboid s. More details can be found in [18].
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The magnitudes and orientations of all tracklets across cuboid s are inde-
pendently quantized in O orientations and M magnitudes bins. The bins of
the 2D-histogram Hs,f

o,m are finally populated by counting the occurrence of the
magnitude-orientation pairs in cuboid s. The frame that the HOT is computed
for is indexed by f [18].

The major problem of such histogramming is, however, ignoring the mag-
nitude characteristics of tracklets and only take into account the number of
occurrences (by counting). Due to the fact that tracklets belong to abnormal
motions exhibit strong magnitudes, simple histogramming degrades the weight
of magnitudes belong to abnormal motions.
We differently encode the tracklets in each bin via motion magnitude distribu-
tion (mean and variance). In fact, the new histogramming technique, referred
to as weighted histogramming, preserves the magnitude strength (mean) and the
commotion (variance) of motion patterns in each HOT bin.

Given a set of J magnitude-orientation pairs {(θj,s,M j,s)}Jj=1 fall in the
orientation bin o and magnitude bin m, the weighted histogramming returns
two 2D histograms called mean-HOT and variance-HOT computed as:

mHs,f
o,m =

1

J

J∑
j=1

M j,s vHs,f
o,m =

1

J

J∑
j=1

(M j,s −mHs
o,m)2 (2)

where mHs,f
o,m and vHs,f

o,m respectively states the mean-HOT and variance-HOT
corresponded to the cuboid s at frame f (following the original HOT we compute
the Improved HOT per frame).

3 Abnormality Detection

Following the original HOT [18], we applied two approaches to compute the
mean-HOT and variance-HOT per frame namely Fully bag of words (BW) and
Per-frame, Per-sector (FS). Similarly, we employed the latent Dirichlet alloca-
tions (LDA) generative model for learning and classification.
Given a set of two-dimensional mean-HOT mHs,f

om and variance-HOT vHs,f
o,m for

all cuboids s temporary centered at frame f = 1, . . . , F , we construct the LDA
training corpus D based on two different detection strategies:

Fully bag of words (BW). In the first case, mean-HOTs and variance-HOTs
are summed across spatial sectors:

(mD)f =
∑
s

(mH)s,fo,m and (vD)f =
∑
s

(vH)s,fo,m (3)

The LDA training corpus D is then constructed by concatenating the vector-
ized (mD)f and (vD)f at each frame as D = {[(mD)f |(vD)f ]}Ff=1, where the
operator | concatenates two vectors.

Per-frame, Per-sector (FS). In the second case, mean-HOTs and variance-
HOTs from all the different sectors of a frame are concatenated in a single
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descriptor to preserve the spatial information of each frame:

(mD)f =
{

(mH)1,fo,m|(mH)2,fo,m| . . . |(mH)S,fo,m

}
(vD)f =

{
(vH)1,fo,m|(vH)2,fo,m| . . . |(vH)S,fo,m

}
(4)

Similarly, the LDA training corpus D is constructed by concatenating the
vectorized (mD)f and (vD)f at each frame as D = {[(mD)f |(vD)f ]}Ff=1. When
training/testing data of normal and abnormal actions is available, the corpus
of both positive(normal) and negative(abnormal) clips are constructed and fed
into a linear SVM for learning and classification.

4 Experimental Evaluation

We compare the Improved HOT (iHOT) descriptor with the original HOT state-
of-the-art descriptors in the literature, mainly the mixtures of dynamic textures
framework [19] and leading optical flows based approaches [24, 25, 4, 11]. To have
a more comprehensive investigation, we conducted two different experiments.
First, we evaluate the improvement provided by only TDT extraction strategy
over the UMN and BEHAVE datasets. In the second experiment, we exten-
sively evaluate the full framework of iHOT (namely, TDT tracklet extraction +
weighted histogramming) over the UCSD dataset.

4.1 Crowd Datasets

Three publicly available datasets are employed for the evaluation, including
USCD [19], UMN [9] and BEHAVE [20].

UCSD Dataset3 The dataset contains two smaller subsets corresponded
to two different scenes. The first, denoted by “ped1” contains clips of 158×238
pixels, which depict groups of people walking toward and away from the camera,
with a certain degree of perspective distortion. The second, denoted by “ped2”
has spatial resolution of 240×360 pixels and depicts a scene where most pedes-
trians move horizontally. The video footage of each scene is sliced into clips of
120-200 frames. We only considered anomaly at the frame level for this dataset.

BEHAVE Dataset4 consists of a set of complex group activities including
meeting, splitting up, standing, walking together, ignoring each other, escaping,
fighting and running. Following [18], the fighting activity is selected as abnor-
malities (50 clips) and the rest as normal activities (271 clips).

UMN Dataset5 includes 11 different scenarios of a panic and normal sit-
uations in three different indoor and outdoor scenes.

3 Available at http://www.svcl.ucsd.edu/projects/anomaly/
4 Available at http://groups.inf.ed.ac.uk/vision/behavedata/interactoins/
5 http://mha.cs.umn.edu/movies/crowdactivity-all.avi
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Dataset iHOT-TDT HOT [18] SFM [9] SR [26] OF [9] CI [27]

scene-1 0.998 0.993 0.990 0.995 0.964 n/a
scene-2 0.991 0.984 0.949 0.975 0.906 n/a
scene-3 0.998 0.991 0.989 0.964 0.967 n/a

all scenes 0.994 0.991 0.960 0.978 0.840 0.990
Table 1. AUC on the UMN dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e 
P

os
iti

ve

 

 

Interaction Energy Potentials
Social Force Model
Optical Flow
HOT[WACV15]
iHOT−TDT

Fig. 2. ROC curve on BEHAVE dataset.

4.2 Evaluating TDT Tracklet Extraction

In this experiment, we evaluate the Improved HOT with TDT tracklet extraction
(iHOT-TDT) comparing with the original HOT (video level initialization) and
the state-of-the-arts on the UMN and BEHAVE datasets. The parameters are
fixed to trackelt length W = 11, magnitude bins M = 16 and orientation bins
O = 8. The classification strategy for the original HOT and the Improved HOT
is limited to fully bag of words (BW).

Evaluation on UMN dataset. In this experiment, we compared the iHOT-
TDT with HOT [18], social force model (SFM) [9], sparse reconstruction (SP) [26],
optical flow (OF) [9], Chaotic Invariants(CI) [27] following the standard evalua-
tion of [9]. To have a finer evaluation, we deployed a protocol by consideration
of UMN three scenes separately. We found this protocol so helpful to analyses
the effect of proposed descriptor in each scene individually. The results on each
scene (scene-1, scene-2, scene-3 ) and the whole dataset (all scenes) are reported
in Table 1 in terms of AUC (Area Under the ROC Curve). The result demon-
strates the superiority of our approach on this dataset for both scene-based and
all scenes evaluations.

Evaluation on BEHAVE dataset. This experiment compares the iHOT-
TDT with the optical flow based method, social force model [9] and interaction
energy potential [11]. Following settings in [11], we used half of normal and
abnormal videos for training and the rest for testing. We used BW classification
strategy along with linear kernel SVM for frame level classification. The results
are reported by the means of ROC as shown in Fig 2.
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ped1 ped2

Method EER Method EER

MDT [19, 29] 22.9% MDT [19, 29] 27.9%
SFM [9] 36.5% SFM [9] 35.0%

LMH [24] 38.9% LMH [24] 45.8%
HOT: BW [18] 25.75% HOT: BW [18] 28.79%
HOT: FS [18] 20.49% HOT: FS [18] 21.20%

iHOT: BW 19.37% iHOT: BW 8.59%
iHOT: FS 22.27% iHOT: FS 16.5%

Table 2. Equal Error Rates on UCSD dataset using standard testing protocol. The
results of the previous approaches are borrowed from [19]. The results of our approach
and the original HOT are the best performance obtained at the parameter tuning
experiment.

4.3 Complete iHOT: TDT and Weighted Histogramming

We evaluate different parameter settings of the complete iHOT including spa-
tial tessellation of the frame S, length of tracklets W and the quantization bins
O and M . Following [18], we quantized tracklets orientation in O = 8 uniform
bins [18]. We varied the temporal window of W = {5, 11, 21} frames setting the
tracklet length to W . Moreover, we varied the number of quantization levels for
magnitude M ∈ {3, 5, 8, 16, 24, 32}. we considered three different spatial tessel-
lations, called as coarse S = 2 × 3, medium S = 4 × 6 and fine S = 8 × 12.
The LDA topics number is fixed to Z = 30. This experiment was conducted on
the UCSD dataset, ped1 and ped2, comparing our approach with the original
HOT in [18] using two different classification sensations: Fully bag of words(BW )
and Per-frame, Per-sector (FS). For our method, we considered complete iHOT
(TDT + weighted histogramming).

The LDA likelihood [28] of the test frames was used to compute the EERs
for our approach and the original HOT [18]. Results (EER, the smaller the
better) for ped1 and ped2 are reported in Fig. 3 showing the robustness of both
the original HOT and the Improved HOT. However, the EERs obtained by the
Improved HOT for all the parameter combinations are obviously lower than
those of the original HOT.

Table.2 compares the Improved HOT with the HOT and the state-of-the-arts
descriptors. EERs of competitors are taken from [19] where the authors reported
best results across all the model-method configurations. Despite such comparison
cannot statistically highlight a clear winner, we limit ourselves to acknowledge
how the new tracklet extraction strategy (TDT) and the weighted histogramming
improves the performance of the original HOT [18] and, surely, outperforms the
prior leading methods in the literature. Particularly, our improvement achieved
superior performance than the original HOT for both classification strategies,
BW and FS, on ped1 and ped2. Please note that the EERs of the original HOT
reported in Table 2 are slightly different than those obtained in the reference
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Fig. 3. Results for ped1 and ped2 varying the number of magnitude bins, tracklet
length and spatial tessellation. (a) coarse tessellation, (b) medium tessellation, (c)
fine tessellation. The first, second and third column respectively corresponded to the
tracklet length of 5, 11 and 21.

paper [18]. Since, here we fixed the LDA topics Z = 30, while, the results in [18]
were the best achieved by varying Z ∈ {2, 4, 6, ..., 80}.
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5 Conclusion

In this paper, we introduced a modified version of histogram of oriented tracklets
(HOT) descriptor for the task of abnormality detection in crowd scenes. We dis-
cussed and empirically showed that video level tracklet extraction employed by
the original HOT which include poor initialization of salient points and track-
ing drift. To address this drawback we proposed Temporally Dense Tracklets
to initialize the salient points in each frame. Moreover, we analyzed that the
counting-based naive histogramming in the HOT is not capable of capturing
statistics of abnormal motions. We proposed weighted histogramming to deal
with this disadvantage by exploiting the distribution of crowd motions (mean
and variance). The enhanced version of HOT is called Improved HOT (iHOT).
The evaluations demonstrated the superiority of the Improved HOT compared
to the original HOT and the prior video descriptors.
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