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Abstract

Detection and recognition of collective human activities
are important modules of any system devoted to high-level
social behavior analysis. In this paper, we present a novel
semantic-based spatio-temporal descriptor which can cope
with several interacting people at different scales and mul-
tiple activities in a video. Our descriptor is suitable for
modelling the human motion interaction in crowded envi-
ronments – the scenario most difficult to analyse because
of occlusions. In particular, we extend the Poselet detector
approach by defining a descriptor based on Poselet activa-
tion patterns over time, named TPOS. We will show that
this descriptor can effectively tackle complex real scenar-
ios allowing to detect humans in the scene, to localize (in
space-time) human activities, and perform collective group
activity recognition in a joint manner, reaching state-of-the-
art results.

1. Introduction
Understanding human activity is a problem whose solu-

tion has a clear impact in modern Computer Vision applica-
tions. In general, people activities convey rich information
about the social interactions among individuals, the con-
text of a scene, and can also support higher-level reasoning
about the ongoing situation. In such regard, much attention
has been recently posed in the detection and recognition of
specific human activities from images and videos, mainly
focusing on crowded scenes. Such task has been formal-
ized in the literature as a classification problem where a la-
bel corresponding to a collective activity has to be assigned
to a specific video frame or a video clip, possibly also iden-
tifying the spatial location in the video sequence where such
activities occur.

This paper addresses this open issue and aims at propos-
ing a spatio-temporal descriptor called TPOS, based on
Poselets [2]. This descriptor is effective in detecting in
space and time multiple activities in a single video se-
quence, so providing a semantically meaningful segmenta-

tion of the footage, without resorting to elaborated high-
level features or complex classification architectures. In
the literature, apart from the core classification aspects, a
substantial debate has been posed over the type of fea-
tures which are more discriminative for the activity detec-
tion/recognition problem. In this context, two classes of
approaches can be identified, which are related to the level
of semantics embedded in the descriptor.

On one hand, feature-based methods adopt the clas-
sical strategy of detecting first a set of low-level spatio-
temporal features, followed by the definition of the related
descriptors. These descriptors should be representative of
the underlying activity and they are typically defined as a
spatio-temporal extension of well-known 2D descriptors,
such as 3D-SIFT [21], extended SURF [24], or HOG3D
[10]. Among the best performing features, we can quote the
Laptev’s space-time interest points (STIP) [14], the cuboid
detector [7] and descriptor based on Gabor filters [3]. A
number of other descriptors also deserves to be mentioned
like dense trajectories [22], spatial-time gradient [15], op-
tical flow information [7], and Local Trinary Patterns [25].
In [16], an unsupervised spatio-temporal feature learning
scheme is proposed which only uses the intensity value of
the pixels in an extended ISA (Independent Subspace Anal-
ysis) framework. An interesting comparative evaluation
was presented in [23], which reports a performance anal-
ysis of different combinations of feature detectors and de-
scriptors in a common experimental protocol for a number
of different datasets.

On the other hand, a different set of methods, named
people-based approaches, directly use higher-level features
which are highly task-oriented, i.e. they are tuned to deal
with people. They rely on a set of video pre-processing
algorithms aimed at extracting the scene context, people
positions (bounding boxes, trajectories) and head orienta-
tions. For instance, the context around each individual is
exploited by considering a spatio-temporal local (STL) de-
scriptor extracted from each head pose and the local sur-
rounding area [6]. The Action Context (AC) descriptor is
introduced in [11] in a similar way as STL, but it models
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action context rather than poses. In [12, 13], two new types
of contextual information, individual-group interaction and
individual-individual interaction are explored in a latent
variable framework. The Randomized Spatio- Temporal
Volume (RSTV) model, a generalization of STL method,
is introduced in [5] by considering the spatio-temporal dis-
tribution of crowd context. Khamis et al. [8] presented a
framework by solving the problem of multiple target iden-
tity maintenance in AC descriptors. Recently, Choi and
Savarese [4] put a step forward presenting a more extensive
model which estimates collective activity, interactions and
atomic activities simultaneously. Finally, [9] introduced a
model which combines tracking information and scene cues
to improve action classification. The comprehensive survey
in [1] reports an excellent overview of recent and past works
in this domain.

Both classes of approaches have their expected pros and
cons which are more evident for “in the wild” scenarios.
In particular, people-based methods highly rely on the ac-
curacy of sophisticated detectors that might fail in the case
of dense (i.e., crowded) scenarios because of the presence
of occlusions, or due the impossibility to reliably deal with
the spatio-temporal correlation among the large number of
targets. However, in case of accurate detections and track-
ing, they have shown to obtain the best performance. This
is mainly due to the significant semantic information pro-
vided by the descriptors which is tailored to the task of hu-
man sensing.
Instead, feature-based approaches utilize low-level spatio-
temporal representations regardless the scene complexity,
and thus they are less prone to gross misinterpretations as
given, for instance, by false positive person detections even-
tually obtained by people-based methods. However, low-
level features lack of an actual semantic interpretation since
the identity and the collective human parts peculiar of the
interaction are typically disregarded. In other words, such
features are extracted at the whole frame level, and not nec-
essarily correspond to high-level descriptions of a spatially
and temporally localized activity, or are related to local pe-
culiar parts of the image.

1.1. Discussion and contributions

In order to overcome these limitations, this paper pro-
poses a method to narrow down the gap between feature-
and people-based approaches, namely, trying to inject a se-
mantic value to spatio-temporal features, so leading to more
powerful discrimination of human activities while maintain-
ing the method complexity to a manageable level. We intro-
duce here a novel semantic descriptor for human activity as
a temporal extension of the Poselet approach [2], in which
human, semantically meaningful body parts and their mo-
tion are modelled by poselets activations in time. In a nut-

Figure 1. Three types of poselet activations in time in a 10-frame
video (bottom): head, torso and legs in the sequence are displayed
as blue, red and green profiles, respectively, in a 10-frame se-
quence, showing the correlation of these types of poselets during
the “running” activity.

shell, we devised a temporal poselet (TPOS) descriptor by
analyzing the activation correlation of a bank of (poselet)
detectors over time. This provides a video representation
composed by joint human detections and activity character-
ization using the basis of the detection activation patterns of
the poselets.

The underlying idea of the proposed approach is that,
since each poselet is activated by a particular static human
pose, the collection of poselet activations in time can cap-
ture and characterize human motion. In other words, by
assuming that people activities can be described as a se-
quence of peculiar body poses, they can be represented as a
sequence of activations of a set of human body part detec-
tors. As an example, in Fig. 1, we show the activations of
three different poselets (face, torso and legs) in a 10-frame
video block of a video sequence representing a running per-
son. It is worth to note that the specific sequence of appear-
ing/disappearing of the human legs, torso and face in this
short video clip is encoded by corresponding activations of
the leg, torso and face poselets, respectively. So, the acti-
vation profiles of these three poselets suggest that human
activity is correlated with temporal profiles of body parts
and that can be learned for a discriminative analysis.

Similar to our proposal, in certain (partial) aspects, a
few recent works on activity recognition are worth to be
mentioned. The closest work to our is [18] where pose-
let detector activations have been used for activity recogni-
tion in still images. The idea is similar to ours, that is to
build a robust descriptor for actions considering activation
of poselets. In their work the feature level action discrimi-
nation was caught by re-training a large dictionary of 1200
action-specific poselets. This set of detectors were trained
in the same dataset and tuned for specific action classes.
In our case, first we deal with video sequences instead of
still images, then, we aim at capturing action discrimina-
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tion at a representation level and model the pose dynam-
ics of a group of people using the basis pattern of pose-
let co-occurrence. So, we instead use the activation score
of an outsourcing bank of detectors (150 general purpose
poselets), as learned in the original formulation [2], and we
tested on video datasets, which results in a much more chal-
lenging scenario.

Very recently, activities have been modelled as a sparse
sequence of discriminative keyframes, that is a collection of
partial key-poses of the actors in the scene [19]. Keyframes
selection is cast as a structured learning problem, using
an ad hoc poselet-like representation trained on the same
dataset used for testing (still using separate sets), and re-
inforcing the original poselet set using HOG features with
a bag of words (BoW) component. This approach has in-
teresting peculiarities and reaches good performance on the
UT-Interaction dataset. Nevertheless, it uses specific de-
scriptors learned from the same dataset and, despite it is
claimed to be able to spatially and temporal localize ac-
tions and action parts, this is reached only in terms of the
keyframes extracted, and it still has the limit to classify an
activity per test video sequence.

The main peculiar aspect of our approach lies in the
design of a new, yet simple, feature descriptor which re-
sults to be expressive for detecting people and to charac-
terize their collective activity. In particular note that our
descriptor is not customized (i.e., “tuned”) on any specific
dataset (for training and testing), but the basic (poselet) de-
tectors are used as given in [2], and tested in completely
different datasets. Moreover, our particular formulation po-
tentially allows to deal with different activities in a single
video sequence, so promoting its use for segmenting contin-
uous video streaming providing temporal and spatial local-
ization of the semantically meaningful events of the video
sequence. These characteristics make TPOS unique in the
panorama of the spatio-temporal descriptors for human de-
tection and collective activity recognition. It is also worth
to note that single human actions are out of the scope of this
work and our approach is devoted to the analysis of groups
of people and crowds in time.

We tested the TPOS method on two public datasets
[5, 4] and our experimental evaluation will show that it can
effectively be used for group detection and collective activ-
ity recognition in the wild, outperforming the state-of-the-
art baseline methods and showing the limitations of the pure
feature-based methods.

The remainder of the paper is structured as follows. The
temporal poselet approach is presented in Sec. 2 together
with its application to the people group detection. Section
3 shows the strength of the semantic representation of the
temporal poselets for addressing the group activity classifi-
cation problem. Experiments in Section 4 will evaluate the
proposed approach on two different datasets [5, 4]. Finally

a) b)

Figure 2. a) The image is partitioned using a regular grid (in red)
where each cell grid is defined by Gj containing the 2D position
and the cell grid size. A poselet p with activation i (in green)
is defined in the same manner with P(p)i. Notice here that the
same poselet activation may intersects and/or include several cell
grids in the image. b) The activation for a cell gk is given by the
intersection between the poselet P(p)i bounding box and the grid.

Section 5 will draw the direction for future work and further
application domains.

2. Temporal poselets for group activity recog-
nition

Our final goal is to detect the collective activity of a
group of people in weakly labelled videos. In this section,
we will formalize our poselet-based temporal descriptor to
be used for two applications, group detection and collective
activity recognition.

2.1. Poselet-based video representation

We first derive the descriptor in 2D and then we follow
with the extension in time. A generic image frame is first
partitioned in a set of Nh×Nw grid cells. the overall set of
image cell is represented by the set G such that:

G = {gk}|G|k=1 and gk = {zk, w, h},

where zk ∈ N2 represents the coordinates of the top-left
corner of the grid cell, w and h the constant grid cell width
and height, respectively and |G| = Nh × Nw. Following
this notation, a given cell grid k is fully specified by gk.

Given an image If we run P poselet detectors as a filter
bank. This provides the location of the detected poselets
together with their bounding box size.In particular, for each
poselet detector p with p = 1 . . . P , we obtain the set of
poselet detection P such that:

P(p) = {ai}|P(p)|
i=1 = {li, wi, hi, ci}|P(p)|

i=1

where li ∈ N2 represents the coordinates of the top-left cor-
ner of the poselet bounding box, wi and hi gives the bound-
ing box width and height for the detection i respectively and
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finally ci is the poselet detection score. As defined before,
the activation i of poselet p is fully defined by P(p)i = ai.
Notice here that in general a poselet detection P(p)i may
include several cell grids of the set G (see Figure 2a).

Now we need to define for each cell grid gk of the image
which type of poselets p has been activated. To this end,
we define a spatial poselet activation feature v(p)ik as the
ratio between the areas of the intersection and union of the
bounding boxes, i.e.:

v(p)ik =
area(ai

⋂
gk)

area(ai
⋃
gk)

,

where the operators
⋂

and
⋃

define the intersection and
union respectively of the image windows i, k whose area is
given by the function area( · ). This ratio indicates if ai,
the ith activation of the poselet p includes the image cell gk.
By considering all the possible activations i of poselet p we
can define the spatial poselet feature over all the possible
activations as:

v(p)k =

|P(p)|∑
i=1

ci v(p)ik

that provides an indication of the persistence of a particular
poselet weighted by the score ci in a given grid of the im-
age. We finally characterize the overall poselet activation by
defining the spatial poselets vector vk ∈ <P for the image
cell j as:

vk =
[
v(1)k, v(2)k, . . . , v(P )k

]>
.

This vector has an entry for each poselet type which reflects
the degree to which a particular poselet is activated in that
area.

In order to consider the dynamics of the scene, we ex-
tend the previously defined spatial descriptor with a tem-
poral component. This is achieved by further dividing the
video sequence in a set of (Nh × Nw × Nt) video blocks
where the length of each block in time is normally T = 10
frames. Such frame length was optimised in [16] and [23].
Given each image frame in the T -frame video clip, we can
define for each cell grid gk over time t (i.e., the video block)
a set of T spatial poselets vectors vk,t for t = 1 . . . T . Thus
we define the temporal poselet descriptor TPOSk for the
video block k as the concatenation of all the spatial poselet
vectors such that:

TPOSk =
[
v>
k,1, v>

k,2, . . . , v>
k,T

]>
. (1)

The vector TPOSk ∈ <TP is including the activations
of all the poselets in a particular video-block in space and
time and captures human motion regularities in the crowd
by analyzing the statistics of their poses given the poselet
activations. It also embeds the information of the activations

of different poselets in time and not only in space (see Fig.
3 for a graphical description).

This semantic description of the scene helps us toward
having a better understanding about the functionality of
each region based on the implicit human pose in that region.

2.2. Video representation and group detection

The temporal poselet vectors defined in Eq. (1) are the
basic building blocks for creating a people-based represen-
tation of a video sequence. In practice, the descriptor here
defined is a powerful cue for detecting human groupings in
unconstrained scenes. However, as the poselet detectors are
subject to false positives, some activations might be noisy or
not consistent with the human activity. For this reason we
define a saliency measure that discards video blocks with
few activations.In practice we define the saliency of a tem-
poral poselet as the sum of the elements of TPOSk giving:

sk = ‖TPOSk‖1 .

This measure is an indication of the overall activations of
a specific video block and it will be also used for higher-
level tasks such as group activity recognition in order to
obtain fewer examples for training and testing. We select
this measure because, it exploits the strength of the spatial
activations as well as the poselet scores.

Such saliency can also be used directly to provide a
powerful cue for people detection in unconstrained scenes.
Given sk for all the cell grids, it is possible to graphically
visualise the saliency measure as in Fig. 4. The resulting
map, overlayed over the images in Fig. 4c, is called Ac-
tivation Map, and it shows that activations are more pre-
dominant where the major density of people are present. It
is also interesting to show a comparison between the infor-
mation implicit in the TPOS descriptor with respect to a
general purpose descriptor such as STIP [14]. For instance,
common spatio-temporal descriptors are responsive to mo-
tion, regardless if the cause of the movement is given by a
car or a pedestrian as visible in the second row of Fig. 4d.
Also note that in the video clips in the first and third rows of
the figure the camera is shaking, and this create a relevant
amount of noise for a standard spatio-temporal descriptor.
The Activation Map given by the temporal poselets instead
only provides the location of the human motion. For similar
reasons, TPOS does not manage well single person activ-
ity as poselet detector responses are sensitive to the density
of the scene. Actually, TPOS being a high-dimensional
descriptor is very sparse if the scene is scarcely populated.
Such sparsity can be found in other high-level descriptors
like those presented in Object-bank [17] and Action-bank
[20] works.
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Figure 3. Temporal poselet for a particular video block (shown in white) where colours show poselet activation in different frames.

3. Temporal poselets for group activity recog-
nition

Temporal poselets can be used for group activity recog-
nition reaching a higher classification performance than
standard spatio-temporal descriptors. In such case, we have
to characterize an activity in a video stream given the tem-
poral poselets and relate such information to the set of
class activity labels. The standard procedure using tem-
poral descriptors such as SURF3D and HOG3D follow the
line of classical bag of words (BoW) approaches. Here we
present an adaptation using the temporal poselets that ac-
tually achieves a finer representation power than standard
methods.

First, we perform the usual split into training and testing
sets using a dataset of videos showing different group ac-
tivities. Then, our approach extracts all the temporal pose-
let vectors by dividing all the training video sequences in
sub-sets of T frames thus obtaining F video clips in total.
Since the overall number of temporal poselets can be ar-
bitrarily high, we remove temporal poselets with a saliency
value lower than a prefixed threshold (i.e. we keep a generic
TPOSk only if sk > sth). After this initial pruning stage
we obtain N temporal poselets that are then used to create
a codebook with k clusters (in general k is in the order of
the hundred and N about 105/106). A K-means clustering
method using the cosine distance as a similarity measure is
adopted to compute this dictionary obtaining for each of the
N temporal poselets an assignment to each of the k clusters.

Now, for the F labelled video clips we compute a his-
togram representing the frequency of the k temporal poselet
words in each clip. This stage provides a set of F histogram
hf ∈ <k with f = 1 . . . F which represents the frequent
correlated Poselets in space and time for the activity classes
considered. Representing the crowd motion using bag of the
basis temporal poselets, provides more flexibility for repre-

senting very complex crowd motions. The histograms for
each video clip and their related activity labels are then fed
to a SVM classifier. At inference time we create a Bag-of-
Word representation for each video clip by assigning each
video block to the nearest cluster by using cosine distance.
Finally we use trained SVM for classifying the activity of
people in the input video clip.

4. Experimental Results
In this section we present the datasets used for evalua-

tion, the baseline methods and our results for group detec-
tion and collective activity recognition.

4.1. Dataset description

We use several released versions of the Collective Ac-
tivity Dataset (CAD), introduced first in [6] for evaluating
collective activities. The dataset is suitable for our task be-
cause of the presence of multiple people activities in the
natural unconstrained setting, while most of the classical
activity datasets (i.e., CAVIAR, IXMAS, or UIUC), are not
adequate for our purpose, since they either consider only
the activity of a single person or few number of people [9].
We test our descriptor on second version of the Collec-
tive Activity Dataset (CAD2) [5] and the recently released
third version (CAD3) [4]. CAD2 contains 75 video se-
quences captured with hand held cameras in realistic con-
ditions including background clutter and mutual occlusions
of people. We have activities classified with the following
6 categories: crossing, waiting, queueing, talking, danc-
ing, and jogging. Instead CAD3 presents 33 video clips
with 6 collective activities: gathering, talking, dismissal,
walking together, chasing, queueing. The annotation of the
datasets used in our approach are given by people bound-
ing boxes and their trajectories in time. Noticeably, CAD3
has sequences with almost no camera motion with respect
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a) b) c) d)
Figure 4. Temporal poselet for group detection: (a) represents a sample from 10-frame different video clips. (b) displays the ground
truth positions for the people in the scene (c) shows the color coded activation for the Activation Map using temporal poselets where red
represents the stronger activations (d) shows the color coded activation for the Activation Map using STIP [14].

to CAD2 where the camera is subject to relevant motion.

4.2. Implementation of the baseline methods

Our final goal is to evaluate the increment of perfor-
mance given the proposed TPOS descriptor. For this
reason, we implement two baseline methods with classi-
cal low-level temporal descriptors, and we report the in-
crement of performance for collective activity recognition
in two datasets (CAD2 and CAD3). When comparing with
feature-based approaches we employ a similar pipeline and
protocol as described in [23]: we extract local features, we
perform vector quantization by using K-means, and we fi-
nally classify using χ2 kernel SVMs. As presented in Sec.
3 our method changes the feature extraction stage: we re-
placed state-of-art descriptors with the new introduced tem-
poral poselet features.
Activity Detection. In more details, we first run space-time
interest points (STIP) [14] on each frame for each video
sequence of the training videos 1. Then, we divide each
clip to fixed-size video blocks by applying a 3D grid (of
size 20 × 20 × 10 pixels) as described in Sec. 3. Subse-
quently, we count the frequency of spatio-temporal interest
points belonging to each block. This provides a map for
each video clip similar to the Activation Map for temporal
poselets which is shown in figure 4(d). We consider this
approach as our baseline method for group detection.

1For evaluation we use the code made available at: http://www.
di.ens.fr/˜laptev/download.html with its default parameters.

Activity Recognition. Now, to create a baseline for fea-
ture based collective activity recognition, we then select a
subset of the video blocks in which the number of spatio-
temporal interest points inside them is higher than a pre-
fixed threshold. Notice here that we empirically selected
the saliency threshold sth=150 in our method and sth=120
for the baseline method since these thresholds gave the best
performance for each algorithms.
At each selected video block we extract a HOG3D descrip-
tor followed by the K-means clustering on around 700, 000
video blocks extracted from training data. We set the size
of our codebook to 100, and then represent every video clip
using bag of these visual words. This parameter K was op-
timized across the dataset carrying out several experiments
with different parameter values finding no big differences
in performance. In particular, we initially select K=4000
(same as [23]), and we reduced to K=1000 gradually down
to 100, finding no significant improvement in terms of av-
erage accuracy. We finally kept K=100 as the best com-
promise between accuracy and computational cost. Finally
we trained multi-class SVM with χ2 kernel on a BoW rep-
resentation of our video clips. In the inference phase, for
each input video clip we again create a BoW representation
by assigning each video block to the nearest cluster by using
cosine distance. Finally, we use trained SVM for classifying
the activity of people for every input video clip.
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a) b) c) d)

Figure 5. Confusion Matrix: (a) CAD2- Baseline method. (b) CAD2- TPOS method (c) CAD3- Baseline method (d) CAD3- TPOS.

4.3. Results and discussion

The main focus of the experiments is to quantitatively
evaluate group activity detection and recognition using
CAD2 and CAD3. Nevertheless, we also show qualita-
tive results about the robustness of our approach to camera
motion and dynamic background (see Fig. 4). Collective
action detection is also evaluated with quantitative results
in terms of ROC curve (see figure 6) against the saliency
threshold parameter. For quantitative evaluation of group
detection, we first generate the ground truth information
for multiple people in videos using single people bound-
ing boxes. This ground truth information is provided in
terms of human/non-human label for each cell of the 3D
grid. More precisely, for each video sequence we generate
a 3D binary matrix with the same dimension of the Acti-
vation Map. This matrix consists of 1s where people are
present in that video block and 0 where there is no person
inside (see Fig. 4(b)). This ground truth matrix allows us
to compare with the baseline method in terms of detecting
video blocks as people. Since the density of people in each
video sequence is shown as an Activation Map, varying the
saliency threshold will result in different video blocks se-
lected as people. We then compute the FP, TP, TN and FN
for each threshold value by comparing the assigned label
(human or non-human) and the ground truth label for each
cell in the grid. This is given by counting the number of
same/different labels of the cells in Activation Map in com-
parison with their corresponding cells in ground truth. The
overall results shows 24.50% improvement in terms of the
area under the ROC curve.

Our activity recognition results are shown in Fig. 5 in the
form of confusion matrices for the 6-class datasets (CAD2
and CAD3). We also report the performance of our method
compared to the baseline approach. In summary, we out-
perform the baseline in average by 10.10% in CAD2 and
19.50% in CAD3 (see Table 1). It is also interesting to no-
tice the higher confusion values among the waiting, queue-
ing and talking classes. This shows that our descriptor has
the tendency to confound human poses related to these three
classes because they are very similar in the pose of the peo-

Figure 6. Group detection result: TPOS (green) vs. Base-
line(blue)

ple taking part on these activities (i.e. mainly standing).
On the other hand, when the intensity of motion activity is
higher in activities like in crossing and jogging, we have
more accurate results. This can be related to the implicit
dynamics extracted by the temporal poselet descriptor.

Moreover, such behaviour does not emerge in the confu-
sion matrix of the baseline approach because it captures the
low-level statistics of the pixels motion and gradient. Thus,
such descriptor is more sensitive to the appearance of the
scene and of the background. In fact, temporal poselets are
not likely to be activated in such parts of the image and they
are directly related to the human content of the scene. It is
also worth to note that the baseline method has worse re-
sults in CAD3 because of the lack of overall motion in the
sequence since this dataset is a fixed camera scenario. Our
method instead, since it is responsive to human parts can
anyway provide reasonable results even if people are not
moving too much.

Table 1 also shows the results of our method along with
our baseline and the other recently published people-based
approaches like [9, 5] for CAD2 and [12, 4] for CAD3. As
mentioned before, the use of higher level features increases
the performance of their systems. Actually, [9] employs
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Base TPOS RSTV [9] [12] [4]
CAD2 62.8 % 72.9 % 71.7 % 85.7 % - -
CAD3 52.8 % 72.3 % - - 74.3 79.2%

Table 1. Average Classification Accuracy.

additional information in training time including bounding
boxes of all people, the associated actions and their identi-
ties. Instead, the RSTV model [5] beside using this infor-
mation, it also adds additional trajectory information during
training, including the location and the pose of every person
as well. However, notice that we outperform the feature-
level baseline approach significantly, and we slightly out-
perform the RSTV method when it is not optimized adopt-
ing an MRF on top. Obviously, we perform worse than
Khamis et al. [9] because of the considerations made previ-
ously, which we included here for the sake of completeness
of evaluation. In CAD3, our results are comparable with
[12](as reported from [4]), and there is only 6.8% differ-
ence in average accuracy with respect to [4]. Both these
methods are people-based and are based on complex mod-
els, the former using contextual information in a latent SVM
framework, and the latter by combining belief propagation
with a version of branch and bound algorithm equipped with
integer programming.

5. Conclusions
We have evaluated our method by using the temporal

poselet descriptor for group detection and activity recog-
nition in the wild. The results show significant improve-
ments in detection as well as recognition task in compari-
son with the baseline methods. Our representation based on
temporal poselets can locally discover the presence of col-
lective activities and recognise the type of action in a single
video sequence. This aspect is very important for tasks in
video-surveillance for crowded environments where there
is a serious need to localize possibly anomalous activities.
Moreover, this approach could also be used for video sum-
marization, by extracting the video clips mostly representa-
tive of the peculiar collective activity in a long sequence. In
particular, future work will be directed towards the space-
time segmentation of different activities in a single video
sequence.
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