UNIVERSITA DEGLI STUDI
DI TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://dit.unitn.it/

WIKIREP:
DIGITAL REPUTATION IN VIRTUAL COMMUNITIES

Mikalai Sabel, Anurag Garg, Roberto Battiti

June 15, 2005

Technical Report # DIT-05-050

WikiRep: Digital Reputation in Virtual
Communities

Mikalai Sabel, Anurag Garg, Roberto Battiti
Dipartimento di Informatica e Telecomunicazioni,
Universita degli Studi di Trento
{msabel,garo,battiti}@dit.unitn.it

June 15, 2005

Abstract

We present a framework for applying digital reputations to collab-
orative environments, where multiple authors contribute to the same
document. In our mechanism readers evaluate a single document, and
reputation data derived from the feedbacks affect multiple authors
and document versions. The digital reputation encourages contribu-
tion and provides motivation for active participation, leading to better
quality of the content and to better user experience. Our approach
is applicable to user-managed communities, distributed moderation
systems, and other collaborative contexts.

The underlying ideas of our scheme are: separate ratings for differ-
ent versions of the same document, inheritance of previous ratings for
newer versions, and appropriate allocation of credit to versions and
authors. We describe in detail both the algorithms used to compute
reputations, and our implementation, WikiRep, a reputation-enabled
Wiki application.

1 Introduction

The aim of this work is to use digital reputations in a collaborative vir-
tual environment. The concepts of digital trust and reputations are pop-
ular and widely used in online communities today, for example, in slashdot
(slashdot.org), epinions (epinions.com), ebay (ebay.com) and amazon reviews
(amazon.com). However, available systems assume that each object (article,
review, transaction) has a single responsible person (author, seller), and that

the objects are independent from each other. A typical scenario for a system
like slashdot is presented on Figure 1. The system consists of community
members (i.e. users of the system), who can act like authors or readers, and
objects — articles and comments. First, an author creates an object, then
a reader evaluates it and leaves a feedback. From the feedback, the system
derives a rating for the object, a reputation of the author, and a personalized
opinion of the author by the reader. For each object, there is only one author
and many readers. Analysis and experiments on existing applications have
shown that such distributed moderation is feasible in practice [8, 2, 12].

We present a generalization of the reputation-based approach, see Fig-
ure 2, where there are several authors creating different versions of the same
document. Readers read and evaluate the document as a whole, and the feed-
back is allocated to the authors and the versions. Some issues concerning
users’ behavior in collaborative environments have been discussed in the con-
text of Collaborative programming contest [6], but the scenario is restricted:
instead of reviews from community, there is an objective metric for object’s
value (program execution time), and only the last author is rewarded, inde-
pendently of degree of his contribution. In this paper, we present an approach
to assign credit to the different authors starting from the feedback values,
and to derive digital opinions in a generalized multi-authored scenario.

As the implementation platform, we have chosen Wiki, a highly collab-
orative virtual application for writing online documents. Wiki has achieved
significant popularity during recent years, and collaboration is one of its key
features. Other examples of collaborative applications are: co-authorship in
writing documentation, team software development, online discussions, etc.

community reputation

*/— ~Z~C/‘ea[e */ rwﬁg
(]

A< 2-reaq

*\ T ﬂ_ﬁ‘

3'eVa/Uate document

Figure 1: Context for digital reputations: single document and single author

The motivation for introducing digital opinions is that they automate
maintenance of the virtual environment, and they require less dedicated hu-
man resources [1]. The systems become more scalable and affordable for a
larger range of environments. In addition, digital opinions provide motivation
for active participation, by rewarding the best contributors with increased

"‘—‘—_ - .-.."~~ t t.
o o ,,-.":____(?_r?al‘/o,i..‘. /.././/repg ations

0‘)\‘“

3-evaluate document
community

Figure 2: Context for digital reputations: collaborative authors and docu-
ment with internal version structure

reputation to indicate their achievements. The major challenges in employing
reputations in a collaborative scenario are:

e The highly dynamic nature of content: each object is modified many
times during the collaborative editorial process, and evaluations may
become irrelevant. To solve the problem, we suggest to apply evalua-
tions to individual versions, and to use rating inheritance from already
evaluated documents to newer versions.

e Each object contains contributions of many members. Feedback has to
be processed differently to derive ratings and opinions for all reused ver-
sions and their authors. For that, we use author and version allocation
factors.

In this paper we concentrate on mechanisms for deriving opinion data
from feedback in a Wiki collaboration environment. Section 2 describes the
case study context (Wiki), and the assumptions made. Section 3 presents
the design of the feedback allocation procedure, and Section 4 describes pro-
totype implementation, including algorithmic details and design choices.

2 Context, definitions and assumptions

In this Section, we briefly describe the case study we consider (Wiki collabo-
rative environment), provide definitions of reputations, opinions and ratings,
and explain the assumptions about the page structure and opinions.

The Wiki concept and the first implementation were introduced by Ward
Cuningham in 1995 [13]. Wiki is a method to build and maintain a web-site
with pages written mostly by visitors. Many Wiki implementations have
been created (MediaWiki [7], Twiki, etc.), but to the best of our knowledge

3

none of them employs digital opinions and reputations to improve usability
and content quality. If different access permissions are supported, usually
the administrator or the first page author manually defines access rights. As
result, it takes considerable time and effort to perform administration, and
the whole community relies on the activity of particular members.

We consider our opinion-handling mechanism as an add-on to the base
system (Wiki in our case). Figure 3 displays the resulting system, with added
elements marked in grey. The new elements are: storage structures for rep-

O storage
interface /
content wiki engine content

and A
I :
controls S page
rafings . O structure
and O _ reputation
feedbacks reputation engine data

Figure 3: System overview: Wiki + digital opinions

utation data and for additional information about pages structure, interface
elements to visualize reputations and collect feedbacks, and an engine to
process reputation data and interact with the basic Wiki engine. The in-
teraction between the basic system and the reputation engine (dotted line)
corresponds to the various usages of the collected data. A straightforward
example is opinion-based filtering: pages having a low rating are not dis-
played to the readers. In general, the reader must be given a high level of
flexibility in deciding about how to use the reputation system. Our focus is
on the creation of reputation data, and the possible ways to use these data
are outside of the scope of this paper.

Opinions, reputations and ratings. From a user’s point of view, opinion
is a perception about an entity, based on previous experience. Equivalently,
it is a collection of evaluations used to build predictions. The evaluations
may have varying impact on community. A local (personalized) opinion is
used by its originator and nobody else, while a global opinion affects all com-
munity members [9]. Global opinions are also called reputations or ratings,
when they refer to community members or objects, respectively. With per-
sonal opinions, each member controls his own view of the community, and the
damage due to abuse is minimized. However, to collect enough personal feed-
backs, the interactions must be repetitive, and an initial ‘bootstrap’ period

4

is needed. At the same time, global reputations and ratings reuse previ-
ous evaluations made by all community members, and are available even for
novice participant or external visitors, who do not have sufficient personal
interaction experience. The disadvantages of global reputations are the risk
of cheating and the lack of customizability for individual users. The feedback
allocation mechanism described in Section 3 may be used equally for both
personal and global opinions.

When considering the technical aspects of opinion computations, we as-
sume that feedbacks are processed as pairs (value; quality), where value de-
fines the feedback mark, i.e., reader’s evaluation of object’s merit, and quality
characterizes significance of the evaluation. Quality is a weight normalized
to the [0, 1] interval, with 0 meaning a completely unreliable evaluation that
is not considered, and 1 corresponding to a reliable evaluation. Details of
the representation we use are explained in Section 4.

Page structure. Successive versions of the same page normally have sim-
ilar content, because the newer versions are modifications of the older ones.
The simplest model of a Wiki page is a sequence of versions, ordered by their
time of creation. Each version, except the very first, is a descendant of the
preceding one. Unfortunately, this model is insufficient to describe a realistic
evolution of a Wiki page, when contributors perform reverts and re-insertions
from older versions. The most general model of a Wiki page is the one in
which all previous versions are considered as contributors, which results in
high complexity.

A feasible tradeoff between simplicity and generality is achieved by tree
model (Figure 4). In this case, each version has at most one parent version.
The parent is considered to be the major foundation for its child version(s).
If a version is completely original (e.g. re-written from scratch, or the first
version), it has no parent. The tree model is reasonably simple and captures
the typical behavior of a Wiki user well: a new version is normally created
starting from one of the existing versions, but not necessarily the latest.
Hereafter, we assume that the tree model is the one employed.

Relations between pages and their parents are characterized numerically
by adoption coefficients. Consider two versions ¢ and j of the same page, ¢
being older than j. The adoption coefficient a; ; characterizes the ‘similarity’
between the versions, in particular, it measures how much content of version
i is preserved in version j. The scale for adoption coefficient is [0, 1], with
0 corresponding to independent versions, and 1 meaning that j is a copy
of ¢, with no differences. Generally, any automated algorithm for produc-
ing adoption coefficients is feasible, starting from naive text comparison and

Figure 4: Tree model of Wiki page

up to semantic-aware tools, depending on requirements, resources and defi-
nition of ‘similarity’” in particular environment. An approach that we have
implemented is presented in Section 4.

For the tree page model, we denote parent of version j as parent(j). For
example, on Figure 4, parent(7) = 6. Because each page version has at most
one non-zero adoption coefficient (the one towards its parent), a simplified
notation a; := Gparent(j),; 15 used for adoption coefficients. In fact, since
adoption coefficients are the metric for versions’ similarity, in our system
the parent version is chosen as the version having the maximum adoption
coefficient.

3 Collecting reputation data

The major novelty of our approach is its capability to handle objects con-
sisting of sewveral versions and created by different authors. This section
describes the algorithms to maintain reputations and opinions in such envi-
ronment.

Rating inheritance. When a new version of a page is created, it partially
inherits the rating of its ancestors. To be coherent with the feedback al-
location procedure below, a new version inherits fraction a; of its parent’s
rating. If the parent’s rating is (Rparent(j); qUalityparent(;)), the initial rating
of the newly created page j is initiated with (Rparent(j); @5 - qualityparent(s))
pair, which means that value of the rating stays the same, but its reliability
decreases. Only fraction a; of the content is inherited, and so is rating weight.
The other part, (1 — a;), is new and not evaluated yet, so it is considered to

6

have zero reliability weight.

Feedback allocation. Each reader can leave a feedback about page that
he reads as a single simple action, e.g. pressing (+) or (-) button. The
feedback affects not only the version being viewed, but also the previous
versions and their authors. Each involved page version and author receives
and individually collects a ‘fraction’ of the feedback given by the reader.

When a page version n receives feedback evaluation mark M, the ver-
sion n itself adds pair (M;w,,) to its version rating and (M;u,,) to its
author’s reputation. The addition actually is a weighted summation, and a
weighted average of the evaluations is used later as the opinion value. Version
m = parent(n) adds (M;wy,,) to its rating and (M;u,,,,) its its author’s
reputation, and so on. Each ancestor i of n receives feedback (M;w;,,) for
the page version and (M;u;) for its author. Weights w;,, and w;,, depend
on the page structure, and are defined and explained below. After the feed-
back weights are defined, the opinions about each version and each version’s
author are updated. Each feedback pair is added to a corresponding opinion,
reputation or rating, using value M and the proper weight.

Feedback allocation to versions. Feedback is allocated to page versions
using version allocation factors w; ;. Page rating characterizes the page ver-
sion as a whole, and not just the added value beyond its ancestors. Version
allocation factor w;; for a version j itself is 1, i.e. the version which has
attracted the feedback from the reader gets the ‘full’ weight, because it is
what the reader expects when giving the feedback for this version. Parent
version of the evaluated version gets a;-weighted evaluation, because a; part
of the read content was actually taken from the parent. This continues for
all page versions that are ancestors of j:

0 if © ¢ contributors(j)
[icinteriijy @ if @ € contributors(j) and i # j

(D)

where contributors(j) refers to the chain of all versions that are re-used in j,
including j itself: j, parent(j), parent(parent(j)), and so on, until a version
without any parent is finally encountered. The set inter(i,j) contains j’s
ancestors between j and ¢ (excluding ¢ and including j):

inter(i, j) = contributors(j)\contributors(i) (2)

Each version allocation factor includes both the part of feedback corre-
sponding to the added value of the given version and part corresponding to
all its ancestors.

Feedback allocation to authors. Each coefficient for allocating feedback
to version’s author, author allocation factor, measures original contribution
added in the corresponding version. The factor is defined as:

0 if i ¢ contributors(j)
w; =14 1—a if i = j RNE)
(1 = ai) ITrcinterqi) @ i @ € contributors(j) and i # j

The coefficients u; ; possess a useful property: Sum of coefficients u; ; between
a given page version j and all other versions is 1:

Zu@j =1, for any j (4)

Proof. We provide a proof by induction.

Basis: consider version m, such that a,, = 0, i.e. m has no parent. For
m, there is only one non-zero coefficient w,,,,, = 1. Thus, the proper sum is
1, and (4) holds.

Induction hypothesis: assume that (4) holds for some page version k.

Induction step: consider version [, such that k = parent(l), i.e. [is k’s

child. Then (4) holds for [as well:

Zui,l:ul,l+zui,l = 1—az+&zZui,k= 1—al—|—alZui7k: 1 (5)

i#l il i

We have used (3) to isolate a; multiplier, then the fact that u;;, = 0 to
generalize the sum, and finally substituted the sum using (4) for version k.
So, we conclude that (4) holds for all page versions. O

The property ensures that a user can never receive additional reputation
by creating superfluous versions.

Figure 5 schematically outlines the feedback allocation process for the
example page from Figure 4.

4 Implementation

Our implementation is based on eGroupWare [3], a free software to support
group activities, that contains a set of applications, including Wiki. The Wiki
implementation is originally based on WikiTikiTavi engine (tavi.sourceforge.net).
The modifications we introduced are: calculating and storing adoption coef-
ficients and parent references, calculating and storing of opinions, interface
elements to visualize reputations and input feedbacks.

recdback
for version 7 1-a7

a

éﬁ

%

eﬁ

1'3021

0

Figure 5: Feedback allocation factors and adoptions coefficients

Adoption coefficients. Whenever a new version of a Wiki page is saved,
adoption coefficients to all previous versions are calculated, the largest coef-
ficient determines the parent of the version and is stored for later use. There
are three properties of a Wiki page version that can be used to compute
adoption coefficients: author, modification time, and page text itself. We
use a text comparison to measure similarities and differences between page
versions.

Adoption coefficients are calculated in the following way. Texts of two
versions to compare are divided into blocks, using as separators punctua-
tion marks (full stops, commas, colons, semicolons, exclamation and ques-
tion marks). Consecutive spaces and new lines are ignored. Then, Leven-
shtein distance (edit distance) between the texts is found, using the blocks
as characters [10]. The distance is the minimal number of insert, modify
and delete operations on characters, needed to transform one text into the
other: (Ninserted + Nimodi fied + Naetetea). The distance is then normalized to fit
into [0, 1] range by division by the maximum possible value of the distance:
(Niotatnew + Naetetea), Where Niptarnew is the total number of blocks in the
newer version. Finally, subtracting this normalized distance from 1 gives the
adoption coefficient:

Ninse’rted + Nmodified + Ndeleted
Ntotal,new + Ndeleted

: (6)

Qold,new — 1—

Opinions and reputations in our system Considering the tradeoff
between purely local opinions and global community-wide reputations, we
choose a combination of both approaches, in order to fit different communi-
ties, members, and usage scenarios. Two types of opinions are stored in the
system: local member-about-member opinions, and global object reputations
(page ratings). Besides that, global user reputations are derived from local

9

member-about-member opinions. Use of the reputations is restricted to cases
when local opinions are not sufficient or not applicable. Local user-about-
page opinions are not used explicitly, but each user can evaluate each page
version only once.

Opinion representation in our system is based on the ROCQ (Reputa-
tions, Opinion, Credibility and Quality) scheme [4, 5]. All evaluations (in-
cluding opinions, reputations and ratings) are expressed as real numbers in
0, 1] range, with 0 being the lowest mark, and 1 being the highest. A second
value, quality, is used to characterize significance of the corresponding eval-
uation. Quality is also a real number within [0, 1] interval, with 0 meaning
a completely untrustworthy value, and 1 corresponding to a reliable value.
Altogether, opinion or reputation is a pair (value; quality).

Each opinion is derived from a set of individual marks, gathered during
previous interactions or coming from other sources. The set of marks is
treated as a random sample from independent identical distributions. Sample
mean (weighted average) gives value of the opinion:

S
value = N (7)
where S is the weighted sum of all collected evaluations marks, and NV is the
weighted number of the marks (sum of their weights).

Quality is derived as probability that interval [value—A, /2; value+A,. /2]
holds the actual mean of the underlying mark distribution. Width of the
interval A, is a parameter to be chosen. The difference between actual and
estimated means has Student’s t-distribution [11] with v = N — 1 degrees of
freedom. Overall, quality is found as:

. N-11
quality =1 = Iin_1)/(N-1412) (T 5) ’ ®)

where I, (a,b) is incomplete beta function, and

where 9, is the weighted sum of squares of collected evaluations marks. More
details on calculation of I,(a,b) and source code that was adopted in the
implementation are found in [11]. Parameter A, in our system is constant
and fixed at 0.1 level, slightly different from ROCQ, where it is a fraction of
value, i.e. A, = r - value (where, for example, r = 0.1).

The algorithm above cannot be used for n < 1, and provides meaningful
results only for sufficiently large n, at least n > 2 is expected. Therefore,

10

when n is small, either opinion quality is treated as ‘not defined’, or default
initial quality is used.

We suppose that the modifications made to not damage the ease of use
that Wiki provides. Only two elements are added to the page visualiza-
tion interface: symbolic representation of page rating and buttons to leave
feedback (Figure 6).

T -
Meni) Generale Wlkl
|* Horme
4 Praferanzs adqe ratim feedback buttons
@ Logout NetMob page g

Thant Wiki ‘; Wm——— T

4 Pagina iniziale

Madifiche: Recanti The NetMoh (Computer Networks and Mobility) research group at the [University of Trento] (Italy), fosters research and
S it development in distributed services, computer and telecommunications netwarks, addressing the needs of mobile and dynamic
contexts.
@ Cerca
PR Het-centric computing, given the complexity and the dimensions of concrete systems, is a frantier field where different
* fagina compstencies must be integrated for the development of future "killsr applications” and services, & warld of ubiguitous computing
based on calm technalogy is on the horizan but significant challsngss lie shead to develop protocols and supporting netwark
Wenis della camurits | | architectures, to integrate high-bandwidth wireless and wired access for mabile Users, to properly use sensors and machine

& i Iearning techniques to model the context and user prefersnces and to adapt applications to the individual needs.

These challenges require the integration of different thearetical and practical tools in a creative environment that cuts across rigid
borders between disciplines, This is the spirit of the NetMab activities, which include advanced research and educational
apportunities ranging from the basic Computer Science degree, to the Master Degree in Computer Science, to the international
[PhD program]. Here is a brief description of the research togics.

HModifica quests documents | Visuslizza cronologia dosumenta
ultima modifica documento Lunedi, 13/06/2005 18:34:15, di mikalal

Figure 6: WikiRep interface screenshot

5 Conclusions

In this work, we extend reputation algorithms for user-managed communi-
ties and distributed moderation, by providing a mechanism for deriving rep-
utations and opinions in a collaborative environment with multi-authored,
multi-versioned objects. Our approach is applicable to different contexts,
such as co-authored writing, documentation and source code development,
and online discussions. Successful deployment of reputations in these envi-
ronments will increase the quality of contributions, and provide motivation
for users to participate more actively.

The algorithm relies on maintaining reputations of individual pages and
properly allocating of feedback credit. Already established page reputations
are reused via rating inheritance. Reputations for authors and page ratings
are treated consistently, but with different allocation factors, reflecting their
different meanings.

We implemented the algorithms by using Wiki as our base system. Ad-
ditional data for reputations, opinions, and pages structure are stored and
handled by the reputation engine. The system is currently deployed, and
experiments and observation of a real virtual community are already under
way.

11

Acknowledgments

This work is funded by Provincia Autonoma di Trento through the WILMA
Project.

References

1]
2]

Meatball Wiki: a community of communities. http://www.usemod.com.

Dan Cosley, Dan Frankowski, Sara Kiesler, Loren Terveen, and John
Riedl. How oversight improves member-maintained communities. In CHI
'05: Proceeding of the SIGCHI conference on Human factors in comput-
ing systems, pages 11-20, New York, NY, USA, 2005. ACM Press.

eGroupWare. http://www.egroupware.org/.

Anurag Garg and Roberto Battiti. The Reputation, Opinion, Credibility
and Quality (ROCQ) scheme. Technical Report DIT-04-104, Informatica
e Telecomunicazioni, University of Trento, 2004.

Anurag Garg, Roberto Battiti, and Gianni Costanzi. Dynamic self-
management of autonomic systems: The Reputation, Quality and Credi-
bility (RQC) scheme. In To appear in The 1st IFIP TC6 WG6.6 Interna-
tional Workshop on Autonomic Communication (WAC 2004), October
2004.

Ned Gulley. In praise of tweaking: a wiki-like programming contest.
Interactions, 11(3):18-23, 2004.

Wikimedia Foundation Inc. Wikipedia, the free encyclopedia.
http://en.wikipedia.org/.

Cliff Lampe and Paul Resnick. Slash(dot) and burn: distributed mod-
eration in a large online conversation space. In CHI ’0/: Proceedings of
the SIGCHI conference on Human factors in computing systems, pages

543-550, New York, NY, USA, 2004. ACM Press.

Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. Notions of repu-
tation in multi-agents systems: a review. In AAMAS ’02: Proceedings
of the first international joint conference on Autonomous agents and
multiagent systems, pages 280-287, New York, NY, USA, 2002. ACM
Press.

12

[10] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31-88, 2001.

[11] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C, 2nd. edition. Cambridge University
Press, 1992.

[12] Paul Resnick, Richard Zeckhauser, Eric Friedman, and Ko Kuwabara.
Reputation systems: Facilitating trust in internet interactions. Commu-
nications of the ACM, 43(12), Dec 2000.

[13] Wiki Wiki Web. http://c2.com/cgi/wiki.

13

