UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

A REACTIVE SCHEME FOR TRAFFIC ENGINEERING
IN MPLS NETWORKS

Elio Salvadori, Roberto Battiti and Mikalai Sabel

December 2002

Technical Report # DI T-02-0098

A Reactive Scheme for Traffic Engineering In
MPLS Networks

Elio Salvadori, Roberto Battiti, Mikalai Sabel
Universita di Trento, Dipartimento di Informatica e Telecomunicazioni
via Sommarive 14, 38050 Povo (TN), Italy
Email: {salvador,battiti, msabel } @dit.unitn.it

Abstract— In this paper we develop a new Traffic Engineering
scheme for congestion control in MPLS networks based on a
reactive mechanism. While most existing TE schemes to prevent
network congestion rely on constraint-based routing (CBR), the
proposed algorithm uses a local search technique where the basic
move is the modification of the route for a single Label Switched
Path (LSP). Two versions of the algorithm are proposed: in the
first one, called FID, an already established LSP is rerouted
when a certain level of network congestion is detected, while in
the second, called LFID, it is rerouted when a new LSP request
cannot be satisfied. Experiments under a dynamic traffic scenario
show a reduced rejection probability especially with long-lived
and bandwidth consuming connection requests, thus proving a
better network resource utilization compared to existing CBR
schemes in MPLS networks.

I. INTRODUCTION

One of the most interesting applications of MPLS in IP-
based networks is Traffic Engineering (TE) [2]. The main
objective of TE is to optimize the performance of a network
through an efficient utilization of network resources. The
optimization may include the careful creation of new Label
Switched Paths (LSP) through an appropriate path selection
mechanism, the re-routing of existing LSPs to decrease net-
work congestion and the splitting of traffic between many
parallel LSPs.

The main approach to MPLS Traffic Engineering is the
so-called Constraint Based Routing (CBR). In this paper we
present a new scheme to reduce the congestion in an MPLS
network by using a load balancing mechanism based on a
local search method. The key idea is to efficiently re-route
LSPs from the most congested links in the network, in order
to balance the overall links load and to allow a better use of
the network resources. While CBR is based on a preventive
mechanism to avoid network congestion, the proposed scheme
acts only when network congestion is detected, thus it can
be considered a reactive scheme. Network congestion can be
detected in two main ways: either when the load on some
network links is dangerously close to the link capacity, or
when a new LSP demand request cannot be satisfied due to
traffic load already installed in the network. In this work we
compare both alternatives with well-known CBR mechanisms.

The paper is organized as follows. Section Il provides a brief
overview of Traffic Engineering schemes in MPLS networks.
Then the context and the motivations for our proposal are
highlighted in Section Ill, while the proposed algorithms are

explained in Section 1V. The results are analyzed in Section V.

Il. TRAFFIC ENGINEERING IN MPLS NETWORKS

One of the crucial problems a Service Provider has to
deal with is how to minimize congestion in its network. In
packet switching networks, congestion is related to delays and
therefore reducing congestion implies better quality of service
guarantees and reduced maximum traffic load in the routers.
In networks based on circuit switching, reducing congestion
implies that spare bandwidth is available on every link to
accommodate future connection requests or to maintain the
capability to react to faults in restoration schemes.

According to IETF RFC 3272, Traffic Engineering schemes
for congestion control can be classified according to the their
response time scale and their congestion management policies
(reactive or preventive) [1].

Most of the proposed TE schemes are preventive, they
allocate paths in the network in order to prevent congestion.
The two best known mechanisms in the literature in MPLS
networks are Constraint-Based Routing (CBR) and traffic
splitting. The first has its roots in the well-known Quality-
of-Service routing problems in IP networks and refers to the
calculation of LSP paths subject to various type of constraints
(e.g. available bandwidth, maximum delay, administrative poli-
cies). The second mechanism, traffic splitting, balances the
network load through optimal partitioning of traffic to parallel
LSPs between pairs of ingress and egress nodes.

One of the most cited CBR schemes, called MIRA (Min-
imum Interference Routing Algorithm) [9], is based on an
heuristic dynamic online path selection algorithm. The key
idea is to exploit the a priori knowledge of ingress-egress
pairs to avoid routing over links that could “interfere” with
potential future paths set-up. These “critical” links are identi-
fied by MIRA as links that, if heavily loaded, would make it
impossible to satisfy future demands between some ingress-
egress pairs. The main weaknesses of this scheme are the
computation complexity caused by the maximum flow cal-
culation to identify the “critical” links and the unbalanced
network utilization. As Wang et al. demonstrated in [12] with
two counterexample topologies (the “concentrator graph” and
the “distributor graph”), MIRA cannot estimate bottlenecks
on links that are “critical” for clusters of nodes. Second,
it does not take into account the current traffic load in

routing decisions [4]. Let’s consider the case where a source-
destination pair is connected by two or more routes with the
same residual bandwidth. When a new LSP set-up demand
arrives, one of these routes will be chosen to satisfy the
request. This implies that after this LSP has been set-up, all the
links belonging to the other routes become critical according to
the definition given above. This means that all the subsequent
requests between the same router pair will be routed over the
same route while all the other routes remain free thus causing
unbalanced resource utilization. Moreover, when the LSPs are
set-up and torn-down dynamically, this scheme can lead to
inefficiently routed paths and to future blocking conditions
over specific routes. This drawback is common to all CBR
schemes proposed in the literature, and is due to their implicit
preventive behavior.

Only a few reactive congestion control schemes have been
proposed in the literature. Holness et al. [7] propose a mecha-
nism called Fast Acting Traffic Engineering (FATE) to control
the congestion in an MPLS network. The ingress LER (Label
Edge Router) and the core LSR (Label Switched Router) react
on information received from the network regarding flows
experiencing significant packet losses, by taking appropriate
remedial action, i.e., by dynamically routing traffic away from
a congested LSR to the downstream or upstream underutilized
LSRs. The authors describe in detail the procedure for con-
gestion detection and its impact on the signalling mechanisms,
but do not include any simulation about the real impact of
FATE on the network performance. Jiittner et al. [8] propose
an algorithm for the optimal routing of new LSPs based on the
re-routing of an already established LSP when there is no other
way to route the new one. This scheme is based on the idea that
at higher network utilization levels, on-demand CBR-based
LSP setup can experience failures. In order to fit the new LSP
demands, instead of a global reoptimization of all LSP paths it
is preferable to proceed with a quick reoptimization of a single
LSP. The optimization algorithm is based on an Integer Linear
Programming (ILP) formulation of the rerouting problem, and
the authors propose an heuristic method to provide efficient
solution in practical cases. The simulations performed consider
only static paths, i.e. once established, they will stay in the
network forever. Unfortunately the authors do not specify the
traffic model used to run the algorithm, and this does not allow
us to perform comparisons with our proposal.

I1l. PROBLEM DEFINITION AND SYSTEM MODEL

The considered network consists of n routers. A subset
of ingress-egress routers between which connections can be
potentially set-up is specified. Each connection request arrives
at an ingress router (or at a Network Management System in
the case of a centralized route computation) which determines
the explicit-route for the LSP according to the current topology
and to the available capacities at the IP layer. To perform the
explicit route calculation and the load balancing algorithm,
each router in the network (or the NMS in the case of a
centralized mechanism) needs to know the current network
topology and the residual capacities of each link, to identify

the most congested ones. It is assumed that every router in
the MPLS network runs a link state routing protocol with
extensions for link residual bandwidth advertisements.

A connection request 7 is defined by the vector (i;, e;, b;),
where i; and e; specify the ingress and egress routers and b;
indicates the amount of bandwidth required. We assume also
that requests for LSPs arrive one at a time without knowledge
of future demands. These LSPs will be routed through the
network according to some routing scheme. At each instant,
one determines the virtual load of a link by summing the
bandwidth b; of the connections passing through the link. The
difference between the link capacity and the virtual load gives
the residual bandwidth. The minimum residual bandwidth
on each link of a path indicates how congested is the path.
The minimum residual bandwidth on each link of a network
is called the available capacity of the network. This value
identifies the most congested links.

Given an MPLS network with connection requests arriving
dynamically, the objective of our on-line algorithm is to
balance the allocation of the already established LSPs in the
network to reduce the rejection probability for future traffic
demands.

1V. A LOAD BALANCING ALGORITHM FOR TRAFFIC
ENGINEERING

The main goal of our scheme is to dynamically balance the
utilization of network resources in an MPLS network through a
local search algorithm. We consider algorithms that are based
on a sequence of small steps (i.e., on local search from a
given configuration) because global changes of the routing
scheme can be disruptive to the network. A similar approach
has been proposed in papers about logical topology design
and routing algorithms in optical networks [10], [11]. The
idea is to increase the available capacity of the network by
performing local modifications. For each tentative move, the
most congested links are located and one of its crossing LSPs
is rerouted along an alternate path. The scheme is similar
to the congestion control mechanism introduced in [5], [6],
that considered connections routed through a destination-based
routing. In [3], a previous version of the algorithm called
DYLBA (Dynamic Load Balancing Algorithm) is proposed.
In DYLBA, the search for an alternate route is performed for
all of the LSPs crossing the most congested links. Despite
its encouraging results, this algorithm is computationally de-
manding due to the extensive search performed to find the best
LSP to reroute.

Compared to DYLBA, the new scheme is based on a faster
local search technique. In fact in this new version the local
search stops as soon as the algorithm finds the first improving
alternate route for one of the LSPs, thus dramatically reducing
the computational time.

Starting from this scheme, two different versions are con-
sidered, according to the triggering mechanism used to start
the load balancing routine:

1) First-Improve DYLBA, called FID(z). The parameter x
indicates the threshold for the link residual bandwidth

FIRST IMPROVE DYNAMIC LOAD BALANCING ALGORITHM

1. <congestedLinkSet> <« calculateNetworkLoad

2. better LSPFound <« false

3. while (congestedLinkSet # () and (not better LS PF ound)

4 <cFrom,cTo> <« pickElement (congestedLinkSet)

5 LSPSet « all the LSPs crossing <cFrom,cTo>

6. while (LSPSet # 0) and (not better LS PFound)

7. LS P; «+ pickElement (LSPSet)

8 curr Res Bdw <« residual bandwidth on the LSP;’s route

9. removePartialLoad (LSP;)

10. find an alternate path A_LSP for LSP;

11. if (A-LSP is found)

12. alt Res Bdw < residual bandwidth on the A_LS P’s route
13. if altResBdw > curr Res Bdw

14. better LS PFound < true

15. oldLSP < LSP;

16. restorePartialLoad (LSP;)

17. if (better LS PFound)
18. reroute traffic from oldLSP to A_LLSP

Fig. 1. The pseudo-code for the First-Improve DYLBA

measured as a percent of the link capacity, which
determines when a link is considered congested. After
routing each new request by using simple Minimum
Hop Algorithm (MHA) routing, if less than z residual
bandwidth is left on some link, the dynamic load bal-
ancing algorithm is executed. This trigger mechanism
is the same used in the cited version of DYLBA [3].
As soon as the alternate route for one LSP has more
residual bandwidth than the original route, the search
stops and the LSP is rerouted. If the search cannot find
any improving alternate LSPs in the network for all
congested links, rerouting is not performed.

2) Lazy First-Improve DYLBA, called LFID. In this second
version, the dynamic load balancing is used when a
new LSP request arrives that cannot be satisfied. Now
only links having the smallest residual bandwidth are
considered congested. The algorithm goes through LSPs
crossing them until any improving alternate LSP is
found. If the search is successful, the found LSP is
rerouted and another attempt is made to establish the
new LSP request. If it fails, the new request is rejected.
The mechanism is similar to the one proposed in [8], but
compared to this work we use a local search algorithm
to reallocate an LSP inside the network.

Figure 1 gives the pseudo-code of the load balancing algo-
rithm. Let us first define the notation. The most congested links
are collected in the congestedLinkSet which is computed
through the function calculate N etworkLoad. This function
is different for the two implementations of the algorithm.
In FID(z), the most congested links are all the links whose
residual bandwidth is lower than z percent of their capacity.
In LFID, the most congested links are all the links with the
minimum residual bandwidth at the moment. The advantage
in this case is that we do not have to set a threshold, which
is a critical parameter and depends on the traffic load level in
the network.

For each iteration cycle, we consider each congested link

Fig. 2. The rerouting mechanism of the DY LBA algorithm: (upper plot) when
link congestion is detected, (lower plot) after the rerouting of the LSP;

in congestedLinkSet, identified by its endpoints (cFrom,
cT0). For each LSP; crossing the link (cF'rom, c¢T'o), taken
without any specific order, one tries to reroute it on an
alternate route. This move is accepted only if the new path
increases the available capacity of the network, calculated as
the residual bandwidth available on the route of LSP;, which
is curr ResBdw. To perform this operation, one temporarily
removes the load of LSP; from the current link, and finds
a new path (A_LSP) using MHA starting from the ingress
LER (I-LER) which originated the LSP itself, provided that
the congested link (cFrom, cTo) is avoided. If an alternate
path for LSP; is found, the residual bandwidth available on it
is calculated as alt Res Bdw and compared to currRes Bdw.
If the available capacity of the network is improved, the move
is accepted and in the last part of the algorithm the rerouting
is executed in the network (lines 17-18).

Figure 2 shows an example of the rerouting process of our
algorithm. Each link of the depicted network has capacity
equal to 1. The bandwidth demand for each LSP is a fraction
of the link capacity. In the upper plot, the link (cF'rom, cT'o)
is detected as congested, and the algorithm triggers the local

Fig. 3. The network topology used in the simulations.

search over the LSPs that cross the link. The LSP whose
alternate path guarantees the maximum available capacity in
the network (i.e. the minimum network congestion) is LS P;,
so the ingress router I-LER reroute the related traffic over this
new path (see Figure 2 (lower plot)).

Let us consider the worst-case computational complexity.
The proposed algorithm is composed of nested cycles. Let n
be the number of nodes in the network and m its number
of links. The number of iterations for the loop at line 3 is
only bounded by the number of links in the network, while
for the loop at line 6 is bounded by the number of LSPs that
cross the congested link, called k. The computation of the
alternate path for the selected LS P; using Dijkstra’ shortest-
path algorithm requires O(nm). This can be improved to
O(nlogn + m) by using a priority queue with Fibonacci
heap in the implementation. Functions removePartial Load,
restorePartial Load and calculations of residual bandwidth
on LSP route have complexity at most O(n), since an LSP
cannot contain more than n hops. All the other functions
require a constant computational time. The value of k£ depends
on the average bandwidth of the LSPs in the network and the
link capacities. Therefore the complexity of our algorithm is
not more than O(knm?2).

V. SIMULATION RESULTS

The simulations are carried out by using the network
topology of [9], see Figure 3. The links are all bidirectional
with a capacity of 120 units (thin lines) and 480 units (thick
lines). These values are taken to model the capacity ratio of
OC-12 and OC-48 links. Path requests are limited only to the
ingress and egress router pairs (Sy,D1), (S2,D2), (S3,D3) and
(S4,D4).

All the experiments are carried out by considering the
dynamic behavior of our algorithms, Minimum-Hop Algo-
rithm (MHA) and Minimum Interference Routing Algorithm

B000 [
2800 [—-——t-
D L e B

T S N R

Number of rejected LSPs

Fig. 4.

Number of rejected LSPs vs. Au.

(MIRA). LSPs arrive between each ingress-egress pair accord-
ing to a Poisson process with an average rate A, and their
holding times are exponentially distributed with mean 1/u.
Ingress and egress router pairs for each LSP set-up request
are chosen randomly. The network is loaded with 10000 LSP
set-up requests during one trial.

Table | shows a comparison between Minimum-Hop routing
Algorithm (MHA), Minimum Interference Routing Algorithm
(MIRA), DYLBA algorithm of [3] and both implementations
of First-Improve DYLBA FID(z) and LFID. Each element of
the table reports the average number of rejected LSP over 5
runs and its standard deviation (within brackets).

The first two sets of experiments are carried out by consider-
ing that bandwidth demands for LSPs are uniformly distributed
between 1 and 3 units. By using the same traffic distribution
considered by Kodialam et al. in their work [9] (Mu = 150
for each ingress-egress router pair), both FID(10) and FID(1)
perform slightly better than MIRA on average, while LFID
performs the worst. For an LSP’s average lifetime longer than
the previous one (AM/u = 200), even LFID performs better than
MIRA, while it is still worse than FID(z). The second two
sets of experiments are carried out by considering LSPs with
higher capacity on average, i.e. the bandwidth demands are
uniformly distributed between 1 and 12 units. In this case, for
both values of A/, both FID(z) and LFID perform better than
MIRA.

These first results show that our algorithm performs slightly
better than MIRA, especially if the traffic considered is charac-
terized by long-lived LSPs. Furthermore, the higher the LSP’s
capacity on average, the better our algorithms perform. This
can be explained by the implicit mechanism of First-Improve
DYLBA, which reroute an LSP away from the most congested
link, thus guaranteeing a faster network congestion reduction.

These results prove that our algorithm can overcome some
of the limitations of MIRA in term of resource utilization.
In fact, as highlighted in Section Il, MIRA can lead to
inefficiently routed paths when LSPs are set-up or torn-down

Bdw | My MHA MIRA DYLBA(10) DYLBA(I) FID(10) FID(1) LFID

1.3 | 150 1211.0 (40.2) 844.4 (38.7) 859.8 (44.9) 818.4 (47.9) 826.4 (47.9) 836 (52.2) 950.6 (28.4)
1.3 | 200| 2702.6 (65.2) 2441.8 (86.6) 2360.4 (66.6) 2266.4 (75.5) 2304.4 (95.3) 2282.4 (62.7) 2386.0 (60.8)
1.12 | 150 | 5634.8 (41.4) 5526.4 (26.0) 5356.4 (49.4) 5395.2 (42.4) 5337.2 (28.4) 5448 (21.4) 5472.4 (14.8)
1..12 | 200 | 6310.0 (48.9) 6198.2 (50.5) 6005.4 (51.7) 6040.6 (39.7) 5963.2 (55.1) 6090.6 (50.6) 6108.4 (14.9)

TABLE |
NUMBER OF BLOCKED REQUESTS

dynamically. This effect has a stronger impact on the network
performance when the LSP requests have higher holding times.
Figure 4 depicts the number of rejected LSP demands for
different values of the ratio A/u and LSP’s bandwidth demands
uniformly distributed between 1 and 3 units. This plot shows
that MIRA performs better than FID(z) schemes only in the
interval 75 < Mp < 150, while for My greater than 175, even
LFID performs better.

Bdw | Npu FID(10) FID() LFID

1.3 | 150| 9315 (2000K) 8483 (822K) 1062 (373K)
1.3 | 200 7865 (4270K) 7512 (2175K) 1785 (985K)
1.12 | 150 | 8609 (1500K) 4654 (324K) 3358 (434K)
1.12 | 200 7839 (2200K) 4525 (527K) 3213 (555K)

TABLE Il
NUMBER OF LSP REROUTED OVER 10.000 REQUESTS

Table Il shows a comparison between the two proposed
schemes FID(z) and LFID in term of number of LSP rerouted
over 10000 LSP requests. The number within brackets shows
the number of alternate routes each algorithm has considered
during the simulation before finding the best path to reroute.
This last parameter gives us an estimate of the computational
time spent by the algorithm. From these values it can be
noticed that, even if it is the best performing scheme in term
of rejected requests, the FID(xz) scheme with an high value
of threshold (10%) can lead to the highest number of re-
routings in the network, while requiring the greatest number of
computations among all. By using a lower value of threshold
(1%), FID(z) performs better than the previous one both in
term of rerouted LSPs and computational time. LFID has
the advantage of being independent from the threshold value,
due to a different triggering mechanism (see Section IV for
details). This lead to the lowest values of rerouted LSP in the
network, and also to a reduced computational time.

V1. CONCLUSIONS

In this paper a new online algorithm to dynamically balance
the load in an MPLS network has been presented. Simula-
tion results show that our algorithm can perform better than
Minimum Interference Routing Algorithm (MIRA), one of the
most cited scheme in the literature for the congestion control
in MPLS, by improving the network utilization and reducing
the LSPs rejection probability.

Both FID(z) and LFID show their best results when the
traffic inserted in the network is characterized by high-capacity

consumption and long-lived LSPs. In fact, with bigger LSPs
on average, the proposed schemes can reduce the network
congestion in a faster way due to their reactive mechanisms
which reroute an LSP away from the most congested links.
When considering LSPs staying in the network for long
time, a reactive congestion control scheme behaves better
than a preventive scheme, because it can dynamically adjust
inefficiently routed paths.

Among the two proposed schemes, LFID has the advantage
to minimize the number of LSPs to be routed in the network to
balance the traffic and therefore has the lowest computational
time.

REFERENCES

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview
and Principles of Internet Traffic Engineering. IETF RFC 3272, May
2002.

[2] D. O. Awduche and B. Jabbari. Internet Traffic Engineering using Multi-
Protocol Label Switching (MPLS). Computer Networks, (40):111-129,
September 2002.

[3] R. Battiti and E. Salvadori. A Load Balancing Scheme for Congestion
Control in MPLS Networks. Technical report, Universitd di Trento,
Dipartimento di Informatica e Telecomunicazioni, November 2002.

[4] R. Boutaba, W. Szeto, and Y. Iragi. DORA: Efficient Routing for MPLS
Traffic Engineering. Journal of Network and Systems Management, Spe-
cial Issue on Internet Traffic Engineering and Management, 10(3):309
-325, September 2002.

[5] M. Brunato, R. Battiti, and E. Salvadori. Load Balancing in WDM
Networks through Adaptive Routing Table Changes. In Networking,
number 2345 in Lecture Notes in Computer Science, pages 289-301,
Pisa - Italy, May 2002. Springer Verlag.

[6] M. Brunato, R. Battiti, and E. Salvadori. Dynamic Load Balancing in
WDM Networks. Optical Networks Magazine, September 2003. In
press.

[7] F.Holness and C.Phillips. Dynamic Congestion Control Mechanism for
MPLS Networks. In SPIE’s International Symposium on Voice, Video
and Data Communications. Internet, Performance and Control Network
Systems, pages 1001-1005, Boston - MA, November 2000.

[8] A. Juttner, B. Szviatovszki, A. Szentesi, D. Orincsay, and J. Harmatos.
On-demand Optimization of Label Switched Paths in MPLS Networks.
In Proceedings of IEEE International Conference on Computer Commu-
nications and Networks, pages 107-113, Las Vegas - Nevada, October
2000.

[9] K. Kar, M. Kodialam, and T.V. Lakshman. Minimum Interference Rout-
ing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering
Applications. |IEEE Journal on Selected Areas in Communications,
18(12):2566 —2579, December 2000.

[10] A. Narula-Tam and E. Modiano. Load balancing algorithms for WDM-
based IP networks. In Proceedings of INFOCOM 2000, pages 1010-
1019, Tel-Aviv, Israel, March 2000.

[11] J. Skorin-Kapov and J. Labourdette. On minimum congestion routing

in rearrangeable multihop lightwave networks. Journal of Heuristics,

1:129-145, 1995.

B. Wang, X. Su, and C.P. Chen. A New Bandwidth Guaranteed Routing

Algorithm for MPLS Traffic Engineering. In Proceedings of ICC,

volume 2, pages 1001-1005, New York - USA, 2002.

[12]

