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ABSTRACT
Recent neural network approaches to sentence matching compute
the probability of two sentences being similar by minimizing a
logistic loss. In this paper, we learn sentence representations by
means of a siamese network, which: (i) uses encoders that share
parameters; and (ii) enables the comparison between two sentences
in terms of their euclidean distance, by minimizing a contrastive
loss. Moreover, we add a multilayer perceptron in the architecture
to simultaneously optimize the contrastive and the logistic losses.
This way, our network can exploit a more informative feedback,
given by the logistic loss, which is also quantified by the distance
that the two sentences have according to their representation in the
euclidean space. We show that jointly minimizing the two losses
yields higher accuracy than minimizing them independently. We
verify this finding by evaluating several baseline architectures in
two sentence matching tasks: question paraphrasing and textual
entailment recognition. Our network approaches the state of the
art, while being much simpler and faster to train, and with less
parameters than its competitors.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; • Information systems→ Similarity measures; • Computer
systems organization→ Neural networks;

1 INTRODUCTION
Sentence matching is an important problem in Information Re-
trieval (IR), typically tackled in question answering (QA), e.g., [18],
and more recently in community QA (cQA), e.g., [12, 21] as also
shown by a recent workshop on semantic matching [8]. More in
general, the sentence matching technology can be useful for many
tasks such as semantic textual similarity [1], textual entailment [2],
and answer sentence selection [17], to name a few.

Recently, the problem has been approached with neural network
models, e.g., convolutional neural networks (CNN) [20] or Long-
Short Memory Networks (LSTM) [6], for passage reranking. Such
methods firstly build a representation for each sentence, and then
model their similarity with a feed-forward network. It should be
noted that the sentence matching constraint is only enforced in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3133156

last layer, where the network output is compared with the gold label
for computing the logistic loss. However, this clearly happens too
late in the network, causing some of the properties of the sentence
representation being neglected for learning the overall similarity.

In contrast, Siamese Networks [3, 4] learn a distance metric
between two sentences by mapping them into an interpretable geo-
metric space. For this purpose, they apply the so-called contrastive
loss, based on the distance between two sentences, to optimize
the matching task. The main drawback is that their encoder pro-
duces representations that are independent from each other, i.e., the
generation of one representation is not conditioned on the other.

In this paper, we explore the use of siamese mechanisms in a
neural network with additional layers that model the interaction
between two sentence representations. More specifically, we use a
siamese formulation to learn sentence encoders with shared parame-
ters, and we enable the comparison between two encoded sentences
in terms of their euclidean distance. In addition, we add a multi-
layer perceptron in the architecture such that both the contrastive
and logistic losses are simultaneously optimized. Therefore, our
network uses (i) the contrastive loss to learn suitable sentence repre-
sentation based on their euclidean distance; and (ii) the informative
feedback given by the logistic loss in the multilayer perceptron to
capture interdependencies between the representations of the two
sentences.

We carried out comparative experiments against several state-
of-the-art networks on the Quora 1 dataset, for the question dupli-
cation task, and on the Stanford Natural Language Inference (SNLI)
dataset [2], for the entailment task. The results show that our net-
work, also thanks to the optimization of our joint contrastive and
logistic loss, approaches the the state of the art. It should be noted
that the latter is achieved by much more complex architectures,
which are more expensive in terms of the number of parameters,
and in the computational time for training and testing.

2 RELATEDWORK
A basic network for sentence matching encodes each sentence into
a vector, concatenates and passes them trough a number of hidden
layers to make a prediction. Apart from this basic architecture,
we can define three more sophisticated network types: Siamese,
Attentive, and Compare-Aggregate networks.

Siamese networks have been applied in a subset of NLP tasks
such as textual similarity, paraphrase identification and mention
normalization. MaLSTM [13] learns the Manhattan distance be-
tween two sentences encodedwith an LSTM. The network is trained
on a similarity task, then the encoder parameters are fixed such
that it is used as feature extractor. Encoded sentences are fed into

1https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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an SVM classifier to learn a textual entailment task, i.e., the siamese
representations is not learned end-to-end for the second task.

The SCQA network [7] exploits question and answer pairs in a
cQA archive to learn question-question similarity. Questions and
answers are mapped into the same space by a convolutional siamese
network. Those pairs increase the available training data with the
assumption that answers share similarity with the questions. The
network performs better on the question-question similarity task,
where input sentences are represented as bags of trigrams. In addi-
tion, the output of the network is combined with the BM25 score
of the questions in the pair in order to boost the textual similarity.

A two-layer bidirectional LSTM network on characters was
used in [14] to normalize job titles. This siamese network was
able to capture semantic differences while being invariant to non-
semantic string differences. The aformentioned models establish a
match between sentences in terms of their distance. In our case, we
also model the interactions between the sentence representations
learned by the siamese encoder, drawing some analogies with ? ].

Attentive Networks [15? ] build a representation of a sentence
in a pair by also considering the other sentence, weighting the con-
tribution of its parts with the so-called attention mechanism. The
computation has a relatively high cost, i.e., quadratic complexity.

Compare-Aggregate Networks [22] decompose two input sen-
tences in parts, which are matched through several similarity func-
tions. The results are then aggregated to quantify the final match.
We compare our work with the state-of-the-art Bilateral Multi Per-
spective Matching (BiMPM) model [23].

The use of auxiliary losses is at the core of multitask learning.
A network can be trained to perform multiple tasks, by stacking
multiple softmax layers on top of the last hidden layer. For exam-
ple, a part-of-speech tagger can be trained to predict the tag and
the binned log frequency of the next token [16]. Alternatively, a
network can perform a task at a lower architectural level, and a
different task at a higher level. Stack-propagation [25] uses this
method to learn part-of-speech tags at a lower level, and dependecy
relations at higher level. In our network, we do not learn different
tasks, but we employ different losses to extract different aspects of
the input: the semantic traits of the sentence, which are captured by
the distance of their representations in a geometric space, and the
interactions between those representations modeled by a classifier.

3 SENTENCE MATCHING USING OUR
HYBRID SIAMESE NETWORK

In this section, we present our approach to sentence matching. We
define the siamese network encoder for representing sentences,
and the multilayer perceptron that models their interaction.

3.1 Model architecture
The first module of our deep learning model is the sentence encoder.
A sentence of length n is a sequence of words (w1, ...,wn ), which
are drawn from a vocabulary V . Each word is represented as a
vector, w ∈ Rd , looked up into an embedding matrix, E ∈ Rd×|V | .
The sentence encoder f takes a sequence of words in input, embeds
and transforms them into a fixed-sized vector. The function f is
used to encode both sentences in a pair, by sharing the same set
of weights. This is typical of a siamese setting, where the same

network maps the two objects of a pair into a low dimensional
space, where their distance is small if they are similar. We compute
the euclidean distance of two sentences s1 and s2 as:

d (s1, s2) =

√√ n∑
i=1

( f (s1)i − f (s2)i )2 (1)

Our full hybrid siamese network furtherly models the interaction
between the two sentences by feeding the output of the siamese
encoder to a multilayer perceptron (MLP). The MLP takes the
concatenation of the sentence representations and their distance,
c = [f (s1); f (s2);d (s1, s2)], in input, and outputs the probability of
a match between the two sentences.

3.2 Joint loss optimization
The siamese network encoder is learned by optimizing a contrastive
loss, computed over the pairs of sentences in the dataset. This
loss compares the distance between two representations produced
by the siamese encoder with the true label. Given the dataset
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The loss for matching sentences is the square of their euclidean
distance, while there is a loss in the opposite case, only when the
distance between sentences that do not match is smaller than the
margin M . In that case, the loss is equal to the square difference
between the margin and the distance.

Our final network optimizes the logistic loss computed on the
output of the MLP with respect to the true labels:

Ll =

N∑
i=1

yi loд(ỹi ) + (1 − yi )loд(1 − ỹi ) (4)

The global loss of our full network is thus the sum of the two losses:

Ltot = λcLc + Ll , (5)

where λc is an hyperparameter to tune the effect of the contrastive
loss during parameter learning.

4 EXPERIMENTS
We evaluate our model on two tasks: identification of question
paraphrases in a cQA setting and textual entailment recognition.

4.1 Sentence encoders and the MLP
We experiment with different network architectures for our sen-
tence encoding function f : (i) an LSTM network [9], with 200 units;
(ii) a Gated Recurrent Unit (GRU) network [5], with 200 units; (iii) a
CNN network [11], with 3 groups of 100 convolutional filters of size
1, 3 and 5; (iv) a stack of 2 Bidirectional GRU (BiGRU) networks [19],
with GRUs of 200 units. The LSTM and GRU consume the input
from left to right, and their last state is used to encode the sentence.



The stacked BiGRU network has higher capacity and should
better capture longer dependencies in a sentence. The BiGRU con-
sumes token or states in both directions, producing a state for each
input. Those states are fed to the upper BiGRU layer. The maxi-
mum values across the dimensions of the output states are selected,
producing a sentence vector with 400 dimensions. We tuned the
number of stacked layers on the development set.

The MLP is composed of two hidden layers of size 200 and takes
the sentences encoded by the siamese network together with their
euclidean distance in input.

We carry out three different experiments for each architecture,
minimizing: (i) the contrastive loss only, (ii) the logistic loss only,
(iii) the sum of the contrastive and logistic loss.

4.2 Network training
We summarize here the network settings common to all the ex-
periments. We initialize word embeddings with pretrained GloVe
vectors of size 300. Sentences are truncated or padded to 50 words.
Words without a pretrained vector are initialized with a random
vector sampled from the uniform distributionU [−0.25, 0.25]. Word
embeddings are fine-tuned for the task by updating them together
with the network parameters.

The network is trained with the Adam optimizer [10], setting
learning rate to .001. The contrastive loss marginM is set to 1. λc
is tuned on the validation set: it is set to 1.0 for the paraphrase
identification models, and to 0.01 for the textual entailment (TE)
models. The selection of smaller λc value for TE may be due to the
fact that task is not strictly symmetric. Training examples are fed to
the network in shuffled mini-batches of size 128. All the models are
trained for 20 epochs and the reported test accuracy corresponds to
the best accuracy obtained on the validation set. In the contrastive
only setting, labels are obtained by thresholding the distances at
0.5 (value selected from the dev. set).

4.3 Paraphrase identification
Dataset. The Quora dataset contains pairs of questions from the
Quora web site. Each pair is labelled as positive if the two questions
ask for the same thing, and negative otherwise. For the evalua-
tion, we use the dataset splits and word embeddings 2 provided by
Wang et al. [23]. Their training split contains 384,348 pairs, and the
balanced development and test sets contain 10,000 pairs each. The
embeddings are a subset of the 300-dimensional GloVe word vectors
pretrained on the Common Crawl corpus, 3 covering the Quora
dataset vocabulary. Regarding data preprocessing, the sentences are
already tokenized; we only lowercase the questions before splitting
on whitespaces.
Results. Table 1 shows the results of our models for the Quora
paraphrase identification task. Each model is trained using (i) the
contrastive loss on the euclidean distance of the sentence repre-
sentations from the siamese encoder; (ii) the logistic loss on the
prediction of an MLP applied on the concatenation of the sentence
representations; (iii) and both losses, considering the MLP predic-
tion as the final matching score. The last setup yields consistently
higher accuracy with respect to separate loss minimization.

2https://github.com/zhiguowang/BiMPM
3https://nlp.stanford.edu/projects/glove/

Siamese Encoder Contrastive Logistic Joint loss

LSTM 85.26 81.98 85.71
GRU 86.72 83.00 86.82
CNN 83.1 83.04 83.95

Stacked BiGRU 85.74 84.38 86.06
Table 1: Test accuracies of our models for the paraphrase identifica-
tion task (Quora), trained with the different losses.

Siamese Encoder Contrastive Logistic Joint loss

LSTM 84.58 88.25 89.08
GRU 84.96 88.53 90.58
CNN 80.78 90.99 92.00

Stacked BiGRU 85.58 91.40 91.97
Table 2: Test accuracies of our models for the textual entailment
task (SNLI), trained with the different losses.

4.4 Recognizing textual entailment
Dataset. For this task, we use the SNLI dataset [2]. It contains
570,000 premise/hypothesis pairs, which are labelled by humans.
The labels are entailment, contradiction and neutral. We use the
official training, development and test partitions to respectively
train, validate and test our models. We keep only examples from
the entailment and contradiction classes, experimenting with the
binary task of understanding if the meaning of the hypothesis can
be inferred from the premise or not. The resulting training, devel-
opment and test partitions have respectively 366,603/9,842/9,824
examples, respectively. We use GloVe vectors again, but we extract
them from the distribution available on the GloVe project web site.
Our processing applied to the sentence is minimal, we just tokenize
them using SpaCy 4 and apply lowercasing.
Results. Table 2 shows the performance of our models for the
binary textual entailment task. We evaluated the models on this
additional semantic task to corroborate the advantage of using the
joint loss: the improvement is consistent. The lower accuracy in the
contrastive loss setting may be due to the asymmetry of the task.

4.5 Discussion
The results in Table 1 for paraphrase identification shows that min-
imizing the joint loss is the better strategy for all the architectures
used in the siamese sentence encoder.

Table 3 offers a comparison of the models above along with
BiMPM [23]. The authors implement siamese and multi perspective
CNN and LSTM networks. Our models outperform their corre-
sponding siamese baselines even when we do not use the joint
losses, and, when we do, the improvement becomes more substan-
tial. All the models use the same data and word embeddings, thus
our improvement on siamesemodels just comes from a better hyper-
parameter tuning and some architectural differences: we use 200
recurrent units instead of 100, we learn the euclidean distance be-
tween representations instead of the cosine distance, and we do not
use character embeddings to learn word vectors.

Except for the CNN model, our other architectures are com-
parable or outperform the L.D.C. model [24], even in the single

4https://spacy.io/



Model Accuracy

Siamese-CNN [23] 79.60
Multi-Perspective-CNN [23] 81.38

Siamese-LSTM [23] 82.58
Multi-Perspective-LSTM [23] 83.21

L.D.C. [23] 85.55
BiMPM [23] 88.17

Hybrid Siamese LSTM 85.71
Hybrid Siamese GRU 86.82
Hybrid Siamese CNN 83.95

Hybrid Siamese Stacked BiGRU 86.06
Table 3: Comparison between the accuracies of the models inWang
et al. [23] and our models (trained with the joint loss), for the para-
phrase identification task (Quora).

contrastive loss optimization case. L.D.C. belongs to the compare-
aggregate approach class, and is very accurate on the answer selec-
tion task. It is possible that the CNN architecture can reach higher
accuracy with further hyper-parameter tuning. Our best model, the
hybrid siamese GRU network achieves a test accuracy of 86.82%, i.e.,
only 1.35% less than the state-of-the-art BiMPM model. We stress
the fact that the latter is much more complex: the two sentences in
a pair are encoded with a bidirectional recurrent network and every
pair of encoded words from the two sentences are matched using
multiple functions. One of the latter applies an expensive attention
mechanism. For all these reasons, this model (i) is one order of
magnitude slower to train than ours: 100 vs. 10 seconds per 100
training steps on a Tesla K40m GPU; (ii) it has many more trainable
parameters: 6.5M vs. 300k, without considering word embeddings.

The experiments on textual entailment (Table 2) also show a
consistent improvement when using the joint loss. The contrastive
loss incentives the sentence encoder to produce representations
that can be semantically separated in a geometric space. We can
think the loss as a regularization mechanism imposing a structure
on the intermediate network representations. Then, the MLP can
refine the final network output both in terms of the interaction
between the sentences and their distance. This way, it may be able
to make a better choice for sentences that are mistakenly put close
or far apart in the geometric space.

5 CONCLUSION
We presented a hybrid siamese and MLP network optimized using
a joint loss. This is the sum of (i) the contrastive loss used to opti-
mize the sentence representations produced by a siamese sentence
encoder; and (ii) the logistic loss used to optimize an MLP that
models the interaction between the sentence representations. The
contrastive loss introduces an additional level of supervision when
learning the sentence encodings, mapping them into an euclidean
space. The joint loss consistently benefits the performance of our
models across the different network architectures selected for the
sentence encoder. This positive effect allows us to keep the last
part of our network, i.e., the MLP, simple, and avoid computation-
ally expensive matching and attention mechanisms. The resulting
networks are competitive with state-of-the-art models, with lower
complexity and number of parameters.
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