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Tutorial Schedule

13:30 — 15:30 First Part
= 15:30 — 16:00 Coffee Break (Lower Concourse)
16:00 — 17:30 Second Part

= Tutorial Webpage
» http://disi.unitn.it/moschitti/SIGIR-tutorial.htm
» Software
» Data: Question Classification and Paragraph reranking
» Updated slides
» Documentation

o other tutorials, books, papers, other slides
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Outline: Part | — Kernel Machines

= Outline and Motivation (10 min)

= Kernel Machines (30 min)

Perceptron

Support Vector Machines

Kernel Definition (Kernel Trick)

Mercer's Conditions

Kernel Operators

Efficiency issue: when can we use kernels?

IKs

Outline: Part | — Basic Kernels

= Basic Kernels and their Feature Spaces (35 min)

Linear Kernels

Polynomial Kernels

Lexical Semantic Kernels

String and Word Sequence Kernels

Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic
Syntactic Tree Kernel, Smoothed PTK




Outline: Part | — Classification with Kernels

= Classification with Kernels (15 min)

» Question Classification (QC) using constituency,
dependency and semantic structures

» Question Classification (QC) in Jeopardy!
i

IKs :

Outline: Part | — Practical Exercise

= Practical Exercise with SVM-Light-TK (30 min)
» The kernel toolkit, SVM-Light-TK
» Experiments in classroom on Question Classification
» Inspection of the input, output, and model files
» Passage reranking exercise (if time left)

= Coffee break (30 min)

= Classification with Kernels cont’d (15 min)
r Relation Extraction
» Coreference Resolution
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Outline: Part Il — Kernels for Ranking

= Reranking with kernels (40 min)
» Classification of Question/Answer (QA) pairs
* Preference Reranking Kernel
» Reranking NLP tasks
o Named Entities in a Sentence

o Predicate Argument Structures
o Segmentation and labeling of Speech Transcriptions

» Reranking the output of a hierarchical text classifier

» Reranking Passages with relational representations:
the IBM Watson system case

IKs ;

Outline: Part Il - Advanced Topics

= Large-scale learning with kernels (15 min)
» Cutting Plane Algorithm for SVMs
» Sampling methods (USVMs)
» Compacting space with DAGs

= Reverse Kernel Engineering (15 min)
» Model linearization
» Question Classification

= Conclusions and Future Directions (5 min)
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Motivation (1)

= Structures and Semantics more and more important in IR
= Applying off-the-shelf Natural Language Processing (NLP)
tools is not enough:
» How to exploit linguistic and semantic information?

» Definition of rules and heuristics for exploiting such
information

= An alternative effective solution is the use of Machine
Learning (ML), e.g., learning to rank algorithms
» Training data is required:

o Query logs, crow-sourcing, skilled annotators

» ML feature design: which solution?

IKs ;

Motivation (2)

= Feature design is the most difficult aspect in designing an

ML system
= Complex and difficult task, e.g., in case of structural

feature representation:
» Deep knowledge and intuitions are required
» Design problems when the phenomenon is described by
many features




Motivation (3)

= Kernel methods alleviate such problems
» Structures represented in terms of substructures
» High dimensional feature spaces
» Implicit and abstract feature spaces
= Generate high number of features
» Support Vector Machines “select” the relevant features

» Automatic feature engineering side-effect

iKs 0

Motivation (4)

= High accuracy especially for new applications and new
domains
» Manual engineering still poor, e.g., Arabic SRL

= Inherent higher accuracy when many structural patterns
are needed, e.g., for Relation Extraction

= Fast prototyping and adaptation for new domains and
applications

= The major contribution of kernels is to make system
modeling easier

iK" 11




What can really kernels do?

= Optimistic view:
» Better feature spaces not manually designable

» The overall feature space produced by kernel is essential for
a given task

» Features impractical to be manually designed

= Bottom-line view
» Faster feature engineering approach

» Higher-level feature engineering, e.g., structures instead of
vector components

» Towards automatic feature engineering
» Structures are more meaningful when inspected
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Why and when using kernels?

Using them is very simple: much simpler than feature vectors

They are like any other machine learning approach simply
better than feature vectors

= Small training data: absolutely no reason for not using them
» Many features provide back-off models
» Structural features provide domain adaptation

= Large training data: new methods enable them
» using large data many features become important
» kernels become very effective

iK" 13




Part | — Kernel Machines

= Kernel Machines (30 min)
1 Perceptron
r Support Vector Machines
1 Kernel Definition (Kernel Trick)
1 Mercer's Conditions
r Kernel Operators
1 Efficiency issue: when can we use kernels?

14

Binary Classification Problem (on text)

= Given:
» a category: C
» and a set T of documents,

define
f: T — {C,C}
= VSM (Salton89’)
» Features are dimensions of a Vector Space

» Documents and Categories are vectors of feature weights
¥ disassignedto C if d-C>th

iK" 15




More in detail

= In Text Categorization documents are word vectors

®d )=x=(0,.,1,.0,.0,.1,.0.,.0,..1,.0,.0,..1,.0,.,1)

buy market sell stocks trade
dd,)=7=(0,.1,.0,.1,..0,.0,.0,.1,.0,.0,.,1,.0,.0)
buy company sell stock

= The dot product X * Z counts the number of features in
common

= This provides a sort of similarity

iK" 16

Linear Classifier

The equation of a hyperplane is

F(H)=F-w+b=0, L, WER" HER

X is the vector representing the classifying example
= Wis the gradient of the hyperplane
= The classification function is

h(x) = sign(f(x)) OOOO. ®
Note that the ® o® @

hyperplane o
classifier is just: d - C > th @ o @0 e

iK" 17




An example of kernel-based machine:
Perceptron training

W, < 0;b, < 0;k < 0;R < max,__, Il X, Il
do
fori= 1to/
if y,(w, - X, +b,) =<0 then
Wi = Wi +1Y,%,
b =b + 77y,-R2
k=k+1
endif
endfor
while an error is found

return k, (w,,b,)

iK" 18

Graphic interpretation of the Perceptron

iK" 19




Dual Representation for Classification

= In each step of perceptron algorithm only training data is
added with a certain weight:

W= Eajy i*
j=1.0
= Hence the classification function results:

sgn(w - X + b) = sgn Eajyj)_c'j-?mb
j=1.0
= Note that data only appears in the scalar product

iK" 20

Dual Representation for Learning

= as well as the updating function

ifyi(z ajyj)_c’j-?ci+b)50 then o, =, +1

j=l..0

= The learning rate 1] only affects the re-scaling of the
hyperplane, it does not affect the algorithm, so we can fix

n=1




The main idea of Kernel Functions

= Mapping vectors in a space where they are linearly
separable, X — ¢(X)
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Dual Perceptron algorithm and
kernel functions

= In the space ¢, we can rewrite the classification function
as:

h(x)=sgn(w, ¢(X)+b,) =

sgn( Y, @y, ¢(%) $(0)+b,) =sgn( Y, @,y k(%,,3)+b,)

j=1..0 i=1..0
= As well as the updating function

ifyi( E ajyjk()?j,)_él.)+b )s O then o, =, +n

j=l..0
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Support Vector Machines
Var, I 2|k|
The margin is equal to ”W”
1%
24
iKs
Support Vector Machines
Var, o 2
The margin is equal to M

We need to solve

=+1, if X is positive

S

< -1, if X is negative
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Optimization Problem

= Optimal Hyperplane:
U ST
Minimize t(w)=5||w||2
Subjectto Y, (WX, +b)=zli=1,..,1

= The dual problem is simpler
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Dual Transformation

= Given the Lagrangian associated with our problem

— Zai[yz‘(w'fi +b) — 1]
i=1

g

1
L(,b,d) = S -

= To solve the dual problem we need to evaluate:
9(&7 6) — inwaW L(U_j> 0_27 6)

= Let us impose the derivatives to 0, with respect to w

OL(W,b,d) ., <~ . = R
(816 ):w—zyi%‘i:@ = w:Zyiaixi

iK" 27




Dual Transformation (cont’d)

= andwrtb OL(@bd) &
w «
P S A . o =0
ab Zi:1y04

= Then we substituted them in the objective function

1 m
L(d,b,6) = S = Y oqlyi(w - & +b) — 1] =
1=1

1 & & o
~ 9 Z YiYj iy - Xj — Z YiYj OG0T - Ty +

hj=1 i,j=1
m m
1 — —
= E R E YiYjQuiQjy - T
i=1 ij=1
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m
Do
i=1

The final dual Optimization Problem

m 1 m
maximize E o — 3 g YiYj QGO T - T
i=1 ij=1

subject to a; >0, i=1,...,m

m
Z yioy; =0
i=1




Soft Margin optimization problem

maximaize Zaz - = Z yzyjozzoz] T; - T+ CcSm)
zy 1

subject to o, >0, Vi=1,..m
D i Yici =0
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Kernels in Support Vector Machines

= In Soft Margin SVMs we maximize:

Zaz — = Z yzy]azozj i T+ %&j)

1,J=1

= By using kernel functions we rewrite the problem as:

1
mammzzeZozl — = Z yly]oz,oz] k(0i,0;) + 0513)
1,j=1
{ a; >0, Vz—l,..,




Soft Margin Support Vector Machines

minl 0 IP+CS g, VOV R HD=I-5 VX
2 ; £ 20
= The algorithm tries to keep & low and maximize the margin

= NB: the distances from the hyperplane are minimized; the

number of error is not directly minimized (NP-complete
problem)

= If C—o0, the solution tends to the one of the hard-margin
algorithm

¢ If Cincreases the number of error decreases. When C tends to

infinite the number of errors must be 0, i.e. the hard-margin
formulation

iK" 32

Trade-off between Generalization and
Empirical Error

Var, W Var,

Var, ) ; Var,
W E+b=0 Wt =0

Soft Margin SVM Hard Margin SVM

iK" 33




Parameters

1, = 1, - + _ -
min 117 I +c2§i=min5nwn2 +C Y E +CY §

= min L 1% IF +C (Jzigl.* + Eig‘)

= C: trade-off parameter

= J: cost factor

iK" 34

Kernel Function Definition

Def. 2.26 A kernel is a function k, such thatV Z,z € X
k(7,2) = ¢(7) - p(2)

where @ is a mapping from X to an (inner product) feature space.

= Kernels are the product of mapping functions such as

IER", @) =($(F).0,(¥),....0, (X)) ER"

iK" 35




The Kernel Gram Matrix

= The sole information used for training is the kernel Gram
matrix

-k(xlaxl) k(xlaxz) k(xlaxm)-
k(x,,x,) k(X,,X,) .. k(x,,X,)

training ~

k(x,,x,) k(x,,x,) .. k(x,,X,)

= If the kernel is valid, K is symmetric positive-semidefinite

iK" 36

Valid Kernels

Def. B.11 Eigen Values
Given a matrix A € R™ x R", an egeinvalue )\ and an egeinvector ¥ €
R" — {0} are such that

AT =\

Def. B.12 Symmetric Matrix
A square matrix A € R" xR"™ is symmetriciff A;; = Ajifori #ji=1,..,m
andj =1,..,n,ie iff A=A

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R"™ x R" is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

iK" 37




Valid Kernels cont’d

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x,z) be a symmetric function on X. Then
K (x, z) is a kernel function if and only if the matrix

k(z, z) = (x) - P(2)

is positive semi-definite (has non-negative eigenvalues).

= If the matrix is positive semi-definite then we can find a
mapping ¢ implementing the kernel function

iK" 38

Mercer’s Theorem (finite space)

= Letusconsider K = (K()‘c’i,k’j))

n
i,j=1

= K symmetric=3V: K =VAV' for Takagi factorization of a
complex-symmetric matrix, where:

= A is the diagonal matrix of the eigenvalues 4, of K

n
sV, = (Vﬁ )l.=1 are the eigenvectors, i.e. the columns of V

= Let us assume lambda values non-negative
$:x, — (W/Atvn.)t:l eR",i=1,..,n
%
39
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Mercer’s Theorem
(sufficient conditions)

= [herefore

tV i tj

D(F)- D(X,) = E/xvv (VAV)), =K, =K(%,,%,)

= which implies that K is a kernel function

iK" 40

Mercer’s Theorem
(necessary conditions)

= Suppose we have negative eigenvalues A, and
eigenvectors v, the point

Z= :Elvsi D(x,) = :z]vsi ( AV, )t =‘/XV,Vs

= has the following norm:

[El =22 = VAV ANAV'S, = ¥ VAAVAV'Y, =

VKV, = VAV, =AY <0

this contradicts the geometry of the space.

iK" 41




Is it a valid kernel?

= It may not be a kernel so we can use MM
Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ¥ # 0
TAZ > \T (>0).

From the previous proposition it follows that: If we find a decomposition
Ain M'M, then A is semi-definite positive matrix as

TAT =7 M M7 = (MZ)(MZ) = MZ - Mi = ||MZ||> > 0.

iK" 42

Valid Kernel operations

s K(X,2) = ky(X,2)+k,(X,2)
s K(X,z) = ki(x,2)"Kk,(X,2)
s K(X,2) = ak,x,z)

= K(x,z) = f(x)f(z)

= K(x,z) = x'Bz

= k(x.2) = ky(¢(x).9(2))

iK" 43




Object Transformation [Moschitti et al, CLJ 2008]

" K(0,,0,)=¢(0,) ¢(0,) = ¢:(¢,,(0,) ¢:(¢,,(0,))
=¢E(S1)¢E(Sz) = KE(SlaSz)

" Canonical Mapping, @,/
» object transformation,

» €. g., a syntactic parse tree into a verb subcategorization
frame tree.

" Feature Extraction, ()=()
» maps the canonical structure in all its fragments

» different fragment spaces, e.g. String and Tree Kernels

iK" 44

Part | — Basic Kernels (for structured data)

= Basic Kernels and their Feature Spaces (35 min)
1 Linear Kernels
1 Polynomial Kernels
1 Lexical Semantic Kernels
r String and Word Sequence Kernels

» Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic
Syntactic Tree Kernel, Smoothed PTK

45




Linear Kernel

= In Text Categorization documents are word vectors

®d )=x=(0,.,1,.0,.0,.1,.0.,.0,..1,.0,.0,..1,.0,.,1)

buy market sell stocks trade
dd,)=7=(0,.1,.0,.1,..0,.0,.0,.1,.0,.0,.,1,.0,.0)
buy company sell stock

= The dot product X * Z counts the number of features in
common

= This provides a sort of similarity

iK" 46

Feature Conjunction (polynomial kernel)

= The initial vectors are mapped in a higher space
D(< x,x,>) — (xlz,xzz,\/lexz,\/le,\/zxz,l)

= More expressive, as (x,x,) encodes
Stock+Market vs. Downtown+Market features

= We can smartly compute the scalar product as

D(x) P(2) =
= (xlz,xzz,\/lexz,\/le,\/zxz,l)'(Zf,zg,\/zzlzz,\/zzl,\/zzz 1) =
= x[z0 + X225 +2x,X,2,2, + 2X,2, + 2,2, + | =
=(xz, +x,z, + 1)’ = (¥ Z+1)" = K o, (X, 2)

iK" 47




Sub-hierarchies in WordNet

\
\\
motor vehicle
(mororcar) ( go-kan) ( truck j
(ha!ch—back] ( compact j (gas guzzlea

{thing, entity}

{living thing, organism}

{non-living thing, object}

[{plant.flora)] [{animal,fauna)] [{naturalobject)}

{person, human being}

K's 48

[(substance)}

Similarity based on WordNet

Inverted Path Length: .

1+ d(e1,e2))”

simrpr(c1,c2) = (

Wu & Palmer:
S’imWUP(Cl, 62) =
2dep(lso(ci, c2))
d(c1,lso(c1,c2)) + d(ca,lso(ci, c2)) + 2dep(lso(ci, c2))
Resnik:
simrges(c1,c2) = —log P(lso(ci,c2))
Lin:

2 log P
simpin(c1,c2) = og P(lso(c1, c2))

~ log P(c1) +log P (c2)
IKs o




Document Similarity

Doc 1 Doc 2
industry @ ——————_______
\\ ____________
\\\ _ —— O
—
\\\ /’/// //
~ —— 7
SN _—— 7
— //<\ e
- ~ 7
//// \\\ //
telephone @£~ >R
\\\\\\\ // \\\
P ~~
—_—— ~
/// \\\\\ 1}
e — O
/// //”//
s -
Ve -
/// /////
—
market @x--——"
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Lexical Semantic Kernels

= The document similarity is the following SK function:

SK(d.d)) = Y s(w.w,)

wEd, w,y,Ed,

= where s is any similarity function between words, e.g.
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et
al., 2002]

= Good results when training data is small

iK" 51




String Kernel

= Given two strings, the number of matches between their
substrings is evaluated

= E.g. Bank and Rank

» B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

¥ R, a,n, k, Ra, Ran, Rank, Rk, an, ank, nk,..
= String kernel over sentences and texts

= Huge space but there are efficient algorithms

iK" 52

Using character sequences

¢("bank")=x=(0,..1,..,0,..1,..,0,......1,..,0,..1,..,0,...1,..,0)
bank ank bnk bk b

¢("rank")=7-=(,..,0,..0,..1,..,0,.....0,...1,...0,...1,..,0,..,1)

rank ank rnk rk r

= X *Z counts the number of common substrings

Xz =¢("bank")  ¢("rank") = k("bank"," rank")

iK" 53




Formal Definition

S = 317"78|S|’ f: (ila 7Z\u|)
u = sI]
Z /\() ,where () =1 o — 01+ 1
Tu= s[I
L =Y X N0 Y
ueEr* ued* fu:s[_] j:u:t[ _]

Z Z Z >‘l ,where Z*:UZ”

ueX™ Ty=s[I] Jiu=t[J]

iK" 54

Kernel between Bank and Rank

B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.




An example of string kernel computation

- ¢a(Bank) = ¢a(Rank) = A —0+D) = \@2=2+1)

I
> > >

- ¢n(Bank) = ¢p(Rank) = A=+ = \B=3+1)
- ¢y (Bank) = ¢y (Rank) = A=+l = \(4=4+1) — )\
- ¢an(Bank) = ¢an(Rank) = A2=iHh) = \B=24+1) — \2,
- ¢ank(Bank) = danx(Rank) = AB=iFl) = \(4=241) — )3,
- ¢nx(Bank) = ¢ny (Rank) = A2=irtlh) = \(4=3+1) — )\2

- ¢ax(Bank) = day (Rank) = A0+ = \(=241) — )3

K (Bank,Rank) = (A, A, A, A2, A3 A2 03) (A, A A2 03, 0203
= 322+ 2)\% + 2)\6

iK" 56

Efficient Evaluation: Intuition

= Dynamic Programming technique over:
= The size of the two input strings, m, n and
= The size of their common substrings, p
= Evaluate the spectrum string kernels
= Substrings of size p
= Sum the contribution of the different p spectra
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Efficient Evaluation

Given two sequences sia and sob, we define:

|s1] |s2]

p(ls1l,]s2]) ZZA'”' itls2l=r 5 SK, 1 (s1[1 2], so[1 2 7)),

i=1 r=1

s1[1 : i] and s2[1 : r] are their subsequences from 1 to 7 and 1 to r.

A2 x D,(ls1], |sa]) if @ = b;
SKy(s1a,s2b) _{ »(|s1], s2])

0 otherwise.
D, satisfies the recursive relation:

Dy(k,1) = SKp_1(s1[1: k], s2[1 : 1]) + AD, (k.1 — 1)+

+AD,(k—1,1) = XDy (k — 1,1 — 1) s

Tree kernels

= Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic
Syntactic Tree Kernel, Smoothed PTK

= Efficient computation




Example of a parse tree

= ‘John delivers a talk in Rome”

/S \ S—=NVP

N VP

‘ / \ YQVNPPP
\ NP PP

John
/ o\ / \ PP—INN
delivers D N IN N
‘ ‘ ‘ ‘ N — Rome

a talk in Rome

iK" 61

The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

VAR
N

delivers D

|
a talk




The overall fragment set

VP VP VP NP NP NP
| /| A VAR AR R
R A N A WA N S A |
/ . a talk a talk
]‘) delivers I|) T D N ]|3 1\|I v p D N
2 a  talk a  talk 1‘| AN | ta|1k
/| Children are not divided vp
VNeV NPV NPY  n ] I |
NP V NP
D N D/ \N deli\|/ers D/ \N | / \ | \|/ /NP\
| | delivers D N delivers delivers D N
a talk a \
talk
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Explicit kernel space

H(T)=%=(0,.,1,..0,...1,.,0,..1,..,0,...1,...0,..,1,...0,...1,..,0)

VP VP VP NP NP NP
] Jl A AL AN
\|’ /NP\ v /NP\ v /Np\ | | | |
delivers D 1\|I D N 1|) IT a talk a talk
a talk a talk
¢(’Z;)=Z=(1,”’O"”O”"l"”0”"1"’,0”"1"’,O,"’O"”]‘”"O"”O)
VP VP VP NP NP
/ | /| /| D/ \N D/ \N
N NP VvV NP v NP | |
I | / \ / \ a talk
delivers N D N IID 1\|I
| a talk

talk

= X *Z counts the number of common substructures
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Efficient evaluation of the scalar product

X-z2=¢(T) ¢(T)=K(T.T)=

= E EA(nx,nZ)

n, €T, n, €T,

iK" 65

Efficient evaluation of the scalar product

X-z2=¢(T) ¢(T)=K(T.T)=

= E EA(nx,nZ)

n, €T, n €T,

= [Collins and Duffy, ACL 2002] evaluate A in O(n?):

A(n ,n,)=0, if the productions are different else

A(n ,n,)=1, if pre-terminals else

nc(n,)

A(n,n)= | | (+Acchn,, j).chin,, j)
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Other Adjustments

= Decay factor

A(n,,n,)= A, if pre-terminals else
nc(n,)

A(n,n,)=A 1_[(1 +A(ch(n,,j),ch(n,,j)))

j=1
= Normalization

_ K(@.T)
K@ T)xK(T.T)

iK" 67

K'(T..T)

Observations

= We can order the production rules used in T, and T,, at
loading time

= Atlearning time we can evaluate NP in
|T.|+|T., | running time [Moschitti, EACL 2006]

= If 7. and T, are generated by only one production rule =
O(T,x|T.|)...Very Unlikely!!!!




Trees can also be program derivation trees

CODE AST AST KERNEL
while
while A
while (x <y) { T < block
XxX=x+1 < block
y=y-1 N N <
} X y = = /\
/\ y/\ x y
X + = v
paN /\ »
x 1 y1 @
;A >

while (b > a) { A block ,‘
- > < 0
a=a+1 b a =/ \= /\ 5 ’;
b=b-1 /N l;/)/\ b % a
a 4+ -
} /\ /\ P
a1l b 1 /-\
b 1 69

Labeled Ordered Tree Kernel

= STK satisfies the constraint “remove 0 or all children at a
time”.

= If we relax such constraint we get more general
substructures [Kashima and Koyanagi, 2002]

VP VP VP VP VP VP VP VP

e e | I I

N NP v NP NP NP NP NP NP NP

|\ = SN SN N N

gives D N D N D N D ND D N -
I [ | NP NP NP

a talk a  tak a talk a a / K N\ /

D N N D
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Weighting Problems

VP VP ] )
e 7 = Both matched pairs give the same
\% \% . .
A | M contribution
gives D N gives N . . .
| . = Gap based weighting is needed
a talk a talk
= A novel efficient evaluation has to
VP VP _
7 7 be defined
\‘/ NP \‘/ NP
/I T /IN
gives ]‘)lf I\‘I—: I‘\I gives l‘): J‘ ]I T
|
a : ath :talk a ILbadI talk
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Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

= STK + String Kernel with weighted gaps on nodes’ children

VP VP VP VP VP VP VP VP
e ] | o
v NP Vv NP NP NP NP NP NP NP
= SN NN
brought D N D N D N D ND D N -
I [ R | Np NPONP
a cat a cat a cat a a / Ii \ /

D N N D
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Partial Tree Kernel - Definition

- if the node labels of n; and ne are different then

A(?’Il. 72,2) = 0;

- else 1(Jy)

A('nl‘nQ) — 1+ Z H A(cnl [']l'i]s (5119[']21'])
=1

J1, Jo l(J1)=1(Js) =

= By adding two decay factors we obtain:

1(J1)
,u.(/\Q_{_ Z /\d(..71)+d(.]2) H A(Cnl[.fl,i]‘(fn?[,j«;i])>
T1, T2 U(T1)=1(J2) i=1
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Efficient Evaluation (1)

= In [Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different
subsequence sizes

= We treat children as sequences and apply the same theory

A(nlv n2) — ,LL()\2 + 25321 AP(CHNCTQ))

Given the two child sequences sja = ¢,,, and s2b = ¢;,,

(@ and b are the last children), A,(s1a, s2b) = D
p
|s1] [s2]
A(ab) X ZZ )\|$1|_7"+|82‘_T X Ap_1<81[1 : ?]52[1 : 7])
i=1 r=1
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Efficient Evaluation (2)

A(a,b)Dy(|s1]. |s2]) if a = b;

0 otherwise.

Ap(s1a,s2b) = {
Note that D, satisfies the recursive relation:

Dp(k‘, l) = Ap_]_(S]_[l . k‘] 82[1 . l]) + )\Dp(kl — 1)
+AD,(k—1,1) + XD, (k — 1,1 — 1).

= The complexity of finding the subsequences is O(p|s||s2|)

= Therefore the overall complexity is O(pp*| N7, ||Nr,|)
where p is the maximum branching factor (p = p)
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Running Time of Tree Kernel Functions

120 /
100 //
80 ® STK (fast) /
" & STK (slow) /
= & PTK (fast) /‘
S 60
] /
40
.
/ - /
20 .
al/E_Aﬁp—’m—’“/—*' o+ ¢

5 10 15 20 25 30 35 40 45 50 55
Number of Tree Nodes
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Syntactic/Semantic Tree Kernels (SSTK)
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007]

A A

\|7 NP \|7 NP

/N VRN

gives I‘) JlJ I\‘I gives I‘) J|J I\‘I
a good talk a solid talk

= Similarity between the fragment leaves
» Tree kernel + Lexical Similarity Kernel

iK" 77

Equations of SSTK

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 € F, we define the Tree Fragment Similarity Kernel as®:

nt(f1)
kr(f1, f2) = comp(f1, f2) [[ ks(A(®), f2t))
t=1

Tl,TQ Z Z A nlan2

ni EJVT1 ngENTz

where A(ny,ng) = Z'ﬂ Z'ﬂ Li(n1) 1 (n2)kr(fis f5)-
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Example of an SSTK evaluation

VP VP
7 7 Ks(gives,gives)*Kq(a,a)*
1 /NP\ v /NP\ K<(good,solid)*Ks(talk, talk)
gives | "y gives v =1%1%05%1=05
a good talk a solid talk

Tl,TQ Z Z A 7’L1,712

ni ENTl HQGNTQ

where A(ny,ng) = Z'ﬂ Zm Ii(n1)Ij(n2) k7 (fis fj)-
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Delta Evaluation is very simple

0. if ny and ng are pre-terminals and label(n;) = label(ng) then A(ny,ng) =
Aks(chy ,chl ),

ny?
1. if the productions at n; and ny are different then A(ny,ns) = 0;

2. A(nl,ng) = )\,
3. A(ni,ne) = )\H?i(lnl)(l + A(chi, ,chl,,)).

ny?
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Smoothed Partial Tree Kernels
[Moschitti, EACL 2009; Croce et al., 2011]

= Same idea of Syntactic Semantic Tree Kernel but the
similarity is extended to any node of the tree

= The tree fragments are those generated by PTK
= Basically it extends PTK with similarities

iK" 81

Examples of Dependency Trees

= What is the width of a football field?
= What is the length of the biggest tennis court?

~ be _be
the  of the of

a [football \w
iK" 82




Equation of SPTK

If n, and n, are leaves then A,(ny,n2)= pio(ni,ng)

else

| )
s, ) = o, ) (2 4+ 30 N TT A (en ()., ()

ﬁ I, 0o, (1) =1(I2) j=1
L

exical Similarity PTK
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Different versions of Computational
Dependency Trees for PTK/SPTK

be::v be::v
Y
what::w width:n 9.. what::w width::n ?.:. ROOT VBZ
the(\of' ” SBIJWP  the::d of:i  PRDNN P/\.
/ field::n NMOD DT field::n NMOD IN
LOCT g T~
m 1l a:d football::n PMOD NN
a:: ootball::n /\ /\
NMOD DT NMOD NN \

LCT

TOP

%‘\

LPST |7 WP VBZ DT NN IN DT NN NN

what::w be::v the::d width::n of::i a::d football::n field::n ?::.
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Tree Kernel Efficiency

| | = 0.06432005 /0"
120 4LCT-PTK y =0,0513x
xLCT-SPTK [ =
100 = 1J705
LPST-PTK / y =0.081x"
B 80 ~LPST-SPTK 2 pd
O]
8 60 » b
E pad
40 / x
ZIAD h a2 S ——o %
0 e o

0 10 20 30 40 50 60
Number of Nodes

- Classification with Kernels

ernels (15 min)

ation (QC) using constituency,
emantic structures

ation (QC) in Jeopardy!

‘with kernels

ference Resolution
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IBM Watson (simplified) Pipeline

Question

Question
kCIassification

~

(

Questi Hypothesis|
Analys Generation

Prlmary Candldate
Search Answer

Generatlon

Answer
Sources

Hypothesis and J

{Evidence Scoring

0

Supporting

Evidence EVidQnCC
Retrieval Scoring

Deep

| Trained

Candidate
Ranking

J

'
!
— ey
Evidence _
Sources

IKs
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Answer and

Confidence

Question Classification

= Definition: What does HTML stand for?

= Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?

= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

= Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?
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Question Classifier based on Tree Kernels

= Question dataset (http:/12r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)
[Lin and Roth, 2005])

» Distributed on 6 categories: Abbreviations, Descriptions, Entity,
Human, Location, and Numeric.

= Fixed split 5500 training and 500 test questions

= Using the whole question parse trees
» Constituent parsing
» Example

“Who did deliver a talk?”

iK" 89

Syntactic Parse Trees (PT)

_SBARQ
WHNP  sQ
V\‘/P 7 VP ?
W‘hO AUX | VP
dd v wp
deliver D N
a talk
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Some fragments from the VP subtree

VP VP VP NP NP NP
/\ /N N\
/ /] /| b N b ND N
\|f /NP\ \% /NP\ v /NP\ | | | \
delivers D T D N ]|3 I\|I a Vtalk a . talk
NP
a  talk 2l 1.| . / \N l ta|1k
elivers
yp VP VP VP
VP
ARV 4 A AL
V. NPV NPV NPV  p vV . |
D\ND/\N .| /\ | / \ | \|’ NP
| | delivers D Ndelivers D N / \

\ delivers delivers D N

a talk a Kk
ta

K's 91

Explicit kernel space

H(T)=%=(0,.1,.0,.1,..0,..1,...0,..1,...0,...1,..,0,...1,...0)

VP VP VP NP NP NP
/ | /| /l D/ \N D/ \N D/ \N
\% NP VvV NP v /]\]p\ | | | |
delivers D / \IT D / \N ]|) 1\|I a talk a talk
a talk a talk
o(T)=7z=(,..,0,.,0,..,1,..,0,...1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)
VP VP VP NP NP
_ | /| /| D/ \N D/ \N
Y NP Vv NP vV NP | |
| / \ / \ a talk
delivers N D N ]|3 I\II a
| a talk

talk

= X *Z counts the number of common substructures
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Question Classification with SSTK
[Blohedorn&Moschitti, CIKM2007]

Syntactic Tree Kernel

(STK)

| | Accuracy |
A parameter 0.4 | 0.05 [ 0.01 [0.005[0.001
linear (bow) 0.905

string matching|0.890[0.910 |0.914(0.914|0.912
full 0.90410.924(0.918 10.922 [ 0.920
full-ic 0.908(0.922]0.916 10.918 | 0.918
path-1 0.906|0.918]0.912 (0.918]0.916
path-2 0.896(0.91410.914 10.916(0.916
lin 0.908(0.924]0.918 ] 0.922  0.922
wup 0.908(0.926]0.918 ] 0.922 [ 0.922

Syntactic Tree Kernel
with similarities (SSTK)
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Same Task with PTK, SPTK and
Dependency Trees

be:v be::v
Y
what::w width:n 9.. what::w width::n ?.:. ROOT VBZ
the(\of' ” SBJWP  the:d of:si PRD NN P/\.
'. ) AN N
/ field NMOD DT field::n NMOD IN
cld:in
LOCT T
m 1 a:d football::n PMOD NN
a:. ootball::n /\ /\
NMOD DT NMOD NN \

LCT

TOP

LPST |7 WP VBZ DT NN IN DT NN NN —

what::w be::v the::d width::n of::i a::d football::n field::n ?::.
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State-of-the-art Results
[Croce et al., EMNLP 2011]

STK PTK  SPTK(LSA)
CT 91.20% 90.80%  91.00%

LOCT - 89.20% 93.20%
LCT - 90.80% 94.80 %
LPST - 89.40% 89.60%
BOW 88.80%

Classification of Jeopardy! cues
in definition vs. non definition

iK" 96




L
L
L ]
|

l'. [

P

Classification of Definition vs. non-
Definition Questions in Jeopardy!

= Definition: Usually, to do this is to lose a game without
playing it
(solution: forfeit)

= Non Definition: When hit by electrons, a phosphor gives
off electromagnetic energy in this form

= Complex linguistic problem: let us learn it from training
examples using a syntactic similarity
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Automatic Learning of a Question
Classifier

= Similarity between definition vs. non definition questions
= Instead of using features-based similarity we use kernels

= Combining several linguistic structures with several
kernels for representing a question q:

r Ki(€94,92)+K5(<q4,92)+... +K(({q4,92))

= n tree kernels measure similarity between the n pairs of
trees

iK" 99

Constituency Tree (CT) — Apply STK

ROOT

SBARQ

WHADVPS/,// NlP \
| AN \\

WRB VP VBZ PRP

I /\

When VBN PP NP a phosphor gives RP

I I/\I/\

hit IN NNS off JJ NN in DT NN

by electrons electromagnetic ~ energy this  form

iK's 100




Syntactic Tree Kernel (STK)

VP
7
v NP

/ A\
hit D N
a phosphor
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STK space

VP VP VP NP
| /l /l D/ \N D/ \ND/ \N
NP V NP Vv NP | | | |

-~

hi|t D/ \N D/ \N D/ \N a phosphor a phosphor
| | M N DN
a phosphor a phosphor | / \ | |

N
| VP
Lo

V NP v NPV NPV |
| NP V NP v

AN /\ A
ND N i i
| | hit D N it D N h!t hi|t D/ \N
phosphor a phosphor
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The explicit kernel space

H(T)=%=(0,.,1,..0,.1,.0,.1,.0,..1,..0,..1,..0,...1,..,0)
NP

b
VP VP VP NP NP
/| /l /| D/ \N D/ \N D/ \N
Voo oo Vo T |
hit D/ \N D/ \ D/ \N a phosphor a phosphor
| | | |
a  phosphor a phosphor

¢(’Z—;) = Z = (1 9"’03'-705"31 ’--9050-’1 ’--90,"’1 ’--,O,"’Oanal 5"307"’0)
’ P NP NP

A\ VP VP
7 yd /| D/ \N D/ \N
\|7 NP v /NP v /NP | |
hit Il\l D \N D \N a  phosphor
| o
phosphor a phosphor

s X *Z counts the number of common substructures
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Dependency Tree (DT) — Apply PTK

RO|OT
VBZ
S, e S
T1\|/IP F|’ S]|3J gives PI|{T O]|3J
VBN , NN RP NN
T1V|IP hit L(|}S NM|OD phosphor off NM|OD energy NM|OD
WRB IN DT JJ IN
RN | |
when by PM|OD a electromag. in PMOD
NNS NN
| N
electrons NM‘OD form
D‘T
this
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Predicate Argument Structure Set (PASS) —
Apply PTK

PASS

- NTTTT——

P P P
) — T T
A0 AM-TMP PR Al Al AM-MNR PR PR A0 Al

phosphor hit give energy phosphor electromag. energy hit electron phosphor

iK's 105

Sequence Kernels on sequences of words
and part-of-speech tags

WSK: [when][hit][by][electrons][,][a][phosphor][gives]
[off][electromagnetic][energy]|[in][this][form]

PSK: [wrb][vbn][in][nns][,][dt][nn][vbz][rp][jj][nn][in]
[dt][nn]

CSK: [general][science]
(category sequence kernel)
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Experimental setup

= Corpus: a random sample from 33 Jeopardy! Games

= 306 definition and 4,964 non-definition clues

= lools:
¢ SVM-Light-TK

» Charniak’s constituency parser
» Syntactic/Semantic parser by Johansson and Nugues

(2008)

= Measures derived with leave-on-out

107

Individual models

Kernel Space | Prec. | Rec. F1

RBC 28.27 | 70.59 | 40.38
BOW 47.67 | 46.73 | 47.20
WSK 47.11 | 50.65 | 48.82
STK-CT 50.51 | 32.35 | 39.44
PTK-CT 47.84 | 57.84 | 52.37
PTK-DT 44.81 | 57.84 | 50.50
PASS 33.50 | 21.90 | 26.49
PSK 39.88 | 45.10 | 42.33
CSK 39.07 | 77.12 | 51.86
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Many Model Combinations

Kernel Space Prec. | Rec. F1
WSK+CSK 70.00 | 57.19 | 62.95
PTK-CT+CSK 69.43 | 60.13 | 64.45
PTK-CT+WSK+CSK 68.59 | 62.09 | 65.18
CSK+RBC 47.80 | 74.51 | 58.23
PTK-CT+CSK+RBC 59.33 | 74.84 | 65.79
BOW+CSK+RBC 60.65 | 73.53 | 66.47
PTK-CT+WSK+CSK+RBC | 67.66 | 66.99 | 67.32
PTK-CT+PASS+CSK+RBC | 62.46 | 71.24 | 66.56
WSK+CSK+RBC 69.26 | 66.99 | 68.11
ALL 61.42 | 67.65 | 64.38

- )

lK" 109 \/ /‘

Summary

= Rule Based Classifier (RBC)

28.27
BOW 46.55
CSK 39.07
PTK 47.84
PTK+CSK+RBC 67.66

= Only Word Overlap (BOW)
= Category Subsequences (CSK)
= Parse Tree (PTK)

IKs

70.59
50.65
77.12
57.84
66.99
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40.38
48.51
51.86
52.37
67.32




Summary

28.27

70.59

40.38

66.7% relative improvement over RBC

PTK

PTK+CSK+RBC

47.84
67.66

= Rule Based Classifier (RBC)

Only Word Overlap (BOW)
Category Subsequences (CSK)
Parse Tree (PTK)

57.84
66.99

52.37
67.32

" T
' /
lK‘ 111 <
Impact of QC in Watson
= Specific evaluation on definition questions
» 1,000 unseen games (60,000 questions)
» Two test sets of 1,606 and 1,875 questions derived with:
o Statistical model (StatDef)
o RBC (RuleDef)
» Direct comparison only with NoDef
# Def Q’s | Accuracy | P@70 | Earnings
NoDef 0 69.71% 86.79% | $24,818
RuleDef 480 69.23% 86.31% | $24,397
StatDef 131 69.85% 87.19% | $25,109
< D
o

%

112
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Error Analysis -~ x» .. PTK
S T T~ similarity
/NP /VP\
/‘Z/R )
Test Example JJ % JJ NN VBN PP
« PTK ok [ E— R B
* STK not ok artificial green grass jused IN NP o
\ on DIT V]|3G “\.‘\NIN
ST K . TN \\“.‘a "Eplaying field
similarity 7 np . L
{ NP . VP ™.
Training DT 1 NN\VBN  EP
Example a flat-bottomed boat :':\used IN NP
""" on ,:’DlT AN
a canal

- Practical Exercise

jith SVM-Light-TK (30 min)
SVM-Light-TK

sroom on Question Classification
put, output, and model files

ge reranking (if there is time available)
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SVM-light-TK Software

= Encodes STK, PTK and combination kernels
in SVM-light [Joachims, 1999]
= Available at http://disi.unitn.it/moschitti

Tree forests, vector sets

You can download the latest version and other material at
the Tutorial Webpage:

» http://disi.unitn.it/moschitti/SIGIR-tutorial.htm
o click on SIGIR 2013 Exercise 1

K" — Q\

Data Format

= “What does S.0.S. stand for?”

= 1 |BT|(SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.8.))(VP (VB stand)(PP (IN for))))(. ?))

_SBARQ
WHNP s
WP AUX NP VP ?

| |
What does NNP VB PP

S.0.S. stand IN

for

K" — TN Q\




Data Format

= “What does S.0.S. stand for?”

= 1 |BT|(SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.8.))(VP (VB stand)(PP (IN for))))(. ?))

~ SBARQ
WHNP s
WP AUX NP VP  ?

T ~

What does NNP VB PP

| | |
S.0.S. stand IN

for

Data Format

= “What does S.0.S. stand for?”

= 1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.S.))(VP (VB stand)(PP (IN for))))(. ?))

~ SBARQ
WHNP s .
WP AUX NP VP 7
\ AN

What does NNP VB PP
S.0.S. stand IN

for




Data Format

= “What does S.0.S. stand for?”

= 1 |BT|(SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.8.))(VP (VB stand)(PP (IN for))))(. ?))

SBARQ
WHNP s
WP AUX NP VP  ?

| | | a

What does NNP VB PP

| | |
S.0.S. stand IN

for

iKg _ SRE

Data Format

= “What does S.0.S. stand for?”

= 1 |BT|(SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.8.))(VP (VB stand)(PP (IN for))))(. ?))

SBARQ
WHNP s
WP AUX NP VP 7

| |
What does NNP VB PP
S.0.S. stand IN

for

iKs O




Data Format

= “What does S.0.S. stand for?”

= 1 |BT| (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP
S.0.S.))(VP (VB stand)(PP (IN for))))(. ?))

IBT| (BOW (What *)(does *)(S.0.S. *)(stand *)(for *)(? *))

IBT| (BOP (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *))

|IBT| (PAS (ARGO (R-A1 (What *)))(ARG1 (A1 (S.0.S. NNP)))(ARG2
(rel stand)))

|[ET| 1:1 21:2.742439465642236E-4 23:1 30:1 36:1 39:1 41:1 46:1 49:1
66:1 152:1 274:1 333:1

|IBV] 2:1 21:1.4421347148614654E-4 23:1 31:1 36:1 39:1 41:1 46:1 49:1
52:1 66:1 152:1 246:1 333:1 392:1 |EV|

K" — Q\

Kernel Combinations an example

K> : Polynomial kernel of flat features

K, . Tree kernel

= Kernel Combinations:

3 3

KTree+P =Y XKTree + Kp ’ KTreexP - KTree XKp
3 3

K =V X Tree + KP K _ KTW@XKP
Tree+P = 1 K K3 ’ TreexP K K3
Tree P Tree X )4

K" — TN Q\




Basic Commands

= Training and classification
r ./Isvm_learn -t 5 -C T train.dat model
» .Isvm_classify test.dat model
= Learning with a vector sequence
r ./Jsvm_learn -t 5 -C V train.dat model
= Learning with the sum of vector and kernel sequences
» ./Isvm_learn -t 5 -C + train.dat model

IKs (0L

to 16:00
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lassification with Kernels

nels (30 min)
tion (QC) using constituency,
mantic structures

rence Resolution

125

Relation Extraction




The Relation Extraction Problem

|

|

Last Wednesday, Eric EMPLOYMENT
Schmidt, the CEO of CEO < Google
Google, defended the ::>
search engine's

LOCATED

cooperation with
Chinese censorship as research center <> Beijing

he announced the
creation of a research

Waven a text with some available entities,
how to recognize relations ?
, ST X
IKs (0

—

Relation Extraction: The task

= lask definition: to label the semantic relation between

pairs of entities in a sentence
» The governor from Connecticut

M1 M2 M := Entity Mention
type: PER type: LOC

r Is there a relation between M1 and M2?
If, so what kind of relation?

- // \// ~ , NN




Relation Extraction defined in ACE

= Major relation types (from ACE 2004)

g

EMP-ORG Employment US president
PHYS Located, near, part-whole a military base in Germany
GPE-AFF Affiliation U.S. businessman
PER-SOC Social a spokesman for the senator
DISC Discourse each of whom
ART User, owner, inventor ... US helicopters
OTHER-AFF Ethnic, ideology ... Cuban-American people

= Entity types: PER, ORG, LOC, GPE, FAC, VEH, WEA

iK'S 129 \/ Y Q |

System Description [Nguyen et al, 2009]

:—: Entities and
— Relations
ACE doguments | e 3
{ | Stanford Parse Trees with
Raw texts —' Parser Entities ‘
- |
i — Multi-class
Tree Kernel-
H | e .
_ Classification based SVMs
RELATIONS
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Relation Representation
[Moschitti 2004; Zhang et al. 2006]

| NNP |

]véN\ ]|NHNNP\H IN |

’ the H corporation ‘ ’ established ‘ ’ in H lowa ‘ : ’ by ‘ ‘ Andrew ‘ ‘ Pylant ‘
1 .

between “corporation” and “lowa”

131

Comparison
Method Data P(%) | R(%) | F1(%)
Zhang et al Composite Kernel
9 " | (linear) with Context- | ACE 2004 | 73.5 67.0 70.1
(2006)
Free Parse Tree
Composite Kernel
Ours (linear) with Context- | ACE 2004 | 69.6 68.2 69.2
Free Parse Tree

Both use the Path-Enclosed Tree for Relation Representation

IKs
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Several Combination Kernels
[Nguyen et al, EMNLP 2009]

CKi=a -Kp+(1—a) K,
CKy=a-Kp+(1—a) (Ksst+ Kpri)
CKs=a -Ksst+(1—a) (Kp+Kprk)
CKy= Kprx-pw + Kprx—Gr

CKs = a-Kp+(1—a) (Kprk —pw+Kprik -cr)
SSK =%, 65K

CSK=a-Kp+(1—a)-(Kgsp+ SSK)

iK's 133

o

Results on ACE 2004

Kernel P R F
CK1 69.5 | 68.3 | 68.9
SK1 72.0 | 52.8 | 61.0
S Ko 61.7 | 60.0 | 60.8
SK3 62.6 | 60.7 | 61.6
SKy 73.1 | 50.3 | 59.7
SKs 59.0 | 60.7 | 59.8
SKg 57.7 | 61.8 | 59.7
SKs3 + SK4 75.0 | 63.4 | 68.8
SKs+ SKg 66.8 | 65.1 | 65.9
SSK = >; SK;j 73.8 | 66.2 | 69.8
SST Kernel + SSK | 75.6 | 66.6 | 70.8
CK; + SSK 76.6 | 67.0 | 71.5

(Zhou et al., 2007)

C K4 with Heuristics §2.2170.2 1758
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Coreference Resolution

iKg _ SRE

Coreference Resolution

= Subtree that covers both anaphor and antecedent candidate

=> syntactic relations between anaphor & candidate (subject, object,
c-commanding, predicate structure)

= Include the nodes in path between anaphor and candldate as
well as their first_level children . -

—“the man 1n the room saw him”
— inst(“the man”, “him™)

iks R




Context Sequence Feature

= A word sequence representing the mention expression
and its context

» Create a sequence for a mention

— “Even so, Bill Gates says that he just doesn’t
understand our infatuation with thin client versions of
Word ”

— (s0)(,) (Bill)(Gates)(says)(that)

iKs O

Composite Kernel

= Different kernels for different features
» Poly Kernel for baseline flat features
» Tree Kernel for syntax trees
» Sequence Kernel for word sequences

= A composite kernel for all kinds of features
= Composite Kernel = TK*PolyK+PolyK+SK

iK" — TN Q\




Results for pronoun resolution
[Vesley et al, Coling 2008]

IKs

MUC-6 ACE-02-BNews
R P F R P F
Allattribute value | o)+ 1631|637 |58.9 |68.1 63.1
features
+ Syntactic Tree
+ Word 65.2 |80.1 71.9 65.6 |[69.7 67.6
Sequence
139
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Results on the overall Coreference
Resolution task using SVMs

MUC-6 ACE02-BNews

R P F R P F
Basic Features 61.5 | 67.2|64.2|54.8 | 66.1 | 59.9
SVMs
Basic Features + 63.4 | 67.5| 654 | 56.6 | 66.0 | 60.9
Syntax Tree
Basic Features + 64.4 | 67.8 | 66.0| 571|654 | 61.0
Syntax Tree + Word
Sequences
All Sources of 60.1 | 76.2 | 67.2 | 60.0 | 65.4 | 63.0
Knowledge
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Outline: Part Il — Kernels for Ranking

= Reranking with kernels (40 min)
1 Classification of Question/Answer (QA) pairs
1 Preference Reranking Kernel
1 Reranking NLP tasks
o Named Entities in a sentence
o Predicate Argument Structures
o Segmentation and labeling of Speech Transcriptions
+ Reranking the output of a hierarchical text classifier

+ Reranking Passages with relational representations:
the IBM Watson system case

141

Answer/Passage Reranking

Answer/Passage J

ii . Reranking
J | Hypothesis and

=
Trained
Models

Question |Hypothes1s} — [Candidate
Analysis lGeneratlon J lEvidence Scoring Ranking
v
Prlmary Candldate Supporting Deep
Search Answer Evidence || Evidence %ﬂs‘}’%r and
Generation Retrieval Scoring R i

Answer Evidence -
Sources Sources

Ks J
| ‘ 142 \




Reranking with a
QA classifier

IKs

143

.

Reranking framework

H = ) - - H = )
Ho = ((q1 p1; Pair +1 Reranking - = 82 EZ;
2= \A2P2 Classifier with scores noomEn
Hn = (qmpn) +1 H1 = (q1vp1)
i%
IK‘ 144
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TASK: Question/Answer Classification
[Moschitti, CIKM 2008]

= The classifier detects if a pair (question and answer) is
correct or not

= A representation for the pair is needed

= The classifier can be used to re-rank the output of a basic
QA system

iKg _ SRE

Bags of words (BOW) and POS-tags (POS)

= [0 save time, apply tree kernels to these trees:

iKs o




Word and POS Sequences

= What is an offer of...? (word sequence, WSK)
= What is offer
= What is

= WHNP VBZ DT NN IN...(POS sequence, POSSK)
= WHNP VBZ NN
=» WHNP NN IN

iK's 147 ; Q\

Predicate Argument Structures for
describing answers (PAS;)

= [ARG1 Antigens] were [AM-TMP originally] [rel defined] [ARG2 as non-

self molecules].
= [ARGO Researchers] [rel describe] [ARG1 antigens][ARG2 as foreign

molecules] [ARGM-LOC in the body]

PAS
N
rel ARG1 ARG2 ARGM-TMP
l | I l

define antigens as non-self molecules originally

PAS

L T
rel ARGO ARG1 ARG2 ARGM-LOC

describe researchers antigens as foreign molecules in the body

iKg _ SRE




Dataset 2: TREC data

= 138 TREC 2001 test questions labeled as “description”

= 2,256 sentences, extracted from the best ranked
paragraphs (using a basic QA system based on Lucene
search engine on TREC dataset)

= 216 of which labeled as correct by one annotator

iK" 149
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Kernels and Combinations

= Exploiting the property: k(x,z) = k,(x,z)+k,(x,z)
= Given: BOW, POS, WSK, POSSK, PT, PAS 1«
= BOW+POS, BOW+PT, PT+POS, ...

iK" 150

e




F1-measure

Results on TREC Data
(5 folds cross validation)

S R e
o7 97 oW O o9
< 2 Q

Kernel Type
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F1-measure

Results on TREC Data
(5 folds cross validation)

Kernel Type
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F1-measure

Results on TREC Data
(5 folds cross validation)
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F1-measure

Results on TREC Data
(5 folds cross validation)

Kernel Type
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Results on TREC Data
(5 folds cross validation)

F1-measure
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Results on TREC Data
(5 folds cross validation)

F1-measure

P O SV
QO & /‘5 @5 < 65’\ c /Q’\ W

Kernel Type
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Results on TREC Data
(5 folds cross validation)

40
38
36

34 BOW = 24

©»1— POSSK+STK+PAS_PTK= 39
=62 % of improvement =~ = W

26
24 1

22 -
20 A

F1-measure

6‘5\(\ @6\(\ ?" 65’\\(\ Q’\\(\ *?06 x?« x?« x?«

oo~ 9% oS W oWV ek ef
§ TS T S A

g
P

Kernel Type 90‘5/ )
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Preference Reranking
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Framework of Preference Reranking

Hypotheses Pairs Hypotheses
H1 <H1,H2> H4
2
g; H1.H3 H3 H4
Local Model — —5 —p(Rerankeri _p p
wve <Hn,H1> H1
Hn <Hn,H2> Hn

= The local model is a system providing the initial rank

= Preference reranking is superior to ranking with an instance
classifier since it compares pairs of hypotheses

iKg _ SRE

More formally

= Build a set of hypotheses: Q and A pairs
= These are used to build pairs of pairs, <H", Hf>

» positive instances if H' is correct and Hi is not correct

A binary classifier decides if H' is more probable than H

Each candidate annotation H' is described by a structural
representation

This way kernels can exploit all dependencies between
features and labels

iKs O




Preference Reranking Kernel

H,>H, and H, > H, then consider training vectors:

Z, =¢(H,)-¢(H,) and Z, = p(H,) - $(H,) = the dot product is:
Zy* Z,=(¢(H,) - $(H,))* (¢(H3) - (H.,)) =

¢(H,)* p(H3)—-9(H,)* §(H,) - ¢(H,)* p(H;) + ¢(H,)* p(H )
=K(H,,H,)-K(H,,H,)-K(H,,H,)+K(H,,H,)

Let H, =<qi,ai>, H, =<qj, aj>
K(H;, H;))=PTK(q;, q,)+ PTK(a;, a;)

iKs O

Syntactic Parsing Reranking

= Pairs of parse trees (Collins and Duffy, 2002)
= N-best parse generated by the Collins’ parser

= Re-ranking using STK in a perceptron algorithm
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Reranking for Named-Entity Recognition
[Nguyen and Moschitti, Al Journal 2013]

|ORG.Type| | NULL|| NULL||NULL | NULL| | ORG.Type | NULL|| ORG.Type | NULL

[ORG| |[ORG||ORG|[ORG] ORG

|South| | Africa HBrewen'.es‘ |Ltd| |bough ‘ ‘stakes‘ ‘the‘ ‘Lech| ‘and| |T§,'ch}" |brewers|

= CRF F1 from 84.86 to 88.16
= Best Italian system F1 82.0, improved to 84.33

iKg _ SRE

Reranking segmentation and labeling of
speech transcription [Dinarelli et al, TASLP 2012]

ROOT
NULL NULL PROBLEM-B PROBLEM-I NULL HW-B HW-I
| | l | | | |
I have a problem with  my monitor

= It improved the state of the art (CRF) by 2 and 3 points on
automatic transcriptions for English and Italian, respectively

iKs O




Reranking Predicate Argument Structures

[Moschitti et al, CoNLL 2006]

= Today, a car was pushed into a ravine.

TREE

TS SN

ARGO ARG1 ARG2 ARG3 ARG4 ARG5 ARGS6

AM-TMP Al rel A2 null null null

]

pushed = SVMs F1 from 75.89

Today acar aravine to 77.25
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Reranking the output of a hierarchical text

classifier [Ju et al, ECIR 2013]

= A basic flat multi-label, multi-class classifier builds a set

hypotheses
= Represent them with trees

= Apply a tree kernel-based reranker on such trees

iK" 166
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Generation with a simple joint probability

= For SVMs, convert scores to probabilities [Platt, 2000]
= Joint probability = product of all category probabilities:

= Inred assigned labels (M11, M13, M14, M131)

MCAT
/M P(H)=(1_pMCAT)XpM“x(l_lez)
M11 M12 M13 M14 XDy X Py X (l—pMm)xpM14
N Rl xmpy X p, )x(-py, )
M131 M132 M141  M142  M143

= where, P, is the probability output by the basic multiclassifier

iKs O

Vector Generated by Tree Kernels from a
Hierarchy Tree

p(T)H)=x=(,...1...0,..,1,..0,..,1,...0,..0,..0,..0,..0,..,1,..,0)

M11 -M12 M13

/\ M131 -M132 -M141 -M142  -M143

M131 -M132

“ N

= The character “-” is used to indicate that a category was not
selected by the flat model

iK" — TN Q\




Multi-label, Multi-classification Models

= Baselines
» Lewis, flat: results of one-vs-all from (Lewis’ et al, 2004)
» Ours, flat: reimplementation of (Lewis’ et al, 2004)
» Ours, hier: implementation of Top-Down model

= Rerankers
» SeqRR: label sequences as features (sequence kernel)
» FRR: Tree Kernels on flat generated hypotheses
» HRR: Tree Kernels on hierarchical generated hypotheses

baseline our Rerankers

Fl Lewis, flat|Ours, flat|Ours, hier|SeqRR|FRR|HRR

Micro-F1 0.816 0.815 0.819 0.828 [0.849(0.855
Macro-F1| 0.567 0.566 0.578 0.590 [0.615(0.634
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Relational Kernels for
Answer Reranking
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Preference Reranking for documents/

passages
Hypotheses Pairs Hypotheses
H1 <H1,H2> H4
H2 <H1,H3> H3 H4
Search Engine H3 Retanker .
or QA system
wve <Hn,H1> H1
Hn <Hn,H2> Hn

= The initial rank is provided by a search engine (or also a
powerful QA system)

= New idea: a boost can be achieved by capturing the relation
between question and answer passage
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An example of Jeopardy! Question

ROOT
|
S
NP VP 5
T T | |
NP PP VBD -
| |
CD IN NP crowned
b T
One of NP PR
_F’_’_‘_’__;—'—”'_'_‘__\q_h\—__\_‘_\_\_.-
CD JJ NNS IN NP
f I I |
two English kings since NP SBAR
NNP DT NNP WHNP S
I I I | I
William the Conqueror WP VP
/\
who VBD ADVP
| I
were RB
|
never
NP VP
DT NN VBZ
| | |
The abbey is NP
NP SBAR
|
DT WHADVP S
{ § e e
the WRB NP VP
ﬁ
where DT JJ NNS VBP VP
| § | | -
all English monarchs have VBN VP
______,—'—-—__’—'_,_f-.ﬁ
been VEN PP
_,——'—'_'_'_‘_'_'_’d_‘_—__‘_—___‘ﬁﬂ
crowned IN NP
__'_,_ﬂ
since NP
NNP DT NNP
| §
William the Conqueror




Adding Relational Links

ROOT
s
NF 3
N TR VED
! /,\\NP C(DV}HEG

Answer

' |
all English monarchs

Edward

ROOT
:
NP VP
T s
ClIIJ IN NP crov}'ned
Olllwe olf N‘P’Jﬂ;ﬂ?r’
= e, =
tvxf'o Engllish kinlgs sinlce NMAR
RN NNP DT NNP WHNP S
Villiam thle Conq]ueror WIP VlP
| T
who VBD AD|VP
never
N |
NP \ \ \ VPAT—_
DT NN VBZ \ \ \ \
T!I1e abbey |Is NP\ \ \ \




Links can be encoded marking tree nodes

Methodology:

1-Applying lemmatization or stemming to the
leaves

2-Mark (with @ symbol) pre-terminal nodes
nd higher level nodes if the subtrees are
shared in Q and A

Answer

NNS
kings since
NNP-@

the Conquery i

/\ e
VED ADVP-@

were
Questlon never

178




Representation Issues

= Very large sentences

= The Jeopardy! cues can be constituted by more than one
sentence

= The answer is typically composed by several sentences

= To00 large structures cause inaccuracies in the kernel
similarity and the learning algorithm looses some of its
power

iKs O

Running example from Answerbag

Question: Is movie theater popcorn vegan?
Answer:

(01) Any movie theater popcorn that includes butter -- and
therefore dairy products -- is not vegan.
(02) However, the popcorn kernels alone can be considered

vegan if popped using canola, coconut or other plant oils
which some theaters offer as an alternative to standard

popcorn.

iK" — TN Q\




Shallow models for Reranking:
[Severyn & Moschitti, SIGIR 2012]

Question sQ
]~
| v?z N‘N NIN JIJ NIN | m==) bag of pos tags and their
combination

| is movie theater  popcorn vegan ||:> bag of words

|

| (is) (movie) (theater) (popcorn) (vegan) |

(VBZ) (NN) (NN) (1) (NN) I

Answer s

—_— —
IDT NN NN NN WDT VBZ NN CcC RB JJ NNS VBZ RB NN I
i f i f i i i f i f i — i
| any movie theater  popcorn that includes  butter and therefore dairy  products is not vegan |

|

l (any) (movie) (theater) (popcorn) (that) (includes) (butter) (and) (therefore) (dairy) (products) (is) (not) (vegan)l

(DT) (NN) (NN) (NN) (WDT) (VBZ) (NN) (CC) (RB) (JJ) (NNS) (VBZ) (RB) (NN) | . - A
i ’ i/ Y 3/
‘ 181 | \)

Linking question with the answer 01

Lexical matching is on word
lemmas (using WordNet

. jon senten
lemmatizer) sq Question sentence

VBZ NN NN JJ NN

| | |
T U I I
Imoviel Itheaterl Ipopcornl Ivegan I

Answer Passage

NNS VBZ RB NN

S

RB MD VB VBN NN IN VBN VBG NN NN cc W NN NNS WDT DT NNS VBP IN DT NN T0 JJ NN

| | | | | [ | |

however the popcom kernels alone can be considered vegan if popped using canola coconut or other plant oils which some theaters offer as an altenative to standard  popco

IKs 0 C 0
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Linking question with the answer 02

Lexical matching is on word
lemmas (using WordNet

ion senten
lemmatizer) so Question sentence

NN JJ NN

| | |
>wwl T

butter

that includes and therefore dal

NN NNS WDT —

[

RB

|

however  the

DT

\ ()
183 \ .

Linking question and its answer passages
using a relational tag

Marking pos tags of the aligned
words by a relational tag: “REL”

sQ

REL-VBZ REL-NN REL-NN REL-JJ |REL-NN
|
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Answerbag data

. . professional question answer
interactions

= Divided in 30 categories, Art, education, culture,...

= 180,000 question-answer pairs
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Learning Curve for Answerbag

78

774

76

754

MRR

744

102 -O- PTK
739 - STK
-=—= baseline

724

2550 100 250 500 750
training size (in thousands)
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Jeopardy! data (T9)

= Total number of questions: 517

50+ candidate answer passages per question

= Questions with at least one correct answer: 375
Use only questions with at least one correct answer
Split the data:

» Train 70% (259 questions): 63,361 examples for re-ranker

» Test 30% (116 question): 5,706 examples for re-ranker

IKs |

3

Jeopardy! data

80
_-0
75+ e
] o
70 L=
— 65; : : ZZZ
(@] 1 K2
% ] v
60
] Y,
51 ~o- baseline
] 4 -4~ CH+REL
50 CH+REL+NER
] —#- CH+REL+NER+WNSS
3
1 2 3 4 5 6 7 8 9 10
threshold
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Outline: Part Il - Advanced Topics

= Large-scale learning with kernels (15 min)

Cutting Plane Algorithm for SVMs
Sampling methods (uSVMs)
Compacting space with DAGs

Model linearization
Semantic Role Labeling
Question Classification

189

Efficiency Issue

= Working in dual space with SVMs implies quadratic
complexity

s Our solutions:

Cutting-plane algorithm with sampling uSVMs

[Yu & Joachims, 2009] [Severyn&Moschitti, ECML PKDD 2010]

Compacting SVM models with DAGs
[Severyn&Moschitti, ECML PKDD 2011]
Compacting SVM models with DAGs in online models [Aiolli

et al, CIDM 2007]

IKs
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CPA in a nutshell

N

Original SVM Problem

= Exponential constraints

= Most are dominated by a small set of
“important” constraints

CPA SVM Approach

= Repeatedly finds the next most
violated constraint...

= ...until set of constraints is a good

191
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CPA in a nutshell

N

Original SVM Problem

= Exponential constraints

= Most are dominated by a small set of
“important” constraints

CPA SVM Approach

= Repeatedly finds the next most
violated constraint...

= ...until set of constraints is a good

IKs

192

approximation. —~ (Q\ ,




CPA in a nutshell

N

Original SVM Problem

= Exponential constraints
= Most are dominated by a small set of
“important” constraints

CPA SVM Approach

= Repeatedly finds the next most
violated constraint...

= ...until set of constraints is a good

IKs
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CPA in a nutshell

N

Original SVM Problem

= Exponential constraints
= Most are dominated by a small set of
“important” constraints

CPA SVM Approach

= Repeatedly finds the next most
violated constraint...

= ...until set of constraints is a good

IKs
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Computing most violated constraint (MVC)

t
e d(F) = oG9 - p(F)

j=1

iK's 195

Computing most violated constraint (MVC)

t
W p(E) =D a; g9 - ¢(F)
j=1

g = Zc(‘”ym(az‘k
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Computing most violated constraint (MVC)

W P(T;) = ZQ‘ gv ¢($ )

gt = ZC(J)yk¢(33k

_ zt: Z (1 c,(j)yk)K(fZ-,a?k)
iK" 197

Approximate CPA [Yu & Joachims, 2009]

= Main bottleneck to apply kernels comes from the inner
product:

t n

—» — 1 — —
(7;) = Zozj Z ( cg)yk)K(xi,xk)
=1
= Use sampling to approximate exact cutting plane models

o @
o ( c,(g)yk)K(a_c’i,fk)
j=1 k=1
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Three syntactic trees and the resulting DAG

VP VP VP,1 VP,1
/7 \ /7 \ | X< N
V NP NP \Y NP V,2 NP,2 NP,1
I /7 I\ / \ I / \ 2 I I /\I\\
buy D JJ N D N buy D N buy,2 D,3 JJ,1 N,3
I [ I I I I I I I
a red car a car a car a,3 red,1 car,3
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Three syntactic trees and the resulting DAG

VP VP VP,1 VP,1
/7 \ /7 \ I X< N
V NP NP \Y NP V,2 NP,2 } NP,1
I /7 I\ / \ I / \ 2 I I /\I\\
buy D JJ N D N buy D N buy,2 D,3 JJ, 1 N,3
I [ I I I I I I I
a red car a car a car a,3 red,1 car,3
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SDAG [Severyn & Moschitti, 2011]

= Compacts each CPA model into a single DAG

T

t
@G- G(F) =Y oy (;Cl(cj)yk>K(xiaxk)
j=1

k=1

'
W - (L) = ZajKdag(dafg(j)7 T)
j=1

iK's 201

SDAG+

= Compacts all CPA models in the working set into a single
DAG

~

r

. - 1 Lo
W p(T;) = o (;cg)yk)K(mi, Zr)

j=1 k=1
9

W P(T;) = Kdag(dag(t)7 T;)
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Outline: Part Il - Advanced Topics

2 Cutting Plane Algorithm for SVMs
. Sampling methods (USVMs)
. Compacting space with DAGs
= Reverse Kernel Engineering (15 min)

t Model linearization
r Question Classification

203

Reverse Kernel Engineering
[Pighin & Moschitti, CoONLL 2010 & EMNLP 2009]

= Input: an SVM model, i.e., w

= Output: a ranked list of tree fragments

= Intuitively the more a fragment is important the higher is its
weight

= Mine tree structures with higher weight first

» Start from the smallest structures
» Add nodes to them
» Stop when reached the max size of the list

= More in detail...
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Algorithm 2.1: MINE_MODEL(M, L, E, \)

prev «<— () ; CLEAR_INDEX()
for each (ay,t) € M
Ti—a-y/|t]
for each n €
do f «— FRAG(n) ; rel =X - T;
do < prev < prev U {f, rel}
pUT(f, rel)
best_pr «— BEST(L) ;
while true
( next «— ()
for each (f, rel) € prev if f € best_pr
X = EXPAND(f, E)
rel_exp «— X\ - rel
for each frag € X
temp = {frag, rel_exp}
do { next < next U temp
pPUT(frag, rel_exp)
best «— BEST(L)
if not CHANGED()
then break
\ best_pr < best; prev «— next
return (Fp)

do
do

Greedy, small to large fragment,
recursive exploration of a tree's
fragment space

Basic assumption: consider
fragments that span k levels of the
tree only if there was at least one
fragment spanning k — 1 levels
that is more relevant than those
spanning from 0 to k — 2 levels.
Basic operations:

e FRAG(n)
e EXPAND(f, E)

Parameters:

o maxexp (E)
o threshold value (L)

Mining the weight of a fragment

For a linear SVM:

o Gradient of the hyperplaneis: w =", ajyiXi = [W(l) .. (N)]
o Cumulative relevance w') of the j-th feature: |w!)| = ‘Z, 1 a,y,x(J)
For a tree kernel function (i.e.: features — fragments):
G _ X _ £i, A0 = |w¥| = Z i

i 18]l \/Z (1 A )2

where:

tj is the i-th tree in the model

ES

«; is the SVM-estimated weight for the tree (and hence, for its fragments)

y; is the training label of the tree

f; is the fragment associated with the j-th dimension of the feature space

A is the kernel decay factor

is the number of occurrences of f; in t;

((f;) is the depth (number of levels) of the fragment
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Reverse Engineering Framework

Splity
Train (y, t)

Splits

iK's 207

Reverse Engineering Framework

s Split; ==| SVM learn TK [=—> M;
—~ .
Splits =—| SVM learn TK |—> Ms

Train (y, t)

= Fragment Space Learning

iK's 208




Reverse Engineering Framework

Split; =| SVM learn TK [=—> M —)
/ '

mine(L, E, D)
e \
/ D

-~ ) .
Splits =>| SVM learn TK |—> Ms —| mine(L, E, D)

Train (y, t) i

= Fragment Space Learning

EMI | = Fragment Mining and Indexing

il('s 209 ( <(W

Reverse Engineering Framework

Split; =>| SVM learn TK |=—=> M; =—| mine(L, E, D)
—
\ /)
Splits =—| SVM learn TK |—> Ms —| mine(L, E, D)

Train (y, t)
| Linearize }

|

Traing (y, X)

Dy

FSL | = Fragment Space Learning = Tree Fragment eXtraction

FMI | = Fragment Mining and Indexing
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Reverse Engineering Framework

Split; =>| SVM learn TK |=—=> M; —| mine(L, E, D)
T -~

—

Train (y, t)

S .. ;
1 Splits =—>| SVM learn TK |—> Ms —| mine(L, E, D)

Traing (y, X) —)@—) M,

Dy

= Fragment Space Learning @ = Tree Fragment eXtraction
= Fragment Mining and Indexing @ = Explicit Space Learning

iKs e

Reverse Engineering Framework

Split; =>| SVM learn TK |== M; =—| mine(L, E, D)
—1
—

Train (y, t)

D
—r
l Splits = SVM learn TK |—> Ms —| mine(L, E, D)
Traing (y, X) —)@—) M,
Test (y, t)

= Fragment Space Learning @ = Tree Fragment eXtraction
= Fragment Mining and Indexing @ = Explicit Space Learning
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Reverse Engineering Framework

Split; =3 SVM learn TK |=—> M; —| mine(L, E, D)
7
-~ —
Splits = SVM learn TK |—> Ms —| mine(L, E, D)

Train (y, t)

|

Traing (y, X) —)@—) M, Testy(y, X) 4—| Linearize

Test (y, t)

= Fragment Space Learning @ = Tree Fragment eXtraction
= Fragment Mining and Indexing @ = Explicit Space Learning

IKs (O
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Reverse Engineering Framework

Splity ==>| SVM learn TK |== M; =—=| mine(L, E, D)
T
-~ —
Splits —| SVM learn TK |— Ms —| mine(L, E, D)

Train (y, t)

Traing (y,X) —> —> M, —| SVM Classify |¢«— Test,(y, X) <—| Linearize

Predictions Test (y, t)

= Fragment Space Learning @ = Tree Fragment eXtraction
= Fragment Mining and Indexing @ = Explicit Space Learning

iKs (0
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Reverse Engineering of Kernel Models
for Question Classification

iK's 215

Question Classification

= Definition: What does HTML stand for?

= Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?
= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

= Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?
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Results

= Tr+, Te+: number of positive/negative training instances

s SST/: linearized tree kernel

Data set Accuracy
Class Trt  Te™ SST SST,
ABBR 89 9 800 875

DESC 1,164 138 960 945
ENTY 1,269 94 639 635
HUM 1,231 65 881 872

LOC 834 81 77.6 77.9
NUM 896 113 804 80.8
Overall 86.2 86.6
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Interpretation (Abbreviation Class)

(NN(abbreviation))
(NP(DT)(NN(abbreviation)))
(NP(DT(the))(NN(abbreviation)))

(IN(for))

(VB(stand))

(VBZ(does))

(PP(IN))

(VP(VB(stand))(PP))
(NP(NP(DT)(NN(abbreviation)))(PP))
(SQ(VBZ)(NP)(VP(VB(stand))(PP)))
(SBARQ(WHNP)(SQ(VBZ)(NP)(VP(VB(stand))(PP)))(.))
(SQ(VBZ(does))(NP)(VP(VB(stand))(PP)))
(VP(VBZ)(NP(NP(DT)(NN(abbreviation)))(PP)))
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Interpretation (Numeric Class)

(WRB(How))

(WHADVP(WRB(When)))

(WRB(When))

(JJ(many))

(NN(year))

(WHADJP(WRB)(JJ))

(NP(NN(year)))
(WHADJP(WRB(How))(JJ))

(NN(date))
(SBARQ(WHADVP(WRB(When)))(SQ)(.(?)))
(SBARQ(WHADVP(WRB(When)))(SQ)(.))
(NN(day))
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Interpretation (Description Class)

(WRB(Why))

(WHADVP(WRB(Why)))
(WHADVP(WRB(How)))
(WHADVP(WRB))

(VB(mean))

(VBZ(causes))

(VB(do))
(SBARQ(WHADVP(WRB(How)))(SQ))
(WRB(How))
(SBARQ(WHADVP(WRB(How)))(SQ)(.))
(SBARQ(WHADVP(WRB(How)))(SQ)(.(?)))
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Conclusions

= Using semantic and structural representations is difficult:

» How to engineer rules for exploiting syntactic/semantic
information?

» How to engineer features for learning algorithms?

= We can use powerful ML algorithms and kernel methods
» Kernels can generate many features
» SVMs are robust to noise and irrelevant features
= IDEA: using structural representations of data and
similarity functions (Kernel Methods)
» Structural syntactic/semantic similarity for text
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Conclusions (cont’d)

= Kernel methods and SVMs are powerful tools for:

» building complex classifiers, e.g., question classification or
relation extraction; and

» the design of learning to rank algorithms

= State of the art when reranking NLP/IR systems
» Named Entity Recognizers
» Predicate Argument Structures

» Segmented and labeled Speech Transcriptions
» Hierarchical text classifier output
» Passages with relational representations
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Future (on going work)

= Enriching text representation with semantic information,
e.g., from Link Open Data or automatically generated by
classifiers [Severyn, Nicosia, Moschitti, CIKM 2013]

= Deeper modeling of paragraphs: shallow semantics and
discourse structures to design more compact and
accurate representation of whole paragraphs

= Use of reverse kernel engineering to build efficient
systems: [Pighin&Moschitti, CoONLL2009, EMNLP2009, CoNLL2010]

= Learning on large-scale data using combined uSVMs and
linearized models [Severyn and Moschitti, IJCAI 2013]
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Documentation

= Tutorial Webpage
» http://disi.unitn.it/moschitti/SIGIR-tutorial.htm
» Software
» Data: Question Classification and Paragraph reranking
» Updated slides
» Papers
» Books
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An introductory book on SVMs, Kernel
Methods and Text Categorization

Roberto Basili
Alessandro Moschitti

Automatic Text Categorization

From Information Retrieval
to Support Vector Learning
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Forthcoming 2014/15

= State-of-the-art Kernels in Natural Language Processing
Author: Alessandro Moschitti
Synthesis Lectures on Human Language Technologies
Editor: Morgan & Claypool Publishers

State-of-the-art Kernels in
Natural Language
Processing
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