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Abstract

In this paper, we provide a statistical ma-

chine learning representation of textual en-

tailment via syntactic graphs constituted

by tree pairs. We show that the natural way

of representing the syntactic relations be-

tween text and hypothesis consists in the

huge feature space of all possible syntac-

tic tree fragment pairs, which can only be

managed using kernel methods. Experi-

ments with Support Vector Machines and

our new kernels for paired trees show the

validity of our interpretation.

1 Introduction

Recently, a lot of valuable work on the recogni-

tion of textual entailment (RTE) has been carried

out (Bar Haim et al., 2006). The aim is to detect

implications between sentences like:

T1 ⇒ H1

T1 “Wanadoo bought KStones”

H1 “Wanadoo owns KStones”

where T1 and H1 stand for text and hypothesis,

respectively.

Several models, ranging from the simple lexi-

cal similarity between T and H to advanced Logic

Form Representations, have been proposed (Cor-

ley and Mihalcea, 2005; Glickman and Dagan,

2004; de Salvo Braz et al., 2005; Bos and Mark-

ert, 2005). However, since a linguistic theory able

to analytically show how to computationally solve

the RTE problem has not been developed yet, to

design accurate systems, we should rely upon the

application of machine learning. In this perspec-

in terms of statistical feature distributions. These

typically consist in word sequences (along with

their lexical similarity) and the syntactic structures

of both text and hypothesis (e.g. their parse trees).

The interesting aspect with respect to other natural

language problems is that, in TE, features useful

at describing an example are composed by pairs of

features from Text and Hypothesis.

For example, using a word representation, a text

and hypothesis pair, 〈T,H〉, can be represented

by the sequences of words of the two sentences,

i.e. 〈t1, .., tn〉 and 〈h1, .., hm〉, respectively. If we

carry out a blind and complete statistical correla-

tion analysis of the two sequences, the entailment

property would be described by the set of subse-

quence pairs from T and H , i.e. the set R =
{〈st, sh〉 : st = 〈ti1 , .., til〉, sh = 〈hj1 , .., hjr

〉, l ≤
n, r ≤ m}. The relation set R constitutes a

naive and complete representation of the example

〈T,H〉 in the feature space {〈v,w〉 : v,w ∈ V ∗},

where V is the corpus vocabulary1 .

Although the above representation is correct and

complete from a statistically point of view, it suf-

fers from two practical drawbacks: (a) it is expo-

nential in V and (b) it is subject to high degree of

data sparseness which may prevent to carry out ef-

fective learning. The traditional solution for this

problem relates to consider the syntactic structure

of word sequences which provides their general-

ization.

The use of syntactic trees poses the problem

of representing structures in learning algorithms.

For this purpose, kernel methods, and in partic-

ular tree kernels allow for representing trees in

1V ∗ is larger than the actual space, which is the one of
all possible subsequences with gaps, i.e. it only contains all



terms of all possible subtrees (Collins and Duffy,

2002). Unfortunately, the representation in entail-

ment recognition problems requires the definition

of kernels over graphs constituted by tree pairs,

which are in general different from kernels applied

to single trees. In (Zanzotto and Moschitti, 2006),

this has been addressed by introducing semantic

links (placeholders) between text and hypothesis

parse trees and evaluating two distinct tree ker-

nels for the trees of texts and for those of hypothe-

ses. In order to make such disjoint kernel combi-

nation effective, all possible assignments between

the placeholders of the first and the second en-

tailment pair were generated causing a remarkable

slowdown.

In this paper, we describe the feature space of

all possible tree fragment pairs and we show that it

can be evaluated with a much simpler kernel than

the one used in previous work, both in terms of

design and computational complexity. Moreover,

the experiments on the RTE datasets show that our

proposed kernel provides higher accuracy than the

simple union of tree kernel spaces.

2 Fragments of Tree Pair-based Graphs

The previous section has pointed out that RTE

can be seen as a relational problem between word

sequences of Text and Hypothesis. The syntac-

tic structures embedded in such sequences can be

generalized by natural language grammars. Such

generalization is very important since it is evi-

dent that entailment cases depend on the syntactic

structures of Text and Hypothesis. More specif-

ically, the set R described in the previous sec-

tion can be extended and generalized by consid-

ering syntactic derivations2 that generate word se-

quences in the training examples. This corre-

sponds to the following set of tree fragment pairs:

Rτ = {〈τt, τh〉 : τt ∈ F(T ), τh ∈ F(H)}, (1)

where F(·) indicates the set of tree fragments of a

parse tree (i.e. the one of the text T or of the hy-

pothesis H). Rτ contains less sparse relations than

R. For instance, given T1 and H1 of the previous

section, we would have the following relational de-

scription:

2By cutting derivation at different depth, different degrees
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These features (relational pairs) generalize the

entailment property, e.g. the pair 〈[VP [VBP bought] [NP]],

[VP [VBP own] [NP]]〉 generalizes many word sequences,

i.e. those external to the verbal phrases and inter-

nal to the NPs.

We can improve this space by adding semantic

links between the tree fragments. Such links

or placeholders have been firstly proposed in

(Zanzotto and Moschitti, 2006). A placeholder

assigned to a node of τt and a node of τh states

that such nodes dominate the same (or similar) in-

formation. In particular, placeholders are assigned

to nodes whose words ti in T are equal, similar, or

semantically dependent on words hj in H . Using

placeholders, we obtain a richer fragment pair

based representation that we call Rτp, exemplified

hereafter:
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The placeholders (or variables) indicated with

X and Y specify that the NNPs labeled by

the same variables dominate similar or identical

words. Therefore, an automatic algorithm that



stituents is needed. Moreover, although Rτp con-

tains more semantic and less sparse features than

both Rτ and R, its cardinality is still exponential in

the number of the words of T and H . This means

that standard machine learning algorithms cannot

be applied. In contrast, tree kernels (Collins and

Duffy, 2002) can be used to efficiently generate

the huge space of tree fragments but, to generate

the space of pairs of tree fragments, a new kernel

function has to be defined.

The next section provides a solution to both

problems. i.e. an algorithm for placeholders as-

signments and for the computation of paired tree

kernels which generates Rτ and Rτp representa-

tions.
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Figure 1: A syntactic parse tree.

3 Kernels over Semantic Tree Pair-based

Graphs

The previous section has shown that placeholders

enrich a tree-based graph with relational informa-

tion, which, in turn, can be captured by means

of word semantic similarities simw(wt, wh), e.g.

(Corley and Mihalcea, 2005; Glickman et al.,

2005). More specifically, we use a two-step greedy

algorithm to anchor the content words (verbs,

nouns, adjectives, and adverbs) in the hypothesis

WH to words in the text WT .

In the first step, each word wh in WH is con-

nected to all words wt in WT that have the maxi-

mum similarity simw(wt, wh) with it (more than

one wt can have the maximum similarity with

wh). As result, we have a set of anchors A ⊂
WT × WH . simw(wt, wh) is computed by means

of three techniques:

1. Two words are maximally similar if they have

2. Otherwise, WordNet (Miller, 1995) similari-

ties (as in (Corley and Mihalcea, 2005)) and

different relation between words such as verb

entailment and derivational morphology are

applied.

3. The edit distance measure is finally used to

capture the similarity between words that are

missed by the previous analysis (for mis-

spelling errors or for the lack of derivational

forms in WordNet).

In the second step, we select the final anchor set

A′ ⊆ A, such that ∀wt (or wh) ∃!〈wt, wh〉 ∈ A′.

The selection is based on a simple greedy algo-

rithm that given two pairs 〈wt, wh〉 and 〈w′
t, wh〉

to be selected and a pair 〈st, sh〉 already selected,

considers word proximity (in terms of number of

words) between wt and st and between w′
t and st;

the nearest word will be chosen.

Once the graph has been enriched with seman-

tic information we need to represent it in the learn-

ing algorithm; for this purpose, an interesting ap-

proach is based on kernel methods. Since the con-

sidered graphs are composed by only two trees, we

can carried out a simplified computation of a graph

kernel based on tree kernel pairs.

3.1 Tree Kernels

Tree Kernels (e.g. see NLP applications in (Giu-

glea and Moschitti, 2006; Zanzotto and Moschitti,

2006; Moschitti et al., 2007; Moschitti et al.,

2006; Moschitti and Bejan, 2004)) represent trees

in terms of their substructures (fragments) which

are mapped into feature vector spaces, e.g. ℜn.

The kernel function measures the similarity be-

tween two trees by counting the number of their

common fragments. For example, Figure 1 shows

some substructures for the parse tree of the sen-

tence "book a flight". The main advantage of

tree kernels is that, to compute the substructures

shared by two trees τ1 and τ2, the whole fragment

space is not used. In the following, we report the

formal definition presented in (Collins and Duffy,

2002).

Given the set of fragments {f1, f2, ..} = F , the

indicator function Ii(n) is equal 1 if the target fi

is rooted at node n and 0 otherwise. A tree kernel

is then defined as:

TK(τ1, τ2) =
∑ ∑

∆(n1, n2) (2)



where Nτ1 and Nτ2 are the sets of the τ1’s and τ2’s

nodes, respectively and

∆(n1, n2) =

|F|
∑

i=1

Ii(n1)Ii(n2)

The latter is equal to the number of common frag-

ments rooted in the n1 and n2 nodes and ∆ can be

evaluated with the following algorithm:

1. if the productions at n1 and n2 are different

then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the

same, and n1 and n2 have only leaf children

(i.e. they are pre-terminals symbols) then

∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same,

and n1 and n2 are not pre-terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(1 + ∆(cj
n1

, cj
n2

)) (3)

where nc(n1) is the number of the children of

n1 and c
j
n is the j-th child of the node n. Note

that since the productions are the same, nc(n1) =
nc(n2).

Additionally, we add the decay factor λ by mod-

ifying steps (2) and (3) as follows3:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ

nc(n1)
∏

j=1

(1 + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 2 is

O(|Nτ1 | × |Nτ2 |) although the average running

time tends to be linear (Moschitti, 2006).

3.2 Tree-based Graph Kernels

The above tree kernel function can be applied to

the parse trees of two texts or those of the two hy-

potheses to measure their similarity in terms of the

shared fragments. If we sum the contributions of

the two kernels (for texts and for hypotheses) as

proposed in (Zanzotto and Moschitti, 2006), we

just obtain the feature space of the union of the

fragments which is completely different from the

3To have a similarity score between 0 and 1, we also ap-
ply the normalization in the kernel space, i.e. K′(τ1, τ2) =

space of the tree fragments pairs, i.e. Rτ . Note

that the union space is not useful to describe which

grammatical and lexical property is at the same

time held by T and H to trig the implication.

Therefore to generate the space of the frag-

ment pairs we need to define the kernel between

two pairs of entailment examples 〈T1,H1〉 and

〈T2,H2〉 as

Kp(〈T1,H1〉, 〈T2,H2〉) =

=
∑

n1∈T1

∑

n2∈T2

∑

n3∈H1

∑

n4∈H2

∆(n1, n2, n3, n4),

where ∆ evaluates the number of subtrees rooted

in n1 and n2 combined with those rooted in n3 and

n4. More specifically, each fragment rooted into

the nodes of the two texts’ trees is combined with

each fragment rooted in the two hypotheses’ trees.

Now, since the number of subtrees rooted in the

texts is independent of the number of trees rooted

in the hypotheses,

∆(n1, n2, n3, n4) = ∆(n1, n2)∆(n3, n4).

Therefore, we can rewrite Kp as:

Kp(〈T1,H1〉, 〈T2,H2〉) =

=
∑

n1∈T1

∑

n2∈T2

∑

n3∈H1

∑

n4∈H2

∆(n1, n2)∆(n3, n4) =

=
∑

n1∈T1

∑

n2∈T2

∆(n1, n2)
∑

n3∈H1

∑

n4∈H2

∆(n3, n4) =

= Kt(T1, T2) × Kt(H1,H2).

(4)

This result shows that the natural kernel to rep-

resent textual entailment sentences is the kernel

product, which corresponds to the set of all pos-

sible syntactic fragment pairs. Note that, such ker-

nel can be also used to evaluate the space of frag-

ment pairs for trees enriched with relational infor-

mation, i.e. by placeholders.

4 Approximated Graph Kernel

The feature space described in the previous sec-

tion correctly encodes the fragment pairs. How-

ever, such huge space may result inadequate also

for algorithms such as SVMs, which are in general

robust to many irrelevant features. An approxima-

tion of the fragment pair space is given by the ker-

nel described in (Zanzotto and Moschitti, 2006).



First, tree kernels applied to two texts or two hy-

potheses match identical fragments. When place-

holders are added to trees, the labeled fragments

are matched only if the basic fragments and the

assigned placeholders match. This means that

we should use the same placeholders for all texts

and all hypotheses of the corpus. Moreover, they

should be assigned in a way that similar syntac-

tic structures and similar relational information be-

tween two entailment pairs can be matched, i.e.

same placeholders should be assigned to the po-

tentially similar fragments.

Second, the above task cannot be carried out at

pre-processing time, i.e. when placeholders are

assigned to trees. At the running time, instead,

we can look at the comparing trees and make a

more consistent decision on the type and order of

placeholders. Although, there may be several ap-

proaches to accomplish this task, we apply a basic

heuristic which is very intuitive:

Choose the placeholder assignment that maxi-

mizes the tree kernel function over all possible cor-

respondences

More formally, let A and A′ be the placeholder sets

of 〈T,H〉 and 〈T ′,H ′〉, respectively, without loss

of generality, we consider |A| ≥ |A′| and we align

a subset of A to A′. The best alignment is the one

that maximizes the syntactic and lexical overlap-

ping of the two subtrees induced by the aligned set

of anchors. By calling C the set of all bijective

mappings from S ⊆ A, with |S| = |A′|, to A′,

an element c ∈ C is a substitution function. We

define the best alignment cmax the one determined

by

cmax = argmaxc∈C(TK(t(T, c), t(T ′, i))+

TK(t(H, c), t(H ′, i)),

where (1) t(·, c) returns the syntactic tree enriched

with placeholders replaced by means of the sub-

stitution c, (2) i is the identity substitution and (3)

TK(τ1, τ2) is a tree kernel function (e.g. the one

specified by Eq. 2) applied to the two trees τ1 and

τ2.

At the same time, the desired similarity value

to be used in the learning algorithm is given

by the kernel sum: TK(t(T, cmax), t(T ′, i)) +
TK(t(H, cmax), t(H ′, i)), i.e. by solving the fol-

Ks(〈T,H〉, 〈T ′,H ′〉) =

maxc∈C(TK(t(T, c), t(T ′, i))+

TK(t(H, c), t(H ′, i)),

(5)

For example, let us compare the following two

pairs (T1,H1) and (T2,H2) in Fig. 2.

To assign the placeholders 1 , 2 and 3 of

(T2,H2) to those of (T1,H1), i.e. X and Y , we

need to maximize the similarity between the two

texts’ trees and between the two hypotheses’ trees.

It is straightforward to derive that X=1 and Y=3 al-

low more substructures (i.e. large part of the trees)

to be identical, e.g. [S [NP 1 X VP]] , [VP [VBP

NP 3 Y ]], [S [NP 1 X VP [VBP NP 3 Y ]]].

Finally, it should be noted that, (a)

Ks(〈T,H〉, 〈T ′,H ′〉) is a symmetric func-

tion since the set of derivation C are always

computed with respect to the pair that has the

largest anchor set and (b) it is not a valid kernel

as the max function does not in general produce

valid kernels. However, in (Haasdonk, 2005), it is

shown that when kernel functions are not positive

semidefinite like in this case, SVMs still solve

a data separation problem in pseudo Euclidean

spaces. The drawback is that the solution may be

only a local optimum. Nevertheless, such solution

can still be valuable as the problem is modeled

with a very rich feature space.

Regarding the computational complexity, run-

ning the above kernel on a large training set may

result very expensive. To overcome this drawback,

in (Moschitti and Zanzotto, 2007), it has been de-

signed an algorithm to factorize the evaluation of

tree subparts with respect to the different substitu-

tion. The resulting speed-up makes the application

of such kernel feasible for datasets of ten of thou-

sands of instances.

5 Experiments

The aim of the experiments is to show that the

space of tree fragment pairs is the most effective

to represent Tree Pair-based Graphs for the design

of Textual Entailment classifiers.

5.1 Experimental Setup

To compare our model with previous work we

implemented the following kernels in SVM-light

(Joachims, 1999):
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Figure 2: The problem of finding the correct mapping between placeholders

• Ks(e1, e2) = Kt(T1, T2) + Kt(H1,H2),
where e1 = 〈T1,H1〉 and e2 = 〈T2,H2〉
are two text and hypothesis pairs and Kt is

the syntactic tree kernel (Collins and Duffy,

2002) presented in the previous section.

• Kp(e1, e2) = Kt(T1, T2) × Kt(H1,H2),
which (as shown in the previous sections) en-

codes the tree fragment pairs with and with-

out placeholders.

• Kmax(e1, e2) = max
c∈C

(

Kt(φc(T1), φc(T2))+

Kt(φc(H1), φc(H2))
)

, where c is a possi-

ble placeholder assignment which connects

nodes from the first pair with those of the sec-

ond pair and φc(·) transforms trees according

to c.

• Kpmx(e1, e2) = max
c∈C

(

Kt(φc(T1), φc(T2))×

Kt(φc(H1), φc(H2))
)

.

Note that Kmax is the kernel proposed in (Zan-

zotto and Moschitti, 2006) and Kpmx is a hybrid

kernel based on the maximum Kp, which uses the

space of tree fragment pairs. For all the above ker-

nels, we set the default cost factor and trade-off

parameters and we set λ to 0.4.

To experiment with entailment relations, we

used the data sets made available by the first (Da-

2006) Recognizing Textual Entailment Challenge.

These corpora are divided in the development sets

D1 and D2 and the test sets T1 and T2. D1 con-

tains 567 examples whereas T1, D2 and T2 all

have the same size, i.e. 800 instances. Each exam-

ple is an ordered pair of texts for which the entail-

ment relation has to be decided.

5.2 Evaluation and Discussion

Table 1 shows the results of the above kernels

on the split used for the RTE competitions. The

first column reports the kernel model. The second

and third columns illustrate the model accuracy for

RTE1 whereas column 4 and 5 show the accuracy

for RTE2. Moreover, ¬ P indicates the use of stan-

dard syntactic trees and P the use of trees enriched

with placeholders. We note that:

First, the space of tree fragment pairs, gener-

ated by Kp improves the one generated by Ks (i.e.

the simple union of the fragments of texts and hy-

potheses) of 4 (58.9% vs 54.9%) and 0.9 (53.5%

vs 52.6%) points on RTE1 and RTE2, respectively.

This suggests that the fragment pairs are more ef-

fective for encoding the syntactic rules describing

the entailment concept.

Second, on RTE1, the introduction of place-

holders does not improve Kp or Ks suggesting that

for their correct exploitation an extension of the

space of tree fragment pairs should be modeled.



Kernels RTE1 RTE2

¬ P P ¬ P P

Ks 54.9 50.0 52.6 59.5

Kp 58.9 55.5 53.5 56.0

Kmax - 58.25 - 61.0

Kpmx - 50.0 - 56.8

Table 1: Accuracy of different kernel models using

(P) and not using (¬ P) placeholder information on

RTE1 and RTE2.

seems more important but only Kmax and Ks

are able to fully exploit their semantic contribu-

tion. A possible explanation is that in order to

use the set of all possible assignments (required by

Kmax), we needed to prune the ”too large” syntac-

tic trees as also suggested in (Zanzotto and Mos-

chitti, 2006). This may have negatively biased the

statistical distribution of tree fragment pairs.

Finally, although we show that Kp is better

suited for RTE than the other kernels, its accu-

racy is lower than the state-of-the-art in RTE. This

is because the latter uses additional models like

the lexical similarity between text and hypothesis,

which greatly improve accuracy.

6 Conclusion

In this paper, we have provided a statistical ma-

chine learning representation of textual entailment

via syntactic graphs constituted by tree pairs. We

have analytically shown that the natural way of

representing the syntactic relations between text

and hypothesis in learning algorithms consists in

the huge feature space of all possible syntactic tree

fragment pairs, which can only be managed using

kernel methods.

Therefore, we used tree kernels, which allow for

representing trees in terms of all possible subtrees.

More specifically, we defined a new model for the

entailment recognition problems, which requires

the definition of kernels over graphs constituted by

tree pairs. These are in general different from ker-

nels applied to single trees. We also studied an-

other alternative solution which concerns the use

of semantic links (placeholders) between text and

hypothesis parse trees (to form relevant semantic

fragment pairs) and the evaluation of two distinct

tree kernels for the trees of texts and for those of

nel combination effective, all possible assignments

between the placeholders of the first and the sec-

ond entailment pair have to be generated (causing

a remarkable slowdown).

Our experiments on the RTE datasets show that

our proposed kernel may provide higher accuracy

than the simple union of tree kernel spaces with a

much simpler and faster algorithm. Future work

will be devoted to make the tree fragment pair

space more effective, e.g. by using smaller and

accurate tree representation for text and hypothe-

sis.
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