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Abstract

The scenarios opened by the increasing availability, sharing and dissemination of
music across the Web is pushing for fast, effective and abstract ways of organizing
and retrieving music material. Automatic classification is a central activity to model
most of these processes, thus its design plays a relevant role in advanced Music
Information Retrieval. In this paper, we adopted a state-of-the-art machine learning
algorithm, i.e. Support Vector Machines, to design an automatic classifier of music
genres. In order to optimize classification accuracy, we implemented some already
proposed features and engineered new ones to capture aspects of songs that have
been neglected in previous studies. The classification results on two datasets suggest
that our model based on very simple features reaches the state-of-art accuracy (on
the ISMIR dataset) and very high performance on a music corpus collected locally.

1 Introduction

Music genres are difficult to describe as there is no complete agreement on their definition.
”Genres emerge as terms and nouns that define recurrences and similarities that members
of a community make pertinent to identify musical events” (Fabri, 1997)
The notion of community corresponds to a complex self-organizing system that triggers
the development and assessment of a genre. In this perspective, the community plays the
role of an ontology designer which implicitly defines properties and rules of the target
genre as well as its differences with external habits and trends.

Given the high complexity of such system, to define a model for automatic genre
classification, we should capitalize from the work carried out in Information Retrieval (IR).
This has shown that document relevance with respect to a user’s query (e.g. a particular
song) is not determined by only local properties, e.g. the query and the retrieved items,
as global notions, that emerge from the entire corpus, are also important. Indeed, every
quantitative model in IR relies on a large number of parameters (e.g. term weights) that
depend on the set of all indexed documents. In order to model a musical genre, it is
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thus critical to study local (the target genre examples) and global (the examples of other
genres) characteristics and express them in term of statistical properties.

Such concepts are the foundations of modern machine learning algorithms (Mitchell,
1997) which aim to model classification functions based on the sets of positive and negative
examples, i.e. the songs that belong or not to a target genre. As the machine learning
approaches are quite standard and they tend to behave similarly on different application
domains, the actual complexity relates mainly to the feature design task. The role of
features is to provide a description of example songs that can be processed by learning
algorithms. These will guide the induction of the classification function in agreement with
such descriptions. As we would like to classify songs stored as audio files, i.e. waveforms,
the design of features is quite complex and requires the application of signal analysis
techniques.

In this paper, we experimented a state-of-the-art machine learning algorithm, i.e.
Support Vector Machines, in the design of an automatic genre classifier over audio infor-
mation. In order to optimize the classification accuracy of our model, we implemented
some features described in literature and designed new features to capture aspects pre-
viously neglected. We experimented our models on annotated collections (i.e. classified
data instances) made available in previous investigation (Magnatune dataset) as well as
on a novel data collection, designed to carry out a cross-collection comparison. The results
obtained on large scale experiments suggest that our model based on very simple features
reaches the state-of-art accuracy on the Magnatune dataset and very high performance
on our new music corpus.

The remainder of this paper is organized as follows: Section 2 introduces Support
Vector Machine and kernel methods, Section 3 describes the basic and new set of features,
Section 4 shows the experiments with music genre categorization and finally Section 5
summarizes the conclusions.

1.1 Related Work

The description of the basic features used in our experiments can be found in (Tzanetakis
et al., 2001). The main idea that we inherited from Tzanetakis et al. is the split between
superficial features, called musical surface and advanced features, i.e. rhythm features.
The literature experiments show that such baseline features achieve very high accuracy.
Another very inspiring work is (Tzanetakis et al., 2002) in which the concept of beat
strength is defined as a rhythmic characteristic that allows us to discriminate between
two pieces having the same tempo.

The MFCC feature has been used in music categorization in (Logan, 2000). Such study
demonstrates the importance of using MFCC for music classification. Moreover, MFCC
was used in the Pampalk’s system that won the MIREX 2004 competition. In such work,
the feature extraction method was based on a frame cluster similarity (Pampalk, 2005).
MFCC was also used in another system based on AdaBoost (Bergstra and Casagrande,
2005) that won MIREX 2005.

In (Lidy and Rauber, 2005), a combination of features based on rhythm patterns,
statistical descriptors and rhythm histograms was used. In (Gouyon et al., 2004), it was
considered a specific set of rhythmic descriptors for which was provided procedures of
automatic extraction from audio signals. The corpus used in our experimentation was
also used in (Pampalk et al., 2005), with a set of spectral features, e.g. MFCC, and a set
of advanced features, called fluctuation patterns.
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In (Berenzweig et al., 2003), it is described a method of music mapping into a semantic
space that can be used for music similarity measurement. The value along each dimension
of this anchor space is computed as the output from a pattern classifier which is trained
to measure a particular semantic feature. In anchor space, distributions that represent
objects such as artists or songs are modeled with Gaussian Mixture Models. An interesting
approach is used in (Mandel et al., 2005) where it is described a system for performing
flexible music similarity queries using SVM active learning. In (Lippens et al., 2004) it
is shown that, although there is room for improvement, genre classification is inherently
subjective and therefore perfect results can not be expected neither from automatic nor
from human classification.

2 Genre Classifier based on Support Vector Machines

Many learning algorithms consider features as dimensions of a vector space. Each in-
stance is represented by a feature vector where the components are the numeric values
associated with features. Support Vector Machines (SVMs) (Vapnik, 1995) are state-of-
the-art learning methods based on vector spaces. One of their interesting properties is
the possibilities of using kernel functions. These allow SVMs to implicitly generate large
feature spaces like for example the space of feature conjunctions. The next section briefly
introduces this interesting machine learning approach.

2.1 Support Vector Machines

To apply SVMs to music classification, we need a function φ : S → <n to map our song
space S into <n. Given such vector space and a set of positive and negative examples
mapped in vectors, SVMs classify them according to a separating hyperplane, H(~x) =
~w · ~x + b = 0, where ~x = φ(s), s ∈ S and the two parameters ~w ∈ <n and b ∈ < (learned
by applying the Structural Risk Minimization principle (Vapnik, 1995)). More in detail,
they are learned by solving the following optimization problem:




min ||~w||2 + C
∑m

i=1 ξ2
i

yi(~w · ~xi + b) ≥ 1− ξi, ∀i = 1, ..,m

ξi ≥ 0, i = 1, .., m
(1)

where ~xi are the training instances, m is the number of such instances and ξi are the slack
variables of the optimization problem. From the kernel theory we have that:

H(~x) =
( ∑

i=1..l

yiαi~xi

)
· ~x + b =

∑

i=1..l

yiαi~xi · ~x + b =
∑

i=1..l

yiαiφ(si) · φ(s) + b = 0.

where yi is equal to 1 for a positive example and or -1 for a negative example, αi ∈ < with
αi ≥ 0, φ(si) = ~xi ∀i ∈ {1, .., l} are the training instances and the product K(si, s) =
〈φ(si) ·φ(s)〉 is the kernel function associated with the mapping φ. The simplest mapping
that we can apply is φ(s) = ~x = 〈x1, ..., xn〉 where xi = 1 if the feature i appears in the
song s otherwise xi = 0. If we use as a kernel function the scalar product, we obtain the
linear kernel KL(si, s) = ~xi · ~x.

Another interesting kernel is the polynomial one, i.e. Kp(si, s) = (c + ~xi · ~x)d, where
c is a constant and d is the degree of the polynom (Basili and Moschitti, 2005). The
polynomial kernel is equivalent to carry out the scalar product in the space of feature
conjunctions, where the number of features in each conjunction is up to d. For example,
if we have two features such as pitch and volume, the learning algorithm can test if some
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combinations characterizes a particular genre, e.g. the combination of low pitch and
low volume is typical of classical music. Although, kernel methods are a powerful tools
to learn class differences, it is very important to define a good set of features achieving
optimal results.

3 Extracting Features from Audio Files

In this paper, we use several basic features proposed in music classification literature and
we also propose new interesting ones. The next sections are devoted to the description of
the experimented features.

3.1 Simple or Basic Features

We represent the musical surface of each song by means of the statistics of the spectral
distribution over time. In particular, we analyze the average and standard deviation of 6-
dimensional vectors over the entire song. Such dimensions, volume, beats, spectral energy,
centroid, pitch and 5-MFCC, are described hereafter.

• Volume. Given N song samples, Sk, the Volume is:

V olume =

√√√√ 1

N

N∑

k=1

A(Sk)2 (2)

where Sk is one of the samples stored in the buffer and A(Sk) is the amplitude of
the signal at time Sk. This function is not equivalent to the concept of volume
used in signal processing, but it gives higher values for louder sounds and viceversa,
which is enough for our purposes. Moreover, during the preprocessing phase, we
normalize the volume of each song as we are not interested to absolute values but
to the relative differences between two frames.

• The Spectral Energy is correlated to the Fourier Transform, which maps audio sig-
nal into frequency domain. For each audio sample set, we compute Fast Fourier
Transformation (FFT).

• Centroid is an interesting psycho-acoustical feature that measures the mean spectral
frequency in relation with the amplitude; in other words the position in Hz of the
center of mass of the spectrum. it is useful as a measure of the sound brightness.

C =

N/2∑

k=0

fk|X(k)|
N/2∑

k=0

|X(k)|
(3)

where N is the FFT size, X(k), k = 0, .., N is the FFT of the input signal, and fk,
k = 1, .., N , is the k-th frequency bin.

• Pitch is the perceived fundamental frequency of a sound. This can be computed
by an autocorrelation algorithm applied to audio signals. We defined a different
approximation of the above notion as it captures more information. We define
chroma vectors as 12-element vectors, where each component represents the spectral
energy corresponding to one pitch class (i.e. C, C#, D, D#, etc.). The algorithm,
builds the 12 chroma vectors by deriving components from the main frequencies
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in a temporal frame. Durations below some tresholds are not taken into account
as they are considered not meaningful for the frame. Notes corresponding to each
frequency are then mapped according to a fuzzy matching based on a reference
octave frequency: in order to discretize, i.e. select the proper note, the frequencies
of an A note in every octave (for a total of 8 octaves) are taken as reference.

• The Mel Frequency Cepstral Coefficients (MFCCs) are well known compact forms
that can represent speeches. They are the most common representation used for
Spectra in Music Information Retrieval (MIR). The following is a brief algorithm
for their computation:

1. apply window function;

2. compute power spectrum (using FFT);

3. apply Mel filter bank;

4. apply Discrete Cosine Transform (DCT);

The MFCCs have important advantages: they are simple and fast, well tested.
Moreover, they have also a compressed and flexible (i.e. easy to handle) represen-
tation (Logan, 2000).

3.2 Complex, Synchronous and Structural Features

In this section we describe our new designed features.

3.2.1 Beats

The Beats feature tries to count the number of beats of a song. Generally, beats are
driven by instruments that operate in the lower frequencies, like the drum or the bass.
In order to obtain a feature able to count the number of beats, we apply a lowpass to
the target song. This will cut off frequencies higher than 200 Hz ((McNab et al., 1996),
(Marolt, 2006), (Davies and Plumbley, 2005)). Most instruments playing in a song will be
attenuated or totally eliminated. The remaining sounds are usually related to the drums
and the bass.

More in detail, our algorithm uses the volume feature value together with 10 low-pass
filters that cut over the frequencies higher than 200 Hz. We use a bank of ten filters
in order to minimize the sound distorsion and the computation time. Then, the song
wavelength is discretized to analyze the attack of each beat (referred as peak duration
below), i.e. the time that elapses between the start of a peak and the successive silent
phase. As the temporal range of the target frame is fixed the number of peaks is also
informative about the rhythm (i.e. it is a crude but useful approximation of the notion
of bpm local to a sample). An example of this process is given in Figure 1. Given such
discretized wave, we extract five values:

• average and variance of peak duration

• average and variance of peak distance

• average beats per minute

The figure 2 shows two music moments that can clearly be distinguished using the beats
feature. In the first moment, a series of regular impulses caused by a drum is present
whereas in the second we find a more complex texture produced by a bass. Moreover,
analyzing the amplitude of a wave, we can determine the classification of genres: songs
of classical and jazz genres show lower waves contrarily to rock and electronic songs.
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Figure 1: An example of beats for electronic music

Figure 2: An example of beats for jazz-blues music

3.2.2 Volume Reverse

The intuition about this feature come from examining song recording methods. The
first step in a recording process is to collect the sounds of every instrument. Several
microphones can be used for the same instrument or, viceversa, the same microphone can
be used for several instruments. When the recording phase of a single track is completed, a
master multi-track is mixed in stereo channels so that a song can be played by conventional
hi-fi equipments. For example, rock, pop and electronic music, is often produced by
moving a sound of one instrument from one stereo channel to the other (sound effects like
echo and surround). Moreover, such music is enriched with sonorous effects. For example,
with rock music guitar distortions are often used to make the sound less uniform whereas
with pop and electronic music scratch effect is applied.

The above techniques make the audio wave of a channel very different from the other.
On the contrary, classic and jazz music is recorded with different modalities. First of all,
instruments’ distortions and sonorous effects are quite rare because this music is based
on a cleaner type of sound. The recording technique is direct and makes a large use of
environment microphones as it is preferred to emphasize live recording, giving much more
importance to the solos and improvisations. This produces a stereo track with two very
similar channels.

By considering the different recording methods, we can distinguish rock, pop and
electronic music from classic and jazz. For this purpose, we designed a feature that
measures the variation between the sound wave of the two stereo channels. More in detail,
we subtract the audio wave of a channel to the other one and compute the absolute value.
We expect that for classic and jazz music the values tend to be around zero whereas for
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Features Multiclassifier Rock Classic Jazz Electronic Metal World
Accuracy F1 measure

Basic 80.5 0.63 0.93 0.68 0.76 0.59 0.73
Basic + Pitch 80.0 0.61 0.93 0.65 0.76 0.56 0.72
Basic + Beats 80.4 0.64 0.93 0.6 0.8 0.57 0.7
Basic + Chorus 80.6 0.62 0.93 0.68 0.77 0.58 0.73
Basic + Reverse 80.9 0.62 0.94 0.72 0.77 0.58 0.74
Basic + Reverse + Chorus 82.0 0.66 0.94 0.7 0.79 0.61 0.74
Basic + Reverse + Chorus + Pitch 81.9 0.64 0.94 0.7 0.80 0.58 0.74
Basic + Reverse + Chorus + Beats 81.2 0.62 0.93 0.68 0.82 0.58 0.71
Basic + All Advanced 82.3 0.66 0.94 0.68 0.83 0.61 0.72

Pampalk 2004 84,10 - - - - - -

Table 1: Accuracy on the Magnatune 2004 Corpus

Features Multiclassifier Rock Classic Jazz Electronic Pop
Accuracy F1 measure

Basic 89.4 0.85 0.93 0.9 0.91 0.87
Basic + Pitch 90.8 0.89 0.93 0.9 0.91 0.9
Basic + Beats 89.8 0.85 0.94 0.9 0.92 0.86
Basic + Chorus 88.4 0.83 0.93 0.9 0.91 0.85
Basic + Reverse 90.0 0.86 0.94 0.91 0.91 0.88
Basic + Reverse + Chorus 90.8 0.87 0.94 0.91 0.92 0.89
Basic + Reverse + Chorus + Pitch 91.6 0.9 0.94 0.9 0.92 0.92
Basic + Reverse + Chorus + Beats 91.4 0.88 0.95 0.93 0.91 0.89
Basic + Advanced (ALL) 92.0 0.89 0.96 0.92 0.91 0.91

Table 2: Accuracy on the RTV Corpus

elettronic, rock and pop values are subject to sudden changes.

3.2.3 Chorus

A characteristic of rock and pop songs is the presence of a periodic structure: to a verse
follows a chorus and so on until the end of the song. It is also applied a change of tonality
at the end of the song. This schema is less strict in the electronic, jazz and classics songs.
The latter two musical genres show more improvisation and the presence of very technical
solos which make songs much more complex and less rigid in their internal structure.
Finding a general schema of the songs can help to distinguish between jazz, classic and
electronic genre from music much closer to rock and pop.

Our algorithm to detect such schema eliminates the voice of the singer (if there is
any), to preserve only the audio data given by musical instruments. This is carried out
by subtracting the wave of the two audio channels (of course, this can be done only if the
analyzed song is stereo). Such approach will eliminate the middle channel audio which
generally is the part containing the singer voice.

After the above step, a schema of the song can be detected based on the analysis of
the spectral energy. In particular, we have noted that the chorus of pop or rock music is
associated with greater values of energy. Thus, our algorithm computes mean and mean
square values of the audio wave of the frequency of the detected chorus part.

4 Experiments

In these experiments, we tested our SVM song classifier on two different data sets, Mag-
natune 2004 and a novel music corpus (RTV) that contains some Magnatune songs mixed
with commercial music. We experimented with different feature combinations to study
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their usefulness in characterizing different genres.

4.1 Experimental Setting

The Magnatune 2004 corpus is composed by 729 songs distributed in 6 genres as follows
Rock 13.7%, Classic 44.2%, Jazz 3.6%, Electronic 15.8%, Metal 6.2% and World 16.6%.
All the songs are free from copyrights and can be downloaded from http://ismir2004.

ismir.net/. This corpus is quite difficult to classify for at least three reasons: (1) the
World genre classification is quite complex as it encloses several different sounds and
styles; (2) there is a strong similarity between music Rock and Metal ; and (3) there are
very few examples of Jazz.

The RTV corpus is composed by 500 songs selected from Magnatune and some songs
selected by proprietary databases1. Such songs are equally distributed on 5 genres (each
of them contains 100 songs): Rock, Classic, Jazz-blues, Electronic and Pop. Rock and Pop
classes are composed by commercial music (e.g. Madonna and Depeche Mode for Pop
and Metallica and Korn for Rock). The songs of the other classes are randomly selected
from Magnatune.

For the experiments, we used the WEKA software available at http://www.cs.waikato.
ac.nz/∼ml/weka/. We used the default parameters and the polynomial kernel (of Waikato,
2006). We trained an SVM for each class in the scheme ONE-vs-ALL (Rifkin and Klau-
tau, 2004). For each testing instance, we selected the class associated with the highest
SVM score. The classification performance of the individual class is evaluated with the
F1 measure. This assigns equal importance to Precision P and Recall R, i.e. f1 = 2P×R

P+R
.

The multiclassifier performance is measured by means of accuracy.

4.2 Classification Results

For both corpora we applied a 10-fold cross validation. This means that we divided each
corpus in 10 parts and 9 of them were used for training and 1 for testing. By rotating the
testing sample, we obtained 10 different measures on which we evaluated the average.

Table 1 reports the results for the Magnatune collection. Column 1 shows the feature
sets used to represent the song instances, Column 2 reports the multiclassifier accuracy,
and the columns from 3 to 6 illustrates the F1 measures of the Rock, Classic, Jazz,
Electronic, Metal and World binary classifiers, respectively. We note that the more
features we use the higher the multiclassifier accuracy is. Indeed, the best result is achieved
using the basic features plus the new ones, i.e. 82.3%. Consequently, the new features
improve the basic features of about 2 absolute percent points. This enhancement is not
neglectable since it is difficult to improve an already high baseline, i.e. 80.45%. Moreover,
82.3% is very near to the best figure obtained on the Magnatune corpus, i.e. the 84.1%
derived in (Pampalk, 2005). Note that the features used to obtain such state-of-the-art
accuracy are remarkably more complex to extract than those proposed in our model. Such
complexity made difficult to implement and study a model that combines such features
with those that we propose. Although this will be part of our future work.

Regarding the individual categories, we observed from the confusion matrix that Rock
is often misclassified in place of Metal and viceversa. The Jazz classifier has a low accu-
racy; this suggests that it is difficult to recognize Jazz songs. An alternative explanation is

1As these songs are protected by copyrights, we could not make RTV available but we are going to
provide the learning files in WEKA format.
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the low number of training instances available to train the corresponding binary classifier.
On the contrary, the accuracy on Classic and Electronic genres is quite high. This can be
explained by the remarkable differences in terms of musicological and sonorous aspects.

With the aim of showing that our features capture important difference between the
diverse genres, we experimented our classifiers on the RTV collection. The results are
reported in Table 2, which is very similar to the previous Table except for the presence
of the Pop category. We note that the accuracy is in general much higher than the one
obtained on the Magnatune test set. The main reason is that in RTV each category has
an enough number of positive examples for training (i.e. 100). This does not happen for
Magnatune. For example, Jazz has only 26 training songs. Moreover, we still observe an
improvement of about 2% of the classification accuracy when the new features are added
to the basic ones.

In particular we empathize the relevance of the feature Volume Reverse in the classi-
fication results related to the jazz and world. When this feature is added to the set the
f-measure of this genre reaches the peak.

Finally, it should be noted that also the accuracy obtained with the basic features
is very high on both collections. This is due to the use of (a) a powerful learning algo-
rithm, i.e. SVMs, and (b) the polynomial kernel that generates many interesting feature
conjunctions.

5 Conclusions

The large availability of songs across the Web requires effective ways of automatically
organizing and retrieving music material. Automated genre classification is thus a critical
step to carry out such processes.

In this paper, we adopted a state-of-the-art machine learning algorithm, i.e. Support
Vector Machines, to design an automatic classifier of music genres. To improve the clas-
sification accuracy of our system, we used previous designed features and we engineered
new ones. The classification accuracy on two datasets show that our model based on very
simple features approaches the state-of-art systems. This good result is due to both our
novel features and the use of a powerful learning model, i.e. SVMs along with the very
promising techniques based on kernel methods.
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