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Abstract. A core problem in data mining is to retrieve data in a easy
and human friendly way. Automatically translating natural language
questions into SQL queries would allow for the design of effective and
useful database systems from a user viewpoint. Interesting previous work
has been focused on the use of machine learning algorithms for automat-
ically mapping natural language (NL) questions to SQL queries.

In this paper, we present many structural kernels and their combinations
for inducing the relational semantics between pairs of NL questions and
SQL queries. We measure the effectiveness of such kernels by using them
in Support Vector Machines to select the queries that correctly answer
to NL questions. Experimental results on two different datasets show
that our approach is viable and that syntactic information under the
form of pairs of syntactic tree fragments (from queries and questions)
plays a major role in deriving the relational semantics between the two
languages.

Key words: Natural Language Processing; Kernel Methods; Support
Vector Machines

1 Introduction

In the last decade many natural language interfaces to database (NLIDBs) have
been proposed to translate the human intent into machine-readable instructions
[1-8]. Despite this, little progress has been made in developing an interface that
can be used by any untrained user without manual annotation and intervention.
The problem of automatically translating natural language (NL) questions into
SQL queries is an interesting and appealing research in data mining. For ex-
ample, solving this problem would suggest the role of syntax for mapping NLs
to artificial languages; this would have a direct impact in the field of informa-
tion systems. Unfortunately computational linguistics and artificial intelligence
research [9] has shown that such mapping problem cannot be addressed with
a deep semantic approach, thus a concrete solution should rely on shallow and
statistical methods.

In this paper, we propose a set of structural kernels, e.g. Sequence and Tree
Kernels [10-13], and Support Vector Machines (SVMs) to map NL into SQL.
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First, starting from a set of correct pairs of questions and the related SQL
queries, available for our target DBs, we design an algorithm to produce in-
correct pairs and additional correct pairs, i.e. negative and positive examples,
respectively.

Second, we model a representation of the above question/query pairs in terms
of syntactic structures, i.e. we build pairs of syntactic parse trees automatically
derived by off-the-shelf natural language parsers and the straightforward appli-
cation of SQL grammar.

Third, we train SVMs with the above data, where the structural represen-
tation of the pairs is encoded by means of different types of kernels, i.e. linear,
polynomial, string and tree kernels and their combinations. This allows us to
automatically exploit the associative patterns between NL and SQL syntax to
detect correct and incorrect pairs from an operational semantics viewpoint.

Finally, given a new question and the set of available queries (i.e. the repos-
itory of queries asked to the target DB), we produce the set of pairs containing
such question and then we use SVMs to rank pairs in terms of correctness. We
select the top scored pair as the query that answers the given question.

The new contributions with respect to our previous research on Natural Lan-
guage Interface to Databases [14] are the following:

— We propose and study sequence kernels to provide a pair representation that
is shallower than the one based on deep syntactic parsing. Although, they
prove to not be essential for the design of the most accurate model, their
comparison with polynomial kernels gives some indications on the role of
feature pair spaces.

— We experimented with a large number of kernels showing that, in contrast
with our previous findings, complex kernels relevantly improve the simple
space of term (word) pairs.

— We applied our semi-automatic algorithm to a second dataset of correct
question and query pairs, namely RESTQUERIES [7], to design a new dataset
for classifcation. We made it available! along with the one derived by GEO-
QUERIES.

The use of RESTQUERIES allowed us to (1) assess the high effectiveness of prod-
uct kernels and the feature pair spaces, which, even in their simple form (e.g.
word pairs), highly improve the traditional linear kernel; (2) show that syntac-
tic information is very important since it improves the best model by about
10 absolute percent points; and (3) find out that complex kernels such as the
polynomial expansion of pairs of tree fragments and bigrams can produce the
highest results.

In the remainder, Section 2 shows our proposed algorithm to generate a
training set of question and query pairs used by the kernel-based classifier as
described in Section 3. Section 4 discusses the experimental setup and results,
Section 5 reviews some state of the art NLIDBs, to which we compare, and
finally, Section 6 draws conclusions.

! http://disi.unitn.it/~moschitt/corpora.htm
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2 Dataset Generation

The goal of this research is the development of a NLIDB that maps NL questions
into SQL queries based on a machine learning approach; consequently, we need
to have training data, i.e. a set of positive and negative examples. In practical
cases, we can assume to have a set of positive examples consisting of correct
question/query pairs?, i.e. such that the execution of the query retrieves a correct
answer for the question. Assuming the availability of negative examples is a more
strong assumption since providing the correct query for an user information need
is a more natural task than providing the incorrect solution.

Therefore, to create negative examples, we may use the initial set of questions
and queries in the correct pairs and randomly pair them. Unfortunately, this
may generate false negatives since different questions may have more than one
answer (and vice-versa), thus a manual verification of such pairs is required. To
reduce such costly manual intervention, we can exploit the semantic equivalency
between the pairs’ members and its transitivity closure to pair questions to their
correct queries. This allow us to extend the set of positive examples.

The semantic equivalency can be calculated by means of a clustering algo-
rithm, which groups questions that represent the same information need with
queries that correctly retrieve it. An approach to effectively detect such equiv-
alence is the generalization of questions and queries, e.g. What are some good
restaurants in Berkeley becomes What are some good restaurants in a city.

In the next sections, we describe our approach to automatically generate the
target dataset. The main steps are: (1) generalize question and query instances,
(2) cluster the generalized pairs, (3) generate all the true positives by pairing
questions and queries belonging to the same clusters, and (4) annotate as true
negatives all remaining pairings between questions and queries of distinct clus-
ters. This also requires a limited manual intervention.

2.1 Generalizing Pairs

The aim of pair generalization is to make the detection of semantically equiva-
lent questions and queries easy. Our approach consists in considering questions
or queries having similar structures instantiated by the same semantic concepts.
The latter are generalizations of important domain terms occurring both in the
question and in the related query. For example, terms like Berkeley, San Fran-
cisco, etc., are substituted with the concept city. Note that: (a) we can identify
concepts by extracting the column names (in the database) that naturally store
domain terms; and (b) concepts are expressed in the WHERE condition of the
given SQL queries.

An example of the generalization phase is shown in Figure 1, which reports
questions and queries of a restaurant domain. More in detail, on the left there is a
set of four pairs containing four distinct questions and their three related queries

2 For example, correct pairs may be defined when databases are designed and vali-
dated. Also, we may ask the DB operator to collect the set of queries that she/he
designed in response of typical specific (questions) asked by DB users.
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Fig. 1. Example of the initial corpus (A, on the left) and the generalized version (B,
on the right). The latter is divided in two clusters (identified by the two brackets).

(connected by lines) whereas on the right four generalized pairs are shown. In the
question and query pair (nq, s1), where ny: “What are some good restaurants in
Berkeley?” and s1: SELECT restaurant FROM general info WHERE rating>2.5 AND
city=’Berkeley’, since Berkeley is associated with the column city, its occur-
rences in n; and s; are substituted with the concept/variable VA Rcity.

We note that, after substituting instances with variables, both n; and ns are
generalized into n), which can then be paired with two distinct SQL queries, i.e.
sy and sh. This is correct since there can be more SQL queries that correctly
retrieve an answer to an NL question. We can define them to be semantically
equivalent, i.e. s§ = s,. Conversely, there can be many NL questions that map
to the same query, e.g. no = nz>.

It is worth noting that with the generalization process, we introduce redun-
dancy that we eliminate by removing duplicated questions and queries. Thus,
the output dataset is usually smaller than the initial one. However the num-
ber of training examples will be larger, not only because of the introduction of
negatives but also due to the automatic discovering of new positives.

2.2 Pair Clustering and Final Dataset Annotation

Once the pairs have been generalized, we cluster them according to their seman-
tic equivalence so that we can automatically derive new positive examples by
swapping their members. We define semantically equivalent pairs those correct
pairs with (a) equivalent NL questions, i.e. whose generalized version is the same
or (b) equivalent SQL queries. Given that two equivalent queries must retrieve
the same result set, we can automatically test their equivalence by simply exe-
cuting them. Unfortunately, this is just a necessary condition (e.g. two different
queries can have the same answer) therefore we manually evaluate new pairings
obtained applying this condition.

Note that automatically detecting semantic equivalence of natural language
questions with perfect accuracy is a hard task, so we consider as semantically

3 It is worth noting that in this equivalence is true in this domain but in other domains
can be false, since good places not necessarily refers to restaurants.
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equivalent either identical questions (after generalization) or those associated
with semantic equivalent queries. We also apply transitivity closure to both
members of pairs to extend the set of equivalent pairs.

For example, in Figure 1.b s} and s} retrieve the same results so we verify
that they are semantically equivalent queries and we assign them to the same
cluster (CL1), i.e. information need about good restaurants in a city (with a
rating larger than 2.5 stars). Alternatively, we can also consider that n} and
ny are both paired with s, to derive that they are equivalent, avoiding the
human intervention. Concerning s%, it retrieves a result set different form the
previous one so we can automatically assign it to a different cluster (CL2), i.e.
involving questions about restaurants in a region. Note that, once n), is shown
to be semantically equivalent to n}, we can pair them with s} to create the new
pair (indicated by the dashed line) (nj,s}). Indeed the negative example set is

(ng, 51), (n3, 55), (n1, 53), (n, s3).

3 Kernel Methods for Question/Query Representation

Kernel Methods refer to a large class of learning algorithms based on inner
product vector spaces, among which Support Vector Machines (SVMs) are one
of the most well-known algorithms. The main idea is that the parameter model
vector w generated by SVMs (or by other kernel-based machines) can be rewrit-
ten as ) ., ,y;0;x;, where y; is equal to 1 for positive and -1 for negative
examples, o; € R with o; > 0, Vi € {1,..,1} x; are the training instances. There-
fore we can express the classification function as Sgn(}°,_, ,yicx; - +b) =
Sen(d",_q ,vicid(0;) - p(0) +b), where x is a classifying object, b is a threshold
and the product K(0;,0) = (¢(0;) - $(0)) is the kernel function associated with
the mapping ¢.

Note that it is not necessary to apply the mapping ¢, we can use K(o;,0)
directly. This allows, under the Mercer’s conditions [15] for defining abstract
functions which generate implicit feature spaces. The latter allow for an easier
feature extraction and the use of huge feature spaces (possibly infinite), where
the scalar product (i.e. K(-,-)) is implicitly evaluated.

In the following section, we first propose a structural representation of the
question and query pairs, then we report the two more adequate kernels for syn-
tactic structure representation, i.e. the Syntactic Tree Kernel (STK) [11], which
computes the number of syntactic tree fragments and the Extended Syntactic
Tree Kernel (STK,) [16], which includes leaves in STK. In the last subsection
we show how to engineer new kernels from them.

3.1 Representing Question and Queries Pairs

In Data Mining and Information Retrieval the so-called bag-of-words (BOW) has
been shown to be effective to represent textual documents, e.g. [17, 18]. However,
in case of questions and queries we deal with small textual objects in which
the semantic content is expressed by means of few words and poorly reliable
probability distributions. In these conditions the use of syntactic representation
improves BOW and should be always used, [13,19-23].
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Fig. 2. Question/Query Syntactic trees

Therefore, in addition to BOW, we represent questions and queries using
their syntactic trees®. As shown in Figure 2 for questions (a) we use the Char-
niak’s syntactic parser [25] while for queries (b) we implemented an ad-hoc SQL
parser. The latter builds a SQL parse tree for each query following its syntactic
derivation according to MySQL grammar. The grammar has been slightly modi-
fied to accommodate the usage of the symbol e for the production of items in the
SELECT clause and in WHERE conditions. In such an SQL tree, the internal
nodes are only the SQL keywords of the query plus the special symbol e whereas
the leaves are names of tables and columns of the database, category variables
or operators. Note that, although we eliminated comma and dot from the gram-
mar, it is still possible to obtain the original SQL query, by just performing a
preorder traversal of the tree.

To represent the above structures in a learning algorithm we use tree kernels
described in the following section.

3.2 Tree Kernels

The main underlying idea of tree kernels is to compute the number of common
substructures between two trees 77 and T, without explicitly considering the
whole fragment space. Let F = {f1, fa,..., fi|} be the set of tree fragments
and y;(n) an indicator function equal to 1 if the target f; is rooted at node n
and equal to 0 otherwise. A tree kernel function over 77 and T5 is defined as
TK(Ty,Tz) = anENTl aneNT2 A(ny,nz), where Ny, and Ny, are the sets of

nodes in T} and Tb, respectively, and A(ni,ng) = Zli‘l xi(n1)xi(ng). The A
function is equal to the number of common fragments rooted in nodes n; and
ng, and thus, depends on the fragment type. We report its algorithm for the
evaluation of the number of syntactic tree fragments (STFs).

A syntactic tree fragment (STF) is a set of nodes and edges from the original
tree which is still a tree and with the constraint that any node must have all or
none of its children. This is equivalent to state that the production rules con-
tained in the STF cannot be partial. To compute the number of common STF's

4 Early work on the use of syntax for text categorization were based on part-of-speech
tags, e.g. [24]
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Fig. 3. Feature spaces for the tree pair in Figure 2 a) joint space STK+STK b) Carte-
sian product STKxSTK

rooted in ny and ng, the STK uses the following A function [11]:

1. if the productions at n1 and ny are different then A(ny,ng) = 0;

2. if the productions at n; and nsy are the same, and n; and no have only leaf
children (i.e. they are pre-terminal symbols) then A(ny,ng) = A;

3. if the productions at ny and ng are the same, and n; and ny are not pre-
terminals then

Any,nz) = AT (1 + Alen, (5), €ns ()

where [(nq) is the number of children of ny, ¢, (j) is the j-th child of the node n
and A is a decay factor penalizing larger structures.

Figure 3.a shows some STFs of the NL and SQL trees in Figure 2. STFs
satisfy the constraint that grammatical rules cannot be broken. For example,
[VP [AUX NPJ] is a STF, which has two non-terminal symbols, AUX and NP, as
leaves whereas [VP [AUX]] is not a STF.

STK does not include individual nodes as features. As shown in [16] using its
extension (STK.) we can include at least the leaves, (which in constituency trees
correspond to words) by simply inserting the following step 0 in the algorithm
above [16]:

0. if ny and ng are leaf nodes and their labels are identical then A(ny,ng) = A;

3.3 String Kernels

The String Kernels that we consider count the number of substrings containing
gaps (i.e. some of the symbols of the original string are skipped) shared by two se-
quences. We adopted the efficient algorithm described in [15, 10, 26, 27]. Charac-
ters in the sequences can be substituted with any set of symbols. In our study we
preferred to use words obtaining word sequences. For example, given the query:
Select restaurant from general_info sample substrings, extracted by the
Sequence Kernel (SK), are: Select restaurant, Select from general info,
Select general info, Select from, etc. It is worth noting that: (i) longer sub-
sequences receive lower weights, (ii) some words can be omitted, i.e. gaps and
(iii) gaps determine a weight since an exponential decay factor is applied, where
the exponent is the number of words and gaps between the first and last words.

3.4 Kernel Engineering for Pair Representation

Kernel engineering [28-30] can be carried out by combining basic kernels with
additive or multiplicative operators or by designing specific data objects, e.g.
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the tree representation for the SQL syntax, to which standard kernels are ap-
plied. Since our data is a set of pairs, we need to represent the members of
a pair and their interdependencies. For this purpose, given two kernel func-
tions, k1(.,.) and ks(.,.), and two pairs, p1 = (n1,$1) and pa = (ns,s2), a first
approximation is given by summing the kernels applied to the components:
K(p1,p2) = k1(n1,n2) + ka(s1, s2). This kernel will produce the union of the
feature spaces of questions and queries. For example, the explicit vector repre-
sentation of the space of STK of the pair in Figure 2 is shown in Figure 3.a.
The Syntactic Tree Fragments of the question will be in the same space of the
Syntactic Tree Fragments of the query.

In theory a more effective kernel is the product k(nj,ns) X k(sy, s2) since it
generates pairs of fragments as features, where the overall space is the Carte-
sian product of the used kernel spaces. For example Figure 3.b shows pairs of
STF fragments, which are essential to capture the relational semantics between
the syntactic tree subparts of the two languages [31]. In particular, the second
fragment pair of the figure may suggest that the adjective phrase good expresses
similar semantics of the syntactic construct WHERE rating>2.5. In other words,
the above pair feature suggests that the whole query may be a correct translation
of the given question.

As additional feature and kernel engineering, we also exploit the ability of the
polynomial kernel to add feature conjunctions. By simply applying the function
(1 + K(p1,p2))?, we can generate conjunction up to d features. Thus, we can
obtain tree fragment conjunctions and conjunctions of pairs of tree fragments.

The next section will show the results using different kernel combination for
pair representation.

4 The Experiments

We ran several experiments to evaluate the accuracy of our approach in auto-
matically selecting correct SQL queries for NL questions, where the selection of
the correct query is modeled as a ranking problem. The ranker is constituted by
SVMs and by the kernels described in Section 3. To show the generality of our
approach we created two different datasets by applying our algorithm described
in Section 2 to two different corpora.

4.1 Setup

We address the problem of finding a query whose result answers to a question
according to the following ranking problem. Given a question n € A and the
complete set of the available queries S, we classify the set of all possible pairs
P(n) = {(n,s) : s € S}. Then we use the classification score to rank the element
of P(n) and select the pair with the highest score®.

To learn the classifier we used SVM-Light-TKS, which extends the SVM-
Light optimizer [18] with tree kernels. i.e. Syntactic Tree Kernel (STK) and

5 More effective approaches have been proposed [11,32].
S http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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its extension (STK.) as described in Section 3. We implemented the String
Kernel [10] (word sequence kernel [26]) and modeled many different combinations
described in the next section. We used the default parameters, i.e. the cost and
trade-off parameters = 1 (for normalized kernels) and A = 0.4 (see Sec. 3.2).

To generate our datasets we applied our algorithm described in Section 2 to
GEOQUERIES250 and RESTQUERIES corpora’.

The first corpus is about geography questions. After the generalization pro-
cess the initial 250 pairs of questions/queries were reduced to 155 pairs contain-
ing 154 NL questions and 79 SQL queries. We found 76 clusters, from which
we generated 165 positive and 12,001 negative examples for a total of 154 x 79
pairs. Such dataset will be referred to as GEO.

The second dataset regards questions about restaurants. The initial 250 pairs
were generalized by 197 pairs involving 126 NL questions and 77 SQL queries.
We clustered these pairs in only 26 groups, which lead to 852 positive examples
and 9,702 negatives. Such dataset will be referred to as REST.

To evaluate the results of our mapping models, we applied standard 10-fold
cross validation and measure the average accuracy and the Std Dev. of selecting
the correct query for each question.

4.2 Results on Geo dataset

We tested several models for ranking based on different kernel combinations
whose results are reported on Table 1 and Table 2. The first column of Table 1
lists kernel combination by means of product and sum between pairs of basic
kernels used for the question and the query, respectively. The latter column
shows the average accuracy (over 10 folds) £ Std. Dev.

More in detail, our basic kernels are: (1) linear kernel (LIN) built on the
bag-of-stems (BOS) of the questions or of the query; (2) a polynomial kernel
of degree 3 on the above BOSs (POLY); (3) the Syntactic Tree Kernel (STK)
on the parse tree of the question or the query and (4) STK extended with leaf
features (STK,). Note that we can also sum or multiply different kernels, e.g.
POLY xSTK.

An examination of the reported figures suggests that: first, the basic tra-
ditional model based on linear kernel and BOS, i.e. LIN + LIN, provides an
accuracy of only 57.3%, which is greatly improved by LINxLIN=LIN?, i.e. by
13.5 points 8. The explanation is that the sum cannot express the relational
feature pairs coming from questions and queries, thus LIN cannot capture the
underlying shared semantics between them. It should be noted that only kernel

" Questions in both corpora were originally collected from a web-based interface and
manually translated into logical formulas in Prolog by Mooney’s group [7]. Popescu
et al. [2] manually converted them into SQL. Thanks to our clustering algorithm we
discovered and fixed many errors and inconsistencies in SQL queries.

8 Although the Std. Dev. associated with the model accuracy is high, the one associ-
ated with the distribution of difference between the model accuracy is much lower,
ie. 5%
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Table 1. Kernel combi- Table 2. Advanced kernel combination accuracies
nation accuracies (£ Std. (£ Std. Dev) for GEO dataset
Dev) for GEO dataset

Advanced Kernels Accuracy
Combination |[Accuracy STK?+POLY? 72.7+9.7
LIN + LIN 57.3+10.4 STKZ+POLY? 73.2+11.4
LIN x LIN 70.7+12.0 (1+1LIN?)? 73.6+£9.4
POLY x POLY|71.94+11.5 (1+POLY?)? 73.2+10.9
STK x STK [70.3+£9.3 (1+STK?)? 69.4+10.0
STK. x STK. [70.1£10.9 (1+STK?)? 70.0+12.2
LIN x STK  [74.64+9.6 (1+LIN?)?+STK? 75.6+8.3
LIN x STK. |75.6+13.1 (1+POLY?)*+STK” 72.6+10.5
POLY x STK [73.849.5 (1+LIN?)?+LINxSTK 75.949.6
POLY x STK. |73.5+10.4 (1+POLY?)*+POLY xSTK  [73.2+10.9
STK x LIN  |64.7+11.5 POLY xSTK+STK?4+POLY? [73.9£+11.5
STK. x LIN _|68.319.6 POLY xSTK.+STK24+POLY?[75.34+11.5
STK x POLY 1|65.44+10.9 LINx STK+STK?+LIN? 74.5+9.1
STK, x POLY |68.3£9.6 LINXSTK.+STKZ+LIN? 74.9+11.8

methods allow for an efficient and easy design of LIN?; the traditional approach
would have required to build the cartesian product of the question BOS by query
BOS. This can be very large, e.g. 10K features for both spaces lead to a pair
space of 100M features.

Second, the feature pair space is essential since the accuracy of all kernels
implementing the union spaces of question and query representations? is much
lower than the baseline model for feature pairs, i.e. LIN2.

Third, if we include conjunctions in the BOS representation by using POLY,
we improve the LIN model, i.e. 71.9% vs 70.8%. POLY? is also better than STK?
since it includes individual term/word bigrams that are not included by STK.

Next, the lower accuracy provided by STK? and STK? suggests that syntac-
tic models can improve BOS although too many (possibly incorrect) syntactic
features (generated by the syntactic parser) make the model unstable. This con-
sideration leads us to experiment with the model LIN x STK and LIN x STK.,,
which combine words of the questions with syntactic constructs of SQL queries.
They produce statistically significant higher results (at 90% of confidence), i.e.
74.6% and 75.6%. This suggests that the syntactic parse tree of the SQL query
is very reliable (indeed, it is obtained with 100% of accuracy) while the natu-
ral language parse tree, although accurate, introduces noise that degrades the
overall feature representation. As a consequence it is more effective to use words
only in the representation of the first member of the pairs.

This is also prooved by the last four lines of Table 1, showing the low accu-
racies obtained when relying on NL synctactic parse trees and SQL BOSs. Thus
the only viable possibility to improve LIN x STK, was to use the polynomial

9 Given the limited space, we could not report the results of these poorly accurate
kernels.
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Table 3. Kernel combi- Table 4. Advanced kernel combination accuracies
nation accuracies (£ Std. (£ Std. Dev) for REST dataset
Dev) for REST dataset

|Combinati0n \Accuracy‘ lAdvanced Kernels Accuracy
LIN + LIN 20.94+11.9 STK?*+POLY? 78.6+11.9
LIN x LIN 37.1+16.2 STK?+POLY? 73.3+10.2
POLY x POLY|74.5+14.0 (1+LIN?)? 52.5+10.2
STK x STK [71.8410.8 (14+POLY?)? 74.5+£14.0
STK. x STK. |62.5+11.6 (1+STK?)? 74.5+14.0
LIN x STK _ |79.1+115 (1+STK?)? 62.5411.6
LIN x STK. [77.2+12.8 (14-SK3)? 69.8410.0
POLY x STK [82.3+11.8 (1+POLY xSTK)? 84.7+11.5
POLY x STK. |78.0+12.2 (1+POLY?)?+STK" 78.7+12.1
STK x LIN 38.3+13.4 (1+POLY?)’+POLY xSTK |[78.1£13.8
STK x POLY [45.5+11.8 POLY x STK+STK?+POLY?[78.6£11.9
SK3 X SK3 67.4+11.1

SK; x STK  [81.7+£13.3

SK; x STK. |78.5+11.5

kernel in the combination POLY x STK,.. The slightly lower outcome shows
that POLY is equivalent to LIN.

Moreover, we experimented with very advanced kernels built on top of fea-
ture pair spaces as shown in Table2. For example, we sum different pair spaces,
STK? and POLY?, and we apply the polynomial kernel on top of pair spaces
by creating conjunctions, over feature pairs. This operation tends to increase
too much the cardinality of the space and makes it ineffective. However, using
the simplest initial space, i.e. LIN, to build pair conjunctions, i.e. (1+LIN?)2,
we obtain a very interesting and high result, i.e. 73.6%. Using the joint space
of the kernel above and kernel products, we can still improve our models, e.g.
(14+LIN?)24+LINxSTK.

This suggests that kernel methods have the potentiality to describe rela-
tional problems using simple building blocks although new theory describing the
degradation of kernels when the space is too complex is required.

Finally, to study the stability of our complex kernels, we compared the learn-
ing curve of the baseline model, i.e. LIN+LIN, with the those of the best models,
i.e. LINXSTK, and STK?+(1+LIN?)2. Figure 4 shows that surprisingly, com-
plex kernels are not only more accurate but also more stable, i.e. their accuracy
increases smoothly according to the availability of training data.

4.3 Results on Rest dataset

The previous results, although interesting, show that syntactic information plays
a minor role and that complex kernels do not significantly improve our question
translator (similar findings were derived in the preliminary experiments in [14]).
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Fig. 4. Learning curves for GEOQUERIES and RESTQUERIES corpora

To verify such hypothesis, we experimented with the second dataset whose
results, reported in tables Table 3 and Table 4, provide more interesting data.

First, the baseline model, i.e. LIN + LIN, produces very low accuracy, i.e.
only 20.9%, which is highly improved by LINZ, also showing a very low result,
i.e. 37.1%, although.

Second, surprisingly, including conjunctions in the BOS representation, i.e.
by using POLY?, the accuracy of LIN? doubled (74.5%). Moreover, if we combine
POLY with syntactic SQL subtrees, i.e. POLY x STK, we obtain another relevant
improvement, i.e. 82.3%. This confirms that it is better to use stems in the
representation of the first member of the pairs and syntactic parse trees in the
second member.

Third, given that n-gram based text representation technique has shown to
outperform bag-of-words approaches [10], we experimented with String Kernel
(SK). The results confirm that sequences of three words (SK3) better represent
questions than BOS (see SKZ vs. LIN?). Nevertheless, the conjunctions of POLY
are more effective.

Next, we experimented with advanced kernel combinations. The results, listed
in table Table 4, show that the advanced polynomial kernel combination (14+POLY
x STK)? outperforms!® the best kernel combination, POLY x STK.

Finally, Figure 4 illustrates the learning curve of the best kernels, i.e. POLY x
STK, the advanced polynomial kernel applied on top of it, i.e. (1+POLY x STK)?,
POLY? and SK3xSTK. The plots show that the best kernels including the syn-
tactic information are superior to the very accurate and rich kernels based on
only BOS.

10 Although the Std. Dev. associated with the model accuracy is high, the one associ-
ated with the distribution of difference between the model accuracy is much lower
(about 2%). Considering also that we used 10 folds, we could verify that the first is
better than the second at 90% of confidence limit.
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5 Related Work and Discussion

In this section we discuss some NLIDBs that have been tested on GEOQUERIES!!
or RESTQUERIES datasets. NLIDBs can be classified according to the approach
used to retrieve an answer to a given question from a database. For sake of space
limit, we only discuss a system for each different approach. For a complete review
of other state-of-the-art systems, please refer to Chandra and Mihalcea [33].

Authoring systems rely on semantic grammar specified by an expert user
(i.e. the author) to interpret question over a database. The author has to name
database elements, tailor entries and define additional concepts. CatchPhrase [3]
is an authoring system that has been evaluated on GEOQUERIES250. In partic-
ular, two students were asked to author the system to cover 100 of the 250
questions each. Then the remaining questions were split in 2 test sets and trans-
lated by the system first into logical queries in tuple calculus representation and
then into SQL queries. The average accuracy was 69%.

Many systems instead adopt a machine learning approach to induce a se-
mantic grammar from a corpus of correct pairs of questions and queries, e.g.
Krisp [1]. It takes pairs of sentences and their computer-executable meaning rep-
resentations as training input to find a mapping between sentences and Prolog
assertions using an SVM classifier. For each production in the meaning represen-
tation language the model is learned using string subsequence kernels. Then the
classification is used to compositionally represent a natural language sentence
in its meaning representation. The reported experiments using standard 10-fold
cross validation show an accuracy of 70% and of 75% on GEOQUERIES880 and
GEOQUERIES250, respectively.

In Precise [2], the derivation of semantic interpretation of ambiguous phrases
is reduced to a graph matching problem. Precise finds valid mapping(s) from a
complete tokenization of a given question to a set of database elements and they
convert into a SQL query (queries). Authors claim to achieve 100% precision
on a subset of questions while rejecting semantically intractable questions for
a final recall of 77.5% and the 95% for GEOQUERIES880 and RESTQUERIES
respectively.

The performance of the above mentioned systems were originally measured
according to different definitions of precision and recall since they refuse to gen-
erate a correct answer in particular output conditions. In contrast our approach
allows for always having one answer, therefore it can be measured with the more
appropriate accuracy measure. Using the accuracy we note that our approach is
comparable to Krisp obtaining the same measure, i.e. 75.6% (our result) vs 75%
(Krisp), on GEOQUERIES250. Regarding the comparison with Precise, it should
be noted that we found several errors in the SQL testset in [2] (many of them
do not return the correct values and other were syntactically incorrect), so we
cannot provide a reliable interpretation of their results.

11 GEOQUERIES250 is a subset of GEOQUERIESS880 dataset whose questions are also
available in other languages. Since our learning algorithm is language independent,
we plan to experiment with other natural languages but also with GEOQUERIES880
so we report others’ result also on this dataset.
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It is worth noting that our system, in contrast with previous generative ap-
proaches, retrieves the best matching query among the given set of all possible
queries. One could argue that we can’t find a correct answer to a given unseen
NL question if the SQL query was not present in the initial dataset. However,
we can rely on query logs which should reliably represent frequent and required
queries asked to DBs.

There exist other systems [4,5,7,8] that were tested on GEOQUERIES880
with different experimental-setup, so results are not directly comparable. How-
ever we perform similarly to Krisp, that compares favourably with them.

With respect to the other natural language tasks that employ tree kernels, in
the literature [11, 34-42], several models have been proposed and experimented.

6 Conclusions

In this paper, we approach the problem of deriving a shared semantic between
natural language and programming language by automatically learning a model
based the syntactical representation of the training examples. In our experiments
we consider pairs of NL questions and SQL queries as training examples. These
are annotated by means of our algorithm starting from a given initial annotation.
In particular we experimented with the annotation available in GEOQUERIES250
and RESTQUERIES corpora. We generated new datasets adding new positive
pairs, creating negatives example set and also fixing some errors. Our datasets
are publicly available so that other systems can be compared with our benchmark
corpora.

To represent syntactic/semantic relationships expressed by training pairs, we
encode such pairs in SVM by means of kernel functions. We designed innovative
combinations between different kernels for structured data applied to pairs of
objects, that, to the best of our knowledge, represent a novel approach to describe
relational semantics between NL and SQL languages.

Experimental results show a promising accuracy, which can be largely im-
proved, e.g. by model tuning. This suggestes that our approach is viable to mine
semantic relations between natural language and SQL.

In the future we would like to extend this research by focusing on advanced
shallow semantic approaches such as predicate argument structures [43].
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