
A Comprehensive Resource to Evaluate Complex
Open Domain Question Answering

Silvia Quarteroni, Alessandro Moschitti

DISI - University of Trento
38050 Povo (Trento)

silviaq@disi.unitn.it, moschitt@disi.unitn.it

Abstract
We describe two corpora of question and answer pairs collected for complex, open-domain Question Answering (QA) to enable answer
classification and re-ranking experiments. We deliver manually annotated answers to non-factoid questions from a QA system on both
Web and TREC data. Moreover, we provide the same question/answer pairs in a rich data representation that includes syntactic parse
trees and predicate argument structures and is compatible with the SVM-light toolkit. Experimenting with the above corpora allowed us
to learn effective answer classifiers and re-rankers to improve the accuracy of our baseline QA system.

1. Introduction
Question Answering (QA) is a discipline that integrates
Information Retrieval with Natural Language Processing
technology in the purpose of finding accurate answers to
natural language questions. While the first QA systems
were conceived as natural language interfaces to small
databases (Simmons, 1965), the discipline has evolved to
encompass much wider information sources, scaling up to
the Web (Kwok et al., 2001).
Most current QA systems can be defined as “open-domain”
systems, as they aim at addressing questions of any type
and concerning virtually any domain. Question types, or
more appropriately expected answer types, are generally di-
vided into two groups: factoid and non-factoid. The former
group refers to answers that can be reduced to a fact, such as
a name, geographical entity or date; in contrast, non-factoid
or “complex” QA aims at finding definitions, descriptions,
manners or reasons, and in general types of answers that go
beyond a concise phrase.

1.1. Complex Question Answering
Non-factoid Question Answering is among the most com-
plex and interesting problems in the natural language litera-
ture (Kazawa et al., 2001; Cui et al., 2005), as finding com-
plex answers requires deep linguistic processing. However,
there has been limited interest in specifically evaluating this
type of application: TREC-10, the 2001 edition of the ma-
jor QA evaluation campaign, remains to our knowledge the
first of a limited number events where a large number of
non-factoid questions was to be addressed by participant
systems (Voorhees, 2001). The CLEF campaign also intro-
duced 50 definition questions in the 2005 edition (Vallin et
al., 2006), and has been dealing with an increasing number
of complex question types in more recent years.
In this work, we focus on the types of complex questions
falling into the coarse Description category of the question
taxonomy designed to classify the TREC-10 test questions
in (Li and Roth, 2002). This coarse-grained class mostly
includes definitions, but also true descriptions, procedures
(how- questions) and reasons (why-questions). According
to (Li and Roth, 2002), 138 TREC-10 questions compose

such a class; these are available as part of the UIUC corpus
at: http://l2r.cs.uiuc.edu/˜cogcomp/Data/
QA/QC/.
In particular, this paper presents a complete resource to
study the relations between such complex question types
and their answers in an open-domain Question Answering
system.

1.2. A resource to learn answer classifiers

In previous work (Quarteroni et al., 2007; Moschitti et al.,
2007; Moschitti and Quarteroni, 2008), we have been con-
fronted with the need to experiment with a number of ma-
chine learning models in order to classify and re-rank can-
didate answers to complex questions. Our models com-
bined kernel functions applied on different relational rep-
resentations of questions and answers: words, POS tags,
syntactic parse trees and predicate argument structures.
In order to experiment with classifiers and re-rankers, we
needed training and testing instances formed by complex
questions and an ordered list of candidate answers from
an existing Question Answering system for each of these
To this end, we used YourQA (Quarteroni and Manandhar,
2009), our open-domain Question Answering system, de-
signed to address both factoid and non-factoid questions
and able to return answers alternatively from the Web or
from a closed corpus.
The 138 complex questions in the UIUC corpus were
submitted to YourQA and its top 20 answers were used
to collect a corpus of candidate answers. The latter were
manually labeled by two annotators according to their level
of correctness with respect to their question.

Section 2. briefly describes YourQA’s algorithm, while
Section 3. introduces answer classification and re-ranking
based on structural features and discriminative approaches.
Section 4. describes the corpora collected from YourQA’s
answers to the UIUC description questions by retrieving
documents from the Web and a TREC corpus, respectively.
Finally, Section 5. summarizes experiments carried out us-
ing the corpora.
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2. YourQA: Open-domain QA
YourQA (Quarteroni and Manandhar, 2009) is an open-
domain, primarily Web-based Question Answering sys-
tem. As most state-of-the-art systems (Kwok et al., 2001),
YourQA is organized according to three phases: question
processing, document retrieval and answer extraction.
During the first phase, the query is classified according to
a taxonomy of factoid or non-factoid answer types; the two
top expected answer types are estimated and the query is
submitted to the underlying IR engine. Then, in the docu-
ment retrieval phase, the top 20 documents found by the IR
engine are retrieved and split into sentences.
Finally, during answer extraction, document sentences are
compared to the question in the light of the expected an-
swer types and candidate answers are selected; this phase
requires additional details as it forms the baseline for any
subsequent classification and re-ranking approaches.

2.1. Answer extraction

The answer extraction phase is centered on a sentence-level
similarity metric applied to the query and to each retrieved
document sentence to identify answers according to a com-
bination of lexical, syntactic and semantic criteria.
In particular, based on the outcome of the question clas-
sifier, the answer extraction module determines whether
the expected answer type belongs to the factoid group (in
YourQA, the following factoids are defined: person, orga-
nization, location, quantity and time) or not.
In the first case, the required factoid is pinpointed down to
the phrase or word level in each candidate answer sentence
using factoid QA techniques, such as Named Entity recog-
nizers and regular expressions.
In the case of non-factoid expected answer types, additional
criteria are adopted to compute the similarity between the
candidate answers and the original question: these match
word n−grams, syntactic chunks, and phrase groups such
as {head noun, verb, prepositional phrase} between the
question and the answer. The final question-answer simi-
larity metric therefore results from a weighted combination
of the above similarity criteria.

2.2. Answer Format

Candidate answers are ordered by decreasing similarity (the
IR engine rank of the answer source document is used as a
tie-breaking criterion) and returned to the user surrounded
by their original passage. While we here focus on the char-
acteristics of YourQA’s answers, full details about the sys-
tem’s answer extraction process and question/answer sim-
ilarity metric are reported in (Quarteroni and Manandhar,
2009).
Figure 1 reports a snippet of YourQA’s result format. The
answer passage contains a sentence in boldface, corre-
sponding to the document sentence obtaining the highest
similarity score according to YourQA’s answer extraction
algorithm. This choice is due to the fact that the system
is intended to provide a context to the exact answer; more-
over, our focus on non-factoids made it reasonable to pro-
vide answers in the form of sentences.

3. Answer Re-ranking via Question/Answer
Classification

State-of-the-art QA systems often perform a further step to
answer extraction where additional, finer-grained criteria
are employed to estimate the correctness of candidate an-
swers; optionally this results in a re-ranked answer output.
This phase is particularly useful for non-factoid expected
answer types, where lexical features are often insufficient
to provide accurate answers. Indeed, due to the small num-
ber of query keywords (often one), the number of common
tokens between question and answer are not predictive of
answer correctness.
Such a problem may be illustrated by considering the defi-
nition question q = What is autism? and the two following
answer candidates:

a1 Autism is a disease characterized by inability to relate
to people.

a2 Autism affects millions of people.

Here, a lexical similarity metric such as the one described
in Section 2. would give identical results when applied to
(q, a1) and (q, a2); however, a1 is clearly a much preferable
answer. In these conditions, the use of answer classifiers
and re-rankers working with structural text representations
can highly contribute to understanding question/answer re-
lations, and indeed what makes a good definition. This is
illustrated in Section 3.1.

3.1. Structural representations
Since the last decade, a number of natural language pro-
cessing approaches have been turning towards structural
feature representation in the last decade (Zhang and Lee,
2003; Shen and Lapata, 2007).
Indeed, several tree-based feature representations have
been explored within machine learning frameworks to
study their impact on complex textual understanding tasks.
Such representations include syntactic parse trees (PTs); for
instance, Figure 2 reports a PT as output by the Charniak
parser (Charniak, 2000).

3.2. Representation via Word and POS-tag sequences and Trees

For a basic syntactic and semantic representation of both questions and an-

swers, we propose two different kernels: the Part of Speech Sequence Kernel

(POSSK) and the Word Sequence Kernel (WSK). The former is obtained by ap-

plying the String Kernel on the sequence of POS-tags of a question or answer. For

example, given the sentence s0: What is autism?, the associated POS sequence is

WP AUX NN ? and possible subsequences extracted by POSSK are WP NN orWP

AUX. Instead, WSK is applied to word sequences of questions or answers; given

s0, sample WSK substrings are: What is autism, What is, What autism, etc.

A more complete structure is the full parse tree (PT) of the sentence, that con-

stitutes the input of the STK. For instance, the STK accepts the following syntactic

parse tree for s0:

SBARQ

WHNP

WP

What

SQ

VP

AUX

is

NP

NN

autism

.

?

3.3. Shallow Semantic Representation

Our semantic representation is motivated by the intuition - supported by com-

putational linguistic evidence [26] - that definitions are characterized by a latent

semantic structure, thanks to which similar concepts result in structurally similar

formulations. Indeed, understanding whether a candidate answer is correct for a

definition question would imply knowing the correct definition and comparing the

current candidate to the former. When such information is unavailable (as in open

domain QA) the learning algorithm must mimic the behavior of a human (who does

not know the exact definition) and check whether such answer is formulated as a

“typical” definition and whether answers defining similar concepts are expressed

in a similar way. A method to capture sentence structure [27] is the use of predicate

argument structures described hereafter.

3.3.1. Predicate Argument Structures

Shallow approaches to semantic processing are making large strides in the

direction of efficiently and effectively deriving tacit semantic information from

text. Large data resources, annotated with levels of semantic information as in the

FrameNet [28] and ProbBank [29] projects, make it possible to design systems
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Figure 2: Syntactic parse tree of: What is autism?

Another example are Predicate-argument structures (PASs),
that encode a more compact textual representation in terms
of semantic roles; for instance, Figure 3 reports a PAS tree
following PropBank semantics (Palmer et al., 2005).

3.2. Discriminative approaches based on structures
In the QA domain, tree kernels (Zhang and Lee, 2003) have
proven to be effective in encoding syntactic parse trees in



Figure 1: Top answer extracted by YourQA from the AQUAINT corpus to the TREC 2001 question: “What is autism?”
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Figure 3: Compact PASPTK structures of s1 (a) and s2 (b) and some fragments they have in common

as produced by the PTK (c). Arguments are replaced with their most important word (or semantic

head) to reduce data sparseness.

and 4(a)). Furthermore, the accuracy of computing the matches between two PASs

can only improve as only the nodes that are actually useful are represented.

3.4. The YourQA corpora: WEB-QA and TREC-QA

As mentioned earlier, our research focus is on non-factoid Question Answer-

ing, where the expected answer type mainly consists of definitions or descriptions.

Non-factoid answer types are among the most complex and interesting in the litera-

ture [32, 33] as finding them requires deeper linguistic processing than for factoids.

Unfortunately, there has been limited interest in specifically evaluating this type

of questions during official QA evaluation campaigns. TREC-10, the 2001 edition

of the major QA evaluation campaign, remains to our knowledge the first and one

of the few events where a large number of description or definition questions was

included in the test set to be addressed by participant systems [12]. In a question

classification taxonomy designed to account for this edition [34], 138 questions

were labeled as “description”4 . We chose to use the answers to such questions as a

baseline to test our learning models.

In order to experiment with our classifiers and re-rankers, we therefore needed

an ordered list of candidate answers to each question from anexisting Question An-

4See l2r.cs.uiuc.edu/˜cogcomp/Data/QA/QC/
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Figure 3: Compact Predicate Argument Structure of:
Autism is a characterized by a spectrum of disorders.

learning algorithms exploiting to the robustness of Support
Vector Machines (SVMs) to irrelevant features (Vapnik,
1995). More recent work, e.g. (Shen and Lapata, 2007)
has shown that shallow semantic information in the form
of predicate argument structures (PASs) improves the auto-
matic detection of correct answers to a target question.
The intuition underlying the use of structural features for
textual classification is that an overlap in the structure
of two texts indicates a semantic relation, such as ques-
tion/answer similarity. Consequently, Q/A similarity may
be expressed as a function of common substructures in the
trees representing the question and the answer.
Tree kernel functions are examples of such similarity func-
tions; simply put, these receive as input a tree-based repre-
sentation of the question and answer, enumerate both ques-
tion and answer subtrees and then compute the number of
matches between the subtrees. For instance, Figure 4 re-
ports the syntactic parse tree of Autism is a disease as well
as a number of its subtrees as enumerated by the syntactic
tree kernel function defined in (Collins and Duffy, 2002).
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Figure 1: A tree for the sentence “Autism is a disease” with some of its syntactic tree

fragments (STFs).

2.2.1. Syntactic Tree Kernel (STK)

A syntactic tree fragment (STF) is a set of nodes and edges from the original

tree such that the former is still a tree and with the constraint that any node must

have all or none of its children. This is equivalent to stating that the production

rules contained in the STF cannot be partial.

To compute the number of common STFs rooted in n1 and n2, the Syntactic

Tree Kernel (STK) uses the following∆ function [13]:

1. if the productions at n1 and n2 are different then∆(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children (i.e. they are pre-terminal symbols) then∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-

terminals then∆(n1, n2) = λ
∏l(n1)

j=1 (1 + ∆(cn1(j), cn2(j)))

where l(n1) is the number of children of n1, cn(j) is the j-th child of node n and
λ is a decay factor penalizing larger structures.

Figure 1 shows 10 out of the 17 STFs of the tree appearing at the top left.

Note that STFs satisfy the constraint that grammatical rules cannot be broken. For

example, [VP [VBZ NP]] is a STF which has two non-terminal symbols, VBZ and

NP, as leaves while [VP [VBZ]] is not a STF.

2.2.2. Shallow Semantic Tree Kernel (SSTK)

A shallow semantic tree fragment (SSTF) is almost identical to a STF, the

difference being that the contribution of special nodes labeled with null should be

zero. This is necessary as the Shallow Semantic Tree Kernel (SSTK) [9] is applied

to special trees containing SLOT nodes that, when empty, have children labeled

with null. Two steps are modified in the algorithm:
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Figure 4: Parse tree of: Autism is a disease and some of its
sub-trees as enumerated by the syntactic tree kernel.

In order to conduct answer classification and re-ranking ex-
periments with kernel functions, a large amount of training
instances, i.e. questions and candidate answers, is neces-
sary. The two YourQA answer corpora collected for this

purpose are discussed in Section 4.

4. The WEB-QA and TREC-QA Corpora
In order to obtain answers for our machine learning exper-
iments, YourQA was deployed with two alternative IR en-
gines during the document retrieval phase:

1. Google, to retrieve Web documents1,

2. Lucene2, to retrieve news articles from AQUAINT 63,
the latest corpus released for TREC.

The resulting corpora, named WEB-QA and TREC-QA,
contain 1309 and 2256 sentences respectively.
TREC-QA was necessary to align with the methodology
followed by traditional QA system evaluation drawn from
IR on a closed corpus. WEB-QA was particularly inter-
esting to test the abilities of a fully Web-based open do-
main QA system, and to assess whether creating relational
data representations based on the results of “off-the-shelf”
parsers and semantic role labelers on Web data would yield
effective learning algorithms.
Both corpora are available at: disi.unitn.it/

˜silviaq/resources.html; each corpus is deliv-
ered in the two following formats:

1. the judgment files resulting from the manual annota-
tion of WEB-QA and TREC-QA,

2. the representation of annotated data as an input to
SVM-light (i.e. training and testing files).

4.1. Judgment files
Judgment files contain a text version of YourQA’s output,
i.e. up to 20 answer paragraphs for each question. It is
important to note that as the QA system does not necessar-
ily select answers from each retrieved document and may
discard unsuitable answer candidates, the number of para-
graphs per question may vary.
In the judgment files, each sentence is manually annotated
based on how well it answers the corresponding question.
The annotation follows a Likert scale between 1 (totally in-
correct) and 5 (completely correct). Two judges carried out
the annotation task, reaching an inter-annotator agreement
judged substantial (Cohen κ = 0.635).

1google.com
2lucene.apache.org
3available at: trec.nist.gov/data/qa



An excerpt of a judgment file is reported in Figure 5. Here,
the top Web answer paragraph as returned by YourQA for
the question What is autism? appears together with the
original Google rank obtained by the question. The para-
graph is composed of two sentences, the first one reaching
the maximum judgment of 5, the second being classified as
an incorrect answer (score 1). It can be noted that a Q/A
similarity metric such as the one applied in YourQA’s an-
swer extraction phase would find it particularly difficult to
distinguish between the above two sentences. Indeed, both
share exactly one keyword with the question, “autism”.

4.2. Training/testing files for SVM-light
We have been using the WEB-QA and TREC-QA corpora
in a number of machine learning experiments to conduct
complex answer classification and re-ranking. In particular,
we tested the following kernel functions:

• linear kernels on words (BOW) and Part-of-Speech
tags (POS),

• sequence kernels on words (WSK) and on Part-of-
Speech tags (POSSK),

• syntactic tree kernels (STK) on parse trees obtained
via the Charniak parser (Charniak, 2000),

• shallow semantic tree kernels (PTK) on Predicate Ar-
gument Structures, obtained via the Semantic Role La-
beling system described in (Moschitti et al., 2005).

Furthermore, we implemented combinations of the above
kernels in the SVM-light-TK toolkit4, that allows to design
new functions in SVM-light (Joachims, 1999).
To experiment with these, we constructed five-fold cross
validation splits containing training/testing instances de-
rived from the judgment text files illustrated in Sec. 4.1.5

In particular, to simplify the classification task, we isolated
for each paragraph in the judgment files the sentence with
the maximal judgment and labeled it as +1 if its judgment
was above 3 and −1 otherwise. For instance, given the
question: What are invertebrates? the sentence: At least
99% of all animal species are invertebrates was labeled
−1 , while the sentence: Invertebrates are animals with-
out backbones was labeled +1.
Following this convention, WEB-QA contains 416 positive
instances out of 1309 (31.8%), while TREC-QA contains
261 out of 2256 (11.6%): indeed, finding an answer to a
question is simpler on the Web than on the smaller TREC
corpus.
Each training/testing instance is a representation of a

< question, candidate answer sentence >

pair returned by YourQA. It is composed by a concatenation
of the following information:

• A binary label (+1 or −1), indicating whether
candidate answer sentence has been judged as a
correct answer to question by the manual annotators;

4available at dit.unitn.it/moschitti/
5These are also available at: disi.unitn.it/

˜silviaq/resources.html.

• a unique identifier, composed by the concatenation
questionID:paragraphID:answerID,

• 24 slots containing the following representations used
by the kernel functions we defined:

slots 0-4: Question parse tree (used by STK);
BOW and POS as used by linear and se-
quence BOW/POS kernels6; BOW+POS; syntac-
tic heads7;

slots 5-9: up to 5 question PASPTK (PAS used by
PTK);

slots 10-14: dummy slots;

slots 15-18: Answer parse tree (used by STK),
BOW and POS tags (used by linear and se-
quence BOW/POS kernels), BOW+POS, syntac-
tic heads;

slots 19-23: up to 5 answer PASPTK (used by PTK).

Figure 6 illustrates an example of an instance in the train-
ing/testing file format.

5. Classification & Re-ranking Experiments
To show the soundness and usefulness of our corpus for
empirical studies, we briefly report our experiments using
the representations in Section 4.2.

5.1. Answer classification
The objective of answer classification was to learn a binary
answer classifier using the above training instances to de-
termine whether candidate answers were correct answers to
the corresponding questions. We tried several feature com-
binations by selecting different portions of the available in-
formation of the training instances and experimenting with
the corresponding kernel functions.
Table 1 reports the accuracy over five folds achieved by dif-
ferent kernels on WEB-QA. We note that:

1. BOW achieves very high accuracy, comparable to the
one produced by PT;

2. WSK improves on BOW, showing that word se-
quences are very relevant for this task;

3. the highest performing combination of features are
PASPTK + WSK + BOW, further improving on BOW
as a standalone.

A comparative analysis with the results obtained on TREC-
QA, also in Table 1, suggests that:

1. the F1 of all models is lower than for WEB-QA, due
to the fewer positive instances in the training corpus;

2. BOW denotes the lowest accuracy;

3. Sequence Kernels are beneficial, as POSSK improves
on POS (and PT);

6A slight modification of the STK applied to such tree repre-
sentations implements the BOW/bag of POS feature

7Obtained following (Collins, 1999)



PARAGRAPH 1, GOOGLE RANK: 2
Autism is a complex developmental disability that typically appears during the
first three years of life and is the result of a neurological disorder that affects
the normal functioning of the brain, impacting development
in the areas of social interaction and communication skills.
SENTENCE [2] (BEST) JUDGMENT: <5>
Both children and adults with autism typically show difficulties in verbal and
non-verbal communication, social interactions, and leisure or play activities.
SENTENCE [3] JUDGMENT: <1>

Figure 5: A paragraph from the judgment file for the WEB-QA answers to the TREC 2001 question: “What is autism?”

+1 //binary label
103:16:57 //identifier with format QuestionID:AnswerParagraphID:sentenceID
//QUESTION (Q) FEATURES
|BT| (SBARQ (WHNP (WP What))(SQ (VP (AUX is)(NP (JJ mad)(NN cow)(NN disease))))(. ?)) //PT
|BT| (BOX (What *)(is *)(mad *)(cow *)(disease *)(? *)) //BOW
|BT| (BOX (WP *)(AUX *)(JJ *)(NN *)(NN *)(. *)) //POS
|BT| (BOX (WP What)(AUX is)(JJ mad)(NN cow)(NN disease)(. ?)) //BOW+POS
|BT| (BOX (SBARQ *)(WHNP *)(SQ *)(. *)(WP *)(VP *)) //SYNTACTIC HEADS
|BT| (PAS null) //up to 5 PAS (this one has none as the verb is ‘‘to be’’)
|BT| (PAS null)
|BT| (PAS null)
|BT| (PAS null)
|BT| (PAS null)
|BT| (TOP null) |BT| (TOP null) |BT| (TOP null) |BT| (TOP null) |BT| (TOP null) //dummy slots

//ANSWER (A) FEATURES
|BT| (S (NP (NP (‘‘ ‘‘)(JJ Mad)(NN cow)(’’ ’’)(NN disease))(, ,)(NP (NP (DT an)... //PT
|BT| (BOX (‘‘ *)(Mad *)(cow *)(’’ *)(disease *)(, *)(an *)(enigmatic *)(nervous *)(disorder *)
... //BOW
|BT| (BOX (‘‘ *)(JJ *)(NN *)(’’ *)(NN *)(, *)(DT *)(JJ *)(JJ *)(NN *) ... //POS
|BT| (BOX (‘‘ ‘‘)(JJ Mad)(NN cow)(’’ ’’)(NN disease)(, ,)(DT an)(JJ enigmatic)(JJ nervous)

(NN disorder) ... //BOW+POS
|BT| (BOX (S *)(NP *)(VP *)(. *)(NP *)(, *)(NP *)(, *)(VP *)(CC *)(VP *)(‘‘ *)(JJ *)(NN *)(’’ *)
... //SYN HEADS
|BT| (PAS (A0 (disorder))(R-A0 (that))(rel kill)(A1 (thousands))(AM-LOC (britain))) //up to 5 PAS
|BT| (PAS (A0 (disorder))(rel caus)(A1 (friction)))
|BT| (PAS (A0 (disorder))(rel threaten)(A1 (industry)))
|BT| (PAS null)
|BT| (PAS null)
|ET| //END OF INSTANCE

Figure 6: A labeled training instance for “What is mad cow disease?”. Carriage returns and comments are introduced for
clarity, however each training instance corresponds to only one row in the actual files.

4. Predicate Argument Structures add further informa-
tion, as the best model is POSSK + PT + PASPTK .

To relate our results to a reasonable baseline, we first mea-
sured the F1 of the answers corresponding to the top five
documents returned by the IR engine and the top five an-
swers as ranked by YourQA. Our results (Table 2) show that
YourQA is slightly more accurate than its IR engine, and
that our top Q/A classifiers greatly outperform YourQA.

5.2. Answer re-ranking
Finally, Table 3 reports the Mean Reciprocal Rank value
for the top 5 interpretations (MRR@5) as ranked by the IR
engine and by YourQA’s answer extractor, showing that the
latter is much accurate in both WEB-QA and TREC-QA.
Furthermore, when using the binary output of our top clas-

Classifier F1 IR engine YourQA Top Q/A classifier
WEB-QA 35.9±4.0 36.8±3.6 68.2±4.3
TREC-QA 21.3±1.0 22.9±1.5 39.1±6.9

Table 2: F1 (± std.dev.) of the IR engine (Google resp.
Lucene), of YourQA and of the top Q/A classifier on the
WEB-QA and TREC-QA corpora

sifiers to rearrange YourQA’s answers, we achieve a MRR
of 81.1% on WEB-QA. On TREC-QA, the re-ranker pro-
duces a smaller improvement due to the higher complexity
of the TREC dataset.



WEB-QA
Model BOW POS POSSK WSK STK PASPTK PT+PASPTK+WSK
Classifier F1 65.3±2.9 56.8±0.8 62.5±2.3 65.7±6.0 65.1±3.9 50.8±1.2 68.2±4.3

TREC-QA
Model BOW POS POSSK WSK PT PASPTK PT+PASPTK+POSSK

Classifier F1 24.2±5.0 26.5±7.9 31.6±6.8 4.0±4.2 33.1±3.8 23.6±4.7 39.1±6.9

Table 1: Classification F1 ± std. dev. of several kernels on WEB-QA and TREC-QA

MRR@5 IR engine YourQA Top Q/A classifier
WEB-QA 49.0±3.8 56.2±3.2 81.1±2.1
TREC-QA 16.2±3.4 30.3±8.9 34.2±10.6

Table 3: MRR@5 (± std.dev.) of the IR engine (Google
resp. Lucene), YourQA and the top Q/A classifier on WEB-
QA resp. TREC-QA

6. Conclusions
Complex Question Answering involves a deep understand-
ing of question/answer relations, such as those characteriz-
ing definition and procedural questions and their answers.
To contribute to the improvement of this technology, we
deliver two question and answer corpora for complex ques-
tions, WEB-QA and TREC-QA, extracted by the same QA
system, YourQA, from the Web and from the AQUAINT-6
data collection respectively. We believe that such corpora
can be useful resources to address a type of QA that is far
from being efficiently solved.
WEB-QA and TREC-QA are available in two formats:
judgment files and training/testing files. Judgment files
contain a ranked list of candidate answers to TREC-10
complex questions, extracted using YourQA as a baseline
system and manually labelled according to a Likert scale
from 1 (completely incorrect) to 5 (totally correct).
Training and testing files contain learning instances com-
patible with SVM-light (Joachims, 1999); these are useful
for experimenting with shallow and complex structural fea-
tures such as parse trees and semantic role labels.
Our experiments with the above corpora have allowed to
prove that structured information representation is useful to
improve the accuracy of complex QA systems and to re-
rank answers.
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