
MACHINE LEARNING

 Alessandro Moschitti

Department of information and communication technology
University of Trento

Email: moschitti@dit.unitn.it

Linear Classifier: The Perceptron

Summary

   Computational Learning theory

   Perceptron Learning

   Margins

Linear Classifier (1)

€

f ( x) =

x ⋅

w + b = 0,  x ,  w ∈ ℜn ,b∈ ℜ

   The equation of a hyperplane is

   is the vector representing the classifying example

   is the gradient to the hyperplane

   The classification function is

x

w

() sign(())h x f x=

Linear classifiers (2)

   Linear Functions are the simplest ones from an
analytical point of view.

   The basic idea is to select a hypothesis with null error
on the training-set.

   To learn a linear function a simple neural network of
only one neuron is enough (Perceptron)

An animal neuron

The Perceptron









+×= ∑

=

bxwx i
ni

i
..1

sgn)(ϕ

Useful Concepts

   Functional Margin of an example with respect to a
hyperplane:

   The distribution of functional margins of a hyperplane
with respect to a training set S is the distribution of the
margins of the examples in S wrt the hyperplane .

   The functional margin of a hyperplane is the minimum
margin of the distribution

)(bxwy iii +⋅=


γ

),(bw

Notations (con’td)

   If we normalize the hyperplane equation, i.e.

 , we obtain the geometric margin

   The geometric margin measure the Euclidean distance between
the target point and the hyperplane.

   The training set Margin is the maximum geometric (functional)
margin among all hyperplanes which separates the examples in
S.

   The hyperplane associated with the above quantity is called
maximal margin hyperplane










||||
,
|||| w

b
w
w





Basic Concepts

   From
||||||||

),cos(
wx
wxwx 




⋅

⋅
=

   It follows that

||||||||
),cos(||||

w
wx

w
wxwxx 









⋅=
⋅

=

   Norm of times the cosine between and , i.e. the
projection of on

x

w
wx

x

Geometric Margin

 Geometric Margin Hyperplane Margin

x
x

iγ
x ix

x

x
x

x

x

xjγ
γ

o j

oo
o

o

o
o

o
o o

o

Geometric margins of 2 points and hyperplane
margin

Maximal margin vs other margins

Perceptron training on a data set
(on-line algorthm)

€

 w 0 ←

0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

Repeat
 for i = 1 to m
 if yi (

 w k ⋅
 x i + bk) ≤ 0 then

  w k +1 =
 w k +ηyi

 x i
 bk +1 = bk +ηyi R

2

 k = k + 1
 endif
 endfor
until no error is found
return k,( w k ,bk)

Novikoff’s Theorem

Let S be a non-trivial training-set and let

Let us suppose there is a vector and

with γ > 0. Then the maximum number of errors of the perceptron
is:

* *, || || 1 =w w
* *(,) , 1,..., ,i iy b i lγ+ ≥ =w x

2
* 2 ,Rt

γ
 

=  
 

1
max || || .ii l

R x
≤ ≤

=

€

i =1,..,m
€

i =1,..,m

Observations

   The theorem states that independently of the margin size, if data is
linearly separable the perceptron algorithm finds the solution in a
finite amount of steps.

   This number is inversely proportional to the square of the margin.

   The bound is invariant with respect to the scale of the patterns (i.e.
only the relative distances count).

   The learning rate is not essential for the convergence.

Dual Representation

   The decision function can be rewritten as:

   as well as the updating function

   The learning rate only affects the re-scaling of the hyperplane,
it does not affect the algorithm, so we can fix 1.η =

η

€

h(x) = sgn( w ⋅  x + b) = sgn(α j
j=1..m
∑ y j

 x j ⋅
 x + b) =

sgn(α j
i=1..m
∑ y j

 x j ⋅
 x + b)

€

if yi (α j
j=1..m
∑ y j

 x j ⋅
 x i + b) ≤ 0 then α i =α i +η

   DUALITY is the first feature of Support Vector Machines

   SVMs are learning machines using the following function:

   Note that data appears only as scalar product (for both
testing and learning phases)

   The Matrix is called Gram matrix

First properties of SVMs

€

f (x) = sgn( w ⋅  x + b) = sgn(α j
j=1..m
∑ y j

 x j ⋅
 x + b)

€

G =
 x i ⋅
 x j() i, j=1

m

   Data must be linearly separable

   Noise (almost all classifier types)

   Data must be in vectorial format

Limits of Linear Classifiers

   Multi-Layers Neural Network: back-propagation learning
algorithm.

   SVMs: kernel methods.
 The learning algorithm is decoupled by the application

domain which is encoded by a kernel function

Solutions

