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Linear Classifier: The Perceptron 



Summary 


   Computational Learning theory 

   Perceptron Learning 

   Margins 



Linear Classifier (1) 
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f (  x ) =
 
x ⋅
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w + b = 0,    x ,  w ∈ ℜn ,b∈ ℜ


   The equation of a hyperplane is 


      is the vector representing the classifying example 

      is the gradient to the hyperplane 

   The classification function is 
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Linear classifiers (2) 


   Linear Functions are the simplest ones from an 
analytical point of view. 


   The basic idea is to select a hypothesis with null error 
on the training-set. 


   To learn a linear function a simple neural network of 
only one neuron is enough (Perceptron) 



An animal neuron 



The Perceptron 
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Useful Concepts 


   Functional Margin of an example with respect to a 
hyperplane: 


   The distribution of functional margins of a hyperplane 
with respect to a training set S is the distribution of the 
margins of the examples in S wrt the hyperplane           .  


   The functional margin of a hyperplane is the minimum 
margin of the distribution 
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Notations (con’td) 


   If we normalize the hyperplane equation, i.e. 

                               ,  we obtain the geometric margin 


   The geometric margin measure the Euclidean distance between 
the target point and the hyperplane. 


   The training set Margin is the maximum geometric (functional) 
margin among all hyperplanes which separates the examples in 
S. 


   The hyperplane associated with the above quantity is called 
maximal margin hyperplane 
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Basic Concepts 


   From 
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   It follows that 
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   Norm of     times the cosine between      and     , i.e. the 
projection of     on 
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Geometric Margin 



              Geometric Margin                          Hyperplane Margin 
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Geometric margins of 2 points and hyperplane 
margin 



Maximal margin vs other margins 



Perceptron training on a data set 
(on-line algorthm) 
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 w 0 ←
 
0 ;b0 ← 0;k ← 0;R← max1≤ i≤ l ||  x i ||

Repeat
       for i =  1 to m
         if yi (

 w k ⋅
 x i + bk ) ≤ 0 then

                   w k +1 =
 w k +ηyi

 x i
                  bk +1 = bk +ηyi R

2

                 k = k + 1
        endif
      endfor
until no error is found
return k,(  w k ,bk ) 















Novikoff’s Theorem 

Let S be a non-trivial training-set and let 

Let us suppose there is a vector           and 

with γ > 0. Then the maximum number of errors of the perceptron 
is: 
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Observations 


   The theorem states that independently of the margin size, if data is 
linearly separable the perceptron algorithm finds the solution in a 
finite amount of steps. 


   This number is inversely proportional to the square of the margin. 


   The bound is invariant with respect to the scale of the patterns (i.e. 
only the relative distances count). 


   The learning rate is not essential for the convergence. 



Dual Representation 

   The decision function can be rewritten as: 


   as well as the updating function  


   The learning rate      only affects the re-scaling of the hyperplane, 
it does not affect the algorithm, so we can fix 1.η =

η
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h(x) = sgn(  w ⋅  x + b) = sgn( α j
j=1..m
∑ y j

 x j ⋅
 x + b) =
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if yi ( α j
j=1..m
∑ y j

 x j ⋅
 x i + b) ≤ 0 then α i =α i +η




   DUALITY is the first feature of Support Vector Machines 

   SVMs are learning machines using the following function: 


   Note that data appears only as scalar product (for both 
testing and learning phases) 


   The Matrix                        is called Gram matrix 

First properties of SVMs 
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f (x) = sgn(  w ⋅  x + b) = sgn( α j
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   Data must be linearly separable 

   Noise (almost all classifier types) 

   Data must be in vectorial format 

Limits of Linear Classifiers 




   Multi-Layers Neural Network: back-propagation learning 
algorithm. 


   SVMs: kernel methods. 
    The learning algorithm is decoupled by the application 

domain which is encoded by a kernel function 

Solutions 


