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Computational Learning Theory

s The approach used 1n rectangular hypotheses 1s just
one simple case:
¥ Medium-built people
¥ No general rule has been derived
= [s there any means to determine 1f a function 1s PAC

learnable and derive the right bound?

s The answer is yes and 1t 1s based on theVapnik-

Chervonenkis dimension (VC-dimension, [Vapnik
95])




VC-Dimension definition (1)

m Def.1: (set shattering): a subset S of 1nstances of a set
X 1s shattered by a collection of function F'if V S'C S
there 1s a function f € F such data:

1 xes
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VC-Dimension definition (2)

s Def. 2: the VC-dimension of a function set ' (VC-

dim(F)) 1s the cardinality of the largest dataset that can
be shattered by F

s Observation: the type of the functions used for
shattering data determines the VC-dim




VC-Dim of linear functions (hyperplane)

= In the plane (hyperplane = line):
¢ VC (Hyperplanes) is at least 3

¢ VC (Hyperplanes) < 4 since there 1s no set of 4 points, which
can be shattered by a line.

= VC(H)=3. In general, for a k-dimension space VC(H)=k+1

= NB: It is useless selecting a set of linearly independent points
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Upper Bound on Sample Complexity

Theorem 2.9 (upper bound on sample complexity, [Blumer et al., 1989])

Let H and F' be two function classes such that F C H and let A an algorithm
that derives a function h € H consistent with m training examples. Then, dcg
such that Vf € F', VD distribution, Ve > 0 and 6 < 1 if

m> 2 (VC‘(H) «Int + i)

€ € 0
then with a probability 1 — 0,
errorp(h) < e,

where VC(H) is the VC dimension of H and errorp(h) is the error of h ac-
cording to the data distribution D.




Lower Bound on Sample Complexity

Theorem 2.10 (lower bound on sample complexity, [Blumer et al., 1989])
To learn a concept class I whose VC-dimension is d, any PAC algorithm re-

quires m = Q((d(H) + In(1/6))/e)




Bound on the Classification error using
VC-dimension

Theorem 2.11 (Vapnik and Chervonenkis, [Vapnik, 1995])

Let H be a hypothesis space having VC dimension d. For any probability
distribution D on X x{—1, 1}, with probability 1 — over m random examples
S, any hypothesis h € H that is consistent with S has error no more than

. 2 2e X m 2
error(h) < e(m, H,0) = —(d x In [ + l'n..g).
m d :

provided that d < m and m > 2/e.




Example: Rectangles for learning medium-
built person concept have VC-dim > 4

= We must choose 4-point set, which can be shattered 1n

all possible ways

= Given such 4 points, we assign them the {+,-} labels,
in all possible ways.

= For each labeling it must exist a rectangle which

produces such assignment, 1.e. such classification




Example (cont’d)

= Our classifier: inside the rectangle positive and outside
negative examples, respectively

= Given 4 points (linearly independent), we have the
following assignments:

a) All points are “+” = use a rectangle that includes them
b) All points are “-” = use a empty rectangle

¢) 3 points “-” and 1 “+” = use a rectangle centered on the
“+” points




Example (cont’d)

d) 3 points “+” and one “-” = we can always find a rectangle

e 9

which excludes the “-” points

¢) 2 points “+” and 2 points “-” = we can define a rectangle
which includes the 2 “+” and excludes the 2 “-”.

= To show d) and e) we should check all possibilities




For example, to prove e)
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VC-dim cannot be 5

= For any 5-point set, we can define a rectangle which
has the most extern points as vertices

= [f we assign to such vertices the “+” label and to the
internal point the “-” label, there will not be any
rectangle which reproduces such assigment




Applying general lower bound to
rectangles

Theorem 2.10 (lower bound on sample complexity, [Blumer et al., 1989])
To learn a concept class F whose VC-dimension is d, any PAC algorithm re-

quires m = Q((d(H) + In(1/0))/¢€)

s m=0((4+In(1/0))/¢))




Bound Comparison (lower bound)

s m>(4/¢) - [n(4/0) (ad hoc bound)

s m=0((1/¢) - (In(1/0) + 4)) = (lower bound based on VC-dim)
= Does the ad hoc bound satisfy the general bound?

n (4/¢) - [n(4/0) > (1/¢) - (In(1/0) + 4)

< [n(4/0) > In(1/0)/4 + 1 < I[n(1/0)+In(4) > In(1/0)/4 + 1

< [n(4) > (-1+1/4)In(1/0) + 1 <= n(4)> 1

< [n(4) > In(e)
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Proposed Exercises

s Try to formulate the concept medium-built people with
squares instead of rectangles and apply the content of

the PAC learning lecture to this new class of functions.

s Could you build a better ad-hoc bound than the one we
evaluated 1n class? (assume that the concept to learn 1s
a square and not a rectangle)




Propose Exercises

s Evaluate the VC-dimension (of course 1n a plane) for

squares
circles
equilateral triangles

Sketch the proof of VC < k but do not spend to much time in
formalizing such proof.

s Compare the lower-bound to the sample complexity

using squares (calculated with VC dimension) with

your ad hoc bound derived from medium-built people

(as we did 1t in class for rectangles).




