
MACHINE LEARNING

 Alessandro Moschitti

Department of Information Engineering and Computer Science
University of Trento

Email: moschitti@disi.unitn.it

Probably Approximately Correct (PAC)
Learning

Objectives: defining a well defined
statistical framework

   What can we learn and how can we decide if our
learning is effective?

   Efficient learning with many parameters

   Trade-off (generalization/and training set error)

   How to represent real world objects

Objectives: defining a well defined
statistical framework

   What can we learn and how can we decide if our
learning is effective?

   Efficient learning with many parameters

   Trade-off (generalization/and training set error)

   How to represent real world objects

PAC Learning Definition (1)

   Let c be the function (i.e. a concept) we want to learn

   Let h be the learned concept and x an instance (e.g. a
person)

   error(h) = Prob [c(x) < > h(x)]

   It would be useful if we could find:

   Pr(error(h) > ε) < δ

   Given a target error ε, the probability to make a larger
error is less δ

Definizione di PAC Learning (2)

   This methodology is called Probably Approximately
Correct Learning

   The smaller ε and δ are the better the learning is

   Problem:

   Given ε and δ, determine the size m of the training-set.

   Such size may be independent of the learning algorithm

   Let us do it for a simple learning problem

A simple learning problem

   Learning the concept of medium-built people from
examples:

   Interesting features are: Height and Weight.

   The training-set of examples has a cardinality of m.
 (m people for who we know if they are medium-built people

size, their height and their size).

   Find m to learn this concept well.

   The adjective “well” can be expressed with probability

error.

Graphical Representation of the target
learning problem

Weight

Height

Weight-Max

Weight-Min

Height-Min Height-Max

c

h

Learning Algorithm and Learning Function
Class

1.  If no positive examples of the concept are available

 ⇒ the learned concept is NULL

2.  Else the concept is the smallest rectangular (parallel
to the axes) containing all positive examples

We don’t consider other complex hypotheses

We don’t consider other complex hypothesis

How good is our algorithm?

   An example x is misclassified if it falls between the
two rectangles.

   Let ε be the measure of the area

⇒ The error probability (error) of h is ε

   With which assumption?

1- ε

ε

c
h

Proving PAC Learnability

   Given an error ε and a probability δ, how many
training examples m are needed to learn the concept?

   We can find a bound to δ, i.e. the probability of
learning a function h with an error > ε.

   For this purpose, let us compute the probability of
selecting a hypothesis h which:

   correctly classifies m training examples and;

   shows an error greater than ε.

   This is a bad function

Probability of Bad Hypotheses

   Given x, P(h(x)=c(x)) < 1- ε

   since the error of bad function is greater than ε

   Given ε, m examples fall in the rectangle h with a
probability < (1-ε)m

   The probability of choosing a bad hypothesis h is
 < (1-ε)m ⋅ N

   where N is the number of hypotheses with an error > ε.

Upper-bound Computation

   If we set a bound on the probability of bad hypotheses

 N ⋅ (1-ε)m < δ

   we would be done but we don’t know N

 ⇒ we have to find a bound, independent of the number
of bad hypothesis.

   Let us divide our rectangle in four strip of area ε/4

Initial Example

Weight

Height

Weight-Max

Weight-Min

Height-Min Height-Max

c

h

t

A bad hypothesis cannot intersect more than 3
strips at a time

1- ε 1- ε

1- ε

To intersect 3 edges I can
increase the rectangle length
but I must decrease the
height to have an area ≤ 1- ε

Bad hypotheses with error >
ε are contained in those
having an error = ε

Upper-bound computation (2)

   A bad hypothesis has error > ε ⇒ it has an area < 1- ε

   A rectangle of area < 1- ε cannot intersect 4 strips ⇒ if the

examples fall into all the 4 strips they cannot be part of the same
bad hypothesis.

   A necessary condition to have a bad hypothesis is that all the m
examples are at least outside of one strip.

   In other words, when m examples are outside of one of the 4
strips we may have a bad hypothesis.

 ⇒ the probability of “outside at least one of the strips” >
probability of bad hypothesis.

Logic view

   Bad Hypothesis ⇒ examples out of at least one strip

   (viceversa is not true)

> 1- ε

   A ⇒ B

   P(A) ≤ P(B)

   P(bad hyp.) ≤ P(out of one strip)

Upper-bound computation (3)

   P(x out of the target strip) = (1- ε/4)

   P(m points out of the target strip) = (1- ε/4)m

   P(m points out of at least one strip) < 4⋅ (1- ε/4)m

⇒ P(error(h) > ε) < 4⋅ (1- ε/4)m

Expliciting m

   Our upperbound must be lower than δ, i.e.

   4 ⋅ (1- ε/4)m <δ

⇒ ln(1- ε/4)m < δ/4

⇒ m⋅ ln(1- ε/4) < ln(δ/4)

⇒ m > ln(δ/4) / ln(1- ε/4)

   change “>” into “<”as ln(1- ε/4) < 0

Expliciting m

   -ln(1-y) = y +y2/2 + y3/3 +…

⇒ ln(1-y) = -y -y2/2 -y3/3 -… < -y

⇒ (1-y) < e(-y) it holds strictly for y > 0 as in our case

   from m > ln(δ/4)/ln(1- ε/4)

⇒ m > ln(δ/4)/ln(e(-ε/4))

⇒ m > ln(δ/4)/(-ε/4) ⇒ m > ln(δ/4) ⋅(4/-ε)

⇒ m > ln((δ/4)-1)⋅(4/ε) ⇒ m > (4/ε) ⋅ ln(4/δ)

Numeric Examples

 ε | δ | m
 ==============
 0.1 | 0.1 | 148
 0.1 | 0.01 | 240
 0.1 | 0.001 | 332

 0.01 | 0.1 | 1476
 0.01 | 0.01 | 2397
 0.01 | 0.001 | 3318

 0.001 | 0.1 | 14756
 0.001 | 0.01 | 23966
 0.001 | 0.001 | 33176

================

Formal PAC-Learning Definition

   Let f be the function we want to learn, f: X→I, f ∈ F

   D is a probability distribution on X

   used to draw training and test test

   h ∈ H,

   h is the learned function and H the set of such function class

   m is the training-set size

   error(h) = Prob [f(x) < > h(x)]

   F is a PAC learnable function class if there is a learning
algorithm such that for each f, for all distribution D over X and
for each 0 <ε, δ <1, produces h : P(error(h) > ε)< δ

Lower Bound on training-set size

   Let us reconsider the first bound that we found:

   h is bad: error(h) > ε

   P(f(x)=h(x)) for m examples is lower than (1- ε)m

   Multiplying by the number of bad hypotheses we calculate
the probability of selecting a bad hypothesis

   P(bad hypothesis) < N⋅ (1- ε)m <δ

   P(bad hypothesis) < N⋅ (e-ε)m = N⋅ e-εm <δ

⇒  m >(1/ε) (ln(1/δ)+ln(N))

This is a general lower bound

Example

   Suppose we want to learn a boolean function in n
variable

   The maximum number of different function are

⇒ m > (1/ ε) (ln(1/δ)+ln())=

 = (1/ ε) (ln(1/δ)+2nln(2))

n22

n22

Some Numbers

 n | epsilon | delta | m
 ===========================
 5 | 0.1 | 0.1 |245
 5 | 0.1 | 0.01 |268
 5 | 0.01 | 0.1 |2450
 5 | 0.01 | 0.01 |2680

 10 | 0.1 | 0.1 |7123
 10 | 0.1 | 0.01 |7146
 10 | 0.01 | 0.1 |71230
 10 | 0.01 | 0.01 |71460
 ========================== =

References

   PAC-learning:

   MY SLIDES: http://disi.unitn.it/moschitti/

teaching.html

   MY BOOK:

   Artificial Intelligence: a modern approach
 (Second Edition) by Stuart Russell and Peter Norvig

   http://www.cis.temple.edu/~ingargio/cis587/readings/

pac.html

   Machine Learning, Tom Mitchell, McGraw-Hill.

