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Objectives: defining a well defined 
statistical framework 


   What can we learn and how can we decide if our 
learning is effective? 


   Efficient learning with many parameters 


   Trade-off (generalization/and training set error) 


   How to represent real world objects 
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PAC Learning Definition (1) 


   Let c be the function (i.e. a concept) we want to learn 


   Let h be the learned concept and x an instance (e.g. a 
person) 


   error(h) = Prob [c(x) < > h(x)]  


   It would be useful if we could find:  


   Pr(error(h) > ε ) < δ 


   Given a target error ε, the probability to make a larger 
error is less δ 



Definizione di PAC Learning (2) 


   This methodology is called Probably Approximately 
Correct Learning 


   The smaller ε and δ  are the better the learning is 


   Problem: 

   Given ε and δ, determine the size m of the training-set.  

   Such size may be independent of  the learning algorithm 


   Let us do it for a simple learning problem 



A simple learning problem 


   Learning the concept of  medium-built people from 
examples: 

   Interesting features are: Height and Weight.  

   The training-set of examples has a cardinality of m.  
    (m people for who we know if they are medium-built people 

size, their height and their size).  


   Find m to learn this concept well.  

   The adjective “well” can be expressed with probability 

error.  



Graphical Representation of the target 
learning problem 
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Learning Algorithm and Learning Function 
Class 

1.  If no positive examples of the concept are available 

      ⇒ the learned concept is NULL 

2.  Else the concept is the smallest rectangular (parallel 
to the axes) containing all positive examples 



We don’t consider other complex hypotheses 



We don’t consider other complex hypothesis 



How good is our algorithm? 


   An example x is misclassified if it falls between the 
two rectangles. 


   Let ε be the measure of the area 

⇒ The error probability (error) of h is ε 

   With which assumption? 
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Proving PAC Learnability 


   Given an error ε and a probability δ, how many 
training examples m are needed to learn the concept? 


   We can find a bound to δ, i.e. the probability of 
learning a function h with an error > ε. 


   For this purpose, let us compute the probability of 
selecting a hypothesis h which: 

   correctly classifies m training examples and; 

   shows an error greater than ε. 

   This is a bad function 



Probability of Bad Hypotheses 


   Given x, P(h(x)=c(x)) < 1- ε  

   since the error of bad function is greater than ε 


   Given ε, m examples fall in the rectangle h with a 
probability  < (1-ε)m 


   The probability of choosing a bad hypothesis h is 
    < (1-ε)m ⋅ N 


    where N is the number of hypotheses with an error > ε. 



Upper-bound Computation 


   If we set a bound on the probability of bad hypotheses 

    N ⋅ (1-ε)m < δ  


   we would be done but we don’t know N 

   ⇒ we have to find a bound, independent of the number 
of bad hypothesis.  


   Let us divide our rectangle in four strip of area ε/4 



Initial Example 
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A bad hypothesis cannot intersect more than 3 
strips at a time 

1- ε  1- ε  

1- ε  

To intersect 3 edges I can 
increase the rectangle length 
but I must decrease the 
height to have an area ≤ 1- ε 

Bad hypotheses with error > 
ε are contained in those 
having an error = ε 



Upper-bound computation (2) 


   A bad hypothesis has error > ε ⇒ it has an area < 1- ε  

   A rectangle of area  < 1- ε  cannot intersect 4 strips ⇒ if the 

examples fall into all the 4 strips they cannot be part of the same 
bad hypothesis. 


   A necessary condition to have a bad hypothesis is that all the m 
examples are at least outside of one strip. 


   In other words, when m examples are outside of one of the 4 
strips we may have a bad hypothesis. 

 ⇒ the probability of “outside at least one of the strips”  > 
probability of bad hypothesis. 



Logic view 


   Bad Hypothesis ⇒ examples out of at least one strip 

   (viceversa is not true) 

> 1- ε  


   A ⇒ B 


   P(A) ≤ P(B) 


   P(bad hyp.) ≤ P(out of one strip)  



Upper-bound computation (3) 


   P(x out of the target strip) = (1- ε/4) 


   P(m points out of the target strip) = (1- ε/4)m 


   P(m points out of at least one strip) < 4⋅ (1- ε/4)m 

⇒ P(error(h) > ε) < 4⋅ (1- ε/4)m 



Expliciting m 


   Our upperbound must be lower than δ, i.e. 


   4 ⋅ (1- ε/4)m <δ  

⇒ ln(1- ε/4)m < δ/4  

⇒ m⋅ ln(1- ε/4) < ln(δ/4) 

⇒ m > ln(δ/4) / ln(1- ε/4)  


   change “>” into “<”as ln(1- ε/4) < 0 



Expliciting m 


   -ln(1-y) = y +y2/2 + y3/3 +… 

⇒ ln(1-y) = -y -y2/2 -y3/3 -… < -y 

⇒ (1-y) < e(-y)       it holds strictly for y > 0 as in our case 


   from  m > ln(δ/4)/ln(1- ε/4) 

⇒ m > ln(δ/4)/ln(e(-ε/4)) 

⇒ m > ln(δ/4)/(-ε/4) ⇒ m > ln(δ/4) ⋅(4/-ε) 

⇒ m > ln((δ/4)-1)⋅(4/ε) ⇒ m > (4/ε) ⋅ ln(4/δ) 



Numeric Examples 

            ε  |    δ      | m 
 ==============  
 0.1     | 0.1      | 148  
 0.1     | 0.01    | 240  
         0.1     | 0.001  | 332  
 ----------------------- 
 0.01    | 0.1     | 1476  
 0.01    | 0.01   | 2397  
         0.01    | 0.001 | 3318  
 ----------------------- 
 0.001   | 0.1     | 14756  
 0.001   | 0.01   | 23966  
            0.001   | 0.001 | 33176  

================  
 



Formal PAC-Learning Definition 


   Let f  be the function we want to learn, f: X→I, f ∈ F 


   D is a probability distribution on X 

   used to draw training and test test 


   h ∈ H,  

   h is the learned function and H the set of such function class 


   m is the training-set size 


   error(h) = Prob [f(x) < > h(x)]  


   F is a PAC learnable function class if there is a learning  
algorithm such that for each f, for all distribution D over X and 
for each 0 <ε, δ <1, produces h : P(error(h) > ε)< δ 



Lower Bound on training-set size 


   Let us reconsider the first bound that we found: 

   h is bad: error(h) > ε  

   P(f(x)=h(x)) for m examples is lower than (1- ε)m 


   Multiplying by the number of bad hypotheses we calculate 
the probability of selecting a bad hypothesis 


   P(bad hypothesis) < N⋅ (1- ε)m <δ 

   P(bad hypothesis) < N⋅ (e-ε)m = N⋅ e-εm <δ 

⇒  m >(1/ε) (ln(1/δ )+ln(N)) 

This is a general lower bound 



Example 


   Suppose we want to learn a boolean function in n 
variable 


   The maximum number of different function are  

⇒ m > (1/ ε ) (ln(1/δ )+ln(     ))= 

  = (1/ ε ) (ln(1/δ )+2nln(2)) 

n22

n22



Some Numbers 

 n   | epsilon | delta | m  
 ===========================  
 5   | 0.1     | 0.1   |245  
 5   | 0.1     | 0.01  |268  
 5   | 0.01    | 0.1   |2450  
 5   | 0.01    | 0.01  |2680  
 ---------------------------  
 10  | 0.1     | 0.1   |7123  
 10  | 0.1     | 0.01  |7146  
 10  | 0.01    | 0.1   |71230  
 10  | 0.01    | 0.01  |71460  
 ========================== = 
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