
 Alessandro Moschitti
Department of Computer Science and Information

Engineering
University of Trento

Email: moschitti@disi.unitn.it

MACHINE LEARNING

Introduction

Course Schedule - Revised

!   27 apr 9:30-12:30 Garda (Introduction to Machine

Learning - Decision Tree and Bayesian Classifiers)

!   2 maggio: 14:30-18:30 Ofek (Introduction to

Statistical Learning Theory – Vector Space Model)

!   4 Maggio 9:30-12:30 Ofek (Linear Classifier:)

!   28 maggio 9:30-12:30 Ofek (VC dimension,

Perceptron and Support Vector Machines)

!   29 maggio 9:30-12:30 Garda (Kernel Methods for

NLP Applications)

Lectures

!   Introduction to ML
!   Decision Tree
!   Bayesian Classifiers
!   Vector spaces

!   Vector Space Categorization
!   Feature design, selection and weighting

!   Document representation

!   Category Learning: Rocchio and KNN

!   Measuring of Performance

!   From binary to multi-class classification

Lectures

!   PAC Learning
!   VC dimension

!   Perceptron
!   Vector Space Model
! Representer Theorem

!   Support Vector Machines (SVMs)
!   Hard/Soft Margin (Classification)
!   Regression and ranking

Lectures

!   Kernels Methods
!   Theory and Algebraic properties
!   Linear, Polynomial, Gaussian
!   Kernel construction,

!   Kernels for structured data
!   Sequence, Tree Kernels

!   Structured Output

Reference Book + some articles

Today

!   Introduction to Machine Learning

!   Vector Spaces

!   Anything is a function
!   From the planet motion

!   To the input/output actions in your computer

!   Any problem would be automatically solved

Why Learning Functions
Automatically?

More concretely

!   Given the user requirement (input/output

relations) we write programs

!   Different cases typically handled with if-then

applied to input variables

!   What happens when
!   millions of variables are present and/or

!   values are not reliable (e.g. noisy data)

!   Machine learning writes the program (rules) for

you

What is Statistical Learning?

!   Statistical Methods – Algorithms that learn

relations in the data from examples

!   Simple relations are expressed by pairs of

variables: 〈x1,y1〉, 〈x2,y2〉,…, 〈xn,yn〉

!   Learning f such that evaluate y* given a new value

x*, i.e. 〈x*, f(x*)〉 = 〈x*, y*〉

You have already tackled the learning
problem

Y

X

Linear Regression

Y

X

Degree 2

Y

X

Degree

Y

X

Machine Learning Problems

!   Overfitting

!   How dealing with millions of variables instead of

only two?

!   How dealing with real world objects instead of real

values?

Learning Models

!   Real Values: regression

!   Finite and integer: classification

!   Binary Classifiers:

!   2 classes, e.g.

 f(x) à {cats,dogs}

Decision Trees

Decision Tree (between Dogs/Cats)

Taller than 50 cm?

Short hair?

No yes

No

Mustaches?

No

Output: Dog Output: Cat

Si

Output: dog

. . .

Mustaches or Whiskers

!   Are an important orientation tool for both dogs

and cats

!   all dogs and cats have them

⟾ not good features

!   We may use their length

!   What about mustaches?

Mustaches?

END

Entropy-based feature selection

!   Entropy of class distribution P(Ci):

!   Measure “how much the distribution is uniform”

!   Given S1…Sn sets partitioned wrt a feature the
overall entropy is:

Example: cats and dogs classification

!   p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats)

!   H(S0) = ½*log(2) * 2 = 1

S0

Has the animal more than 6 siblings?

S0
S1

S2

!   p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats)

!   H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25

!   All(S1, S2) = 2*.25 = 0.5

Does the animal have short hair?

S0
S1

S2

!   p(dog)= 1/4; p(cat) = 3/4

!   H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)] =

¼ * [½ + 0.31] = ¼ * 0.81 = 0.20

!   All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)

Follow up

!   hair length feature is better than number of

siblings since 0.40 is lower than 0.50

!   Test all the features

!   Choose the best

!   Start with a new feature on the collection sets

induced by the best feature

Probabilistic Classifier

Probability (1)

!   Let Ω be a space and β a collection of subsets of Ω

!   β is a collection of events

!   A probability function P is defined as:

[] 1,0: →βP

Definition of Probability

1)(0 1) ≤≤ EP

1)(2) =ΩP

!   P is a function which associates each event E with a
number P(E) called probability of E as follows:

=∨∨∨∨ ...)...()3 21 nEEEP

€

= P(Ei) if Ei ∧ E j = 0
i=1

∞

∑ , ∀i ≠ j

Finite Partition and Uniformly Distributed

!   Given a partition of n events uniformly distributed

(with a probability of 1/n); and

!   given an event E, we can evaluate its probability as:

€

P(E) = P(E ∧ Etot) = P(E ∧ (E1∨ E2 ∨ ...∨ En)) =

P(E ∧ Ei) = P(Ei)
Ei ⊂E
∑i∑ =

1
nEi ⊂E

∑ =

1
n

1=
1
nEi ⊂E

∑ (i : Ei ⊂ E{ }) =
Target Cases

All Cases

Conditioned Probability

A B

€

A∧B
)(
)()|(

BP
BAPBAP ∧

=

!   P(A | B) is the probability of A given B

!   B is the piece of information that we know

!   The following rule holds:

Indipendence

!   A and B are indipedent iff:

!   If A and B are indipendent:

)()|(APBAP =

)()|(BPABP =

)(
)()|()(

BP
BAPBAPAP ∧

==

)()()(BPAPBAP =∧

Bayes’s Theorem

Proof:

€

P(A |B) =
P(A∧B)
P(B)

€

P(B | A) =
P(A∧B)
P(A)

€

P(A |B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob)

Def. of. Cond. prob

€

P(A |B) =
P(B | A)P(A)

P(B)

Bayesian Classifier

!   Given a set of categories {c1, c2,…cn}

!   Let E be a description of a classifying example.

!   The category of E can be derived by using the following

probability:

€

P(ci | E) =
P(ci)P(E | ci)

P(E)

€

P(ci
i=1

n

∑ | E) =
P(ci)P(E | ci)

P(E)
=1

i=1

n

∑

€

P(E) = P(ci)P(E | ci)
i=1

n

∑

Bayesian Classifier (cont)

!   We need to compute:
!   the posterior probability: P(ci)
!   the conditional probability: P(E | ci)

!   P(ci) can be estimated from the training set, D.
!   given ni examples in D of type ci, then P(ci) = ni / |D|

!   Suppose that an example is represented by m features:

!   The elements will be exponential in m so there are not
enough training examples to estimate P(E |ci)

meeeE ∧∧∧= 21

Naïve Bayes Classifiers

!   The features are assumed to be indipendent

given a category (ci).

!   This allows us to only estimate P(ej | ci) for each

feature and category.

€

P(E | ci) = P(e1∧e2 ∧∧em | ci) = P(e j | ci
j=1

m

∏)

An example of the
Naïve Bayes Clasiffier

!   C = {Allergy, Cold, Healthy}

!   e1 = sneeze; e2 = cough; e3 = fever

!   E = {sneeze, cough, ¬fever}

Prob Healthy Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze|ci) 0.1 0.9 0.9

P(cough|ci) 0.1 0.8 0.7

P(fever|ci) 0.01 0.7 0.4

An example of the
Naïve Bayes Clasiffier (cont.)

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50

Probability Healthy Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}

Probability Estimation

!   Estimate counts from training data.
!   Let ni be the number of examples in ci
!   let nij be the number of examples of ci containing the

feature ej, then:

!   Problems: the data set may still be too small.
!   For rare features we may have, ek, ∀ci :P(ek | ci) = 0.

i

ij
ij n

n
ceP =)|(

Smoothing

!   The probabilities are estimated even if they are not

in the data

!   Laplace smoothing
!   each feature has a priori probability, p,

!   We assume that such feature has been observed in an
example of size m.

mn
mpn

ceP
i

ij
ij +

+
=)|(

Naïve Bayes for text classification

!   “bag of words” model
!   The examples are category documents

!   Features: Vocabulary V = {w1, w2,…wm}

!   P(wj | ci) is the probability to have wj in a category i

!   Let us use the Laplace’s smoothing
!   Uniform distribution (p = 1/|V|) and m = |V|

!   That is each word is assumed to appear exactly one time in a
category

Training (version 1)

!   V is built using all training documents D

!   For each category ci ∈ C

 Let Di the document subset of D in ci

 ⇒ P(ci) = |Di| / |D|

 ni is the total number of words in Di

 for each wj ∈ V, nij is the counts of wj in ci

 ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)

Testing

!   Given a test document X
!   Let n be the number of words of X
!   The assigned category is:

 where aj is a word at the j-th position in X

€

argmax
ci ∈C

P(ci) P(a j | ci
j=1

n

∏)

Part I: Abstract View of
Statistical Learning Theory

Main Ingredients of Statistical Learning

!   Training set
!   Set of objects associated with a label

!   Similarity Function between the objects

!   A learning algorithm
!   loss function: it tells the algorithm if is doing well

Similarity
Function

Intuitions on Machine Learning
(kernel machines)

C1: Questions asking
for a person

C2: Questions asking
for a number

Who is the Italian
prime minister?

Who is the US
 president? C1: Model

C2: Model

Learning Algorithm

When was Martin
 Luther King born?

Example based Classifiers

Category 1
 Category 2

Objects to be classified:

Learning phase

Positive Learning Objects

Negative Learning Objects

Support vectors

1

Category 1

1

1

1.5

1.5

1.5

2

-1

1.2

-1

Weights

€

 w

Similarity in Statistical Learning
Theory

!   Similarity is intuitively useful to learn and

implement the classification function

!   NB: This does not lead to heuristic models

!   In statistical learning theory valid similarities are

called Kernel Functions
!   Kernels map examples in vector spaces

!   Examples are classified based on geometric properties

!   Formally proved upperbound to the system error

kernels

In other words

z1
z2

z3

Category 1

Category 2

Vector Spaces

Definition (1)

!   A set V is a vector space over a field F (for example, the field of real
or of complex numbers) if, given

!   an operation vector addition defined in V, denoted v + w (where v, w
∈ V), and

!   an operation, scalar multiplication in V, denoted a * v (where v ∈ V
and a ∈ F),

!   the following properties hold for all a, b ∈ F and u, v, and w ∈ V:

!   v + w belongs to V.
(Closure of V under vector addition)

!   u + (v + w) = (u + v) + w
(Associativity of vector addition in V)

!   There exists a neutral element 0 in V, such that for all elements v in V,
v + 0 = v
(Existence of an additive identity element in V)

Definition (2)

!   For all v in V, there exists an element w in V, such that v + w = 0
(Existence of additive inverses in V)

!   v + w = w + v
(Commutativity of vector addition in V)

!   a * v belongs to V
(Closure of V under scalar multiplication)

!   a * (b * v) = (ab) * v
(Associativity of scalar multiplication in V)

!   If 1 denotes the multiplicative identity of the field F, then 1 * v = v
(Neutrality of one)

!   a * (v + w) = a * v + a * w
(Distributivity with respect to vector addition.)

!   (a + b) * v = a * v + b * v
(Distributivity with respect to field addition.)

An example of Vector Space

!   For all n, Rn forms a vector space over R, with
component-wise operations.

!   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi is a
member of R={real numbers}

!   Let the field be R, as well

!   Define Vector Addition:
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn]

!   Define Scalar Multiplication:
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn]

!   Then V is a Vector Space over R.

Linear dependency

!   Linear combination:

!   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero

 ⇒ y = α1 v1 + …+ αn vn has a unique expression

!   In case αi > 0 and the sum is 1 it is called convex
combination

Normed Vector Spaces

!   Given a vector space V over a field K, a norm on V is a function
from V to R,

!   it associates each vector v in V with a real number, ||v||

!   The norm must satisfy the following conditions:
!   For all a in K and all u and v in V,

 1. ||v|| ≥ 0 with equality if and only if v = 0

 2. ||av|| = |a| ||v||

 3. ||u + v|| ≤ ||u|| + ||v||

!   A useful consequence of the norm axioms is the inequality
!   ||u ± v|| ≥ | ||u|| - ||v|| |

!   for all vectors u and v

Inner Product Spaces

!   Let V be a vector space and u, v, and w be vectors in
V and c be a constant.

!   Then, an inner product (,) on V is
!   a function with domain consisting of pairs of vectors and

!   range real numbers satisfying

!   the following properties:

 1. (u, u) > 0 with equality if and only if u = 0.

 2. (u, v) = (v, u)

 3. (u + v, w) = (u, w) + (v, w)

 4. (cu, v) = (u, cv) = c(u, v)

Example

!   Let V be the vector space consisting of all continuous functions with the
standard + and *. Then define an inner product by

!   For example:

!   The four properties follow immediately from the analogous property of the
definite integral:

Inner Product Properties

!   (v, 0) = 0

!  

!   If (v, u) = 0, v,u are called orthogonal

!   Schwarz Inequality:

!   [(v, u)]2 ≤ (v, v) (u, u)

!   The classical scalar product is the component-wise product
!   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = x1 y1 + x2 y2+ … +xn yn

!  

),(|||| vvv =

||||||||
),(

),cos(
vu
vuvu
⋅

=

Projection

!   From
||||||||

),cos(
wx
wx

wx 



⋅

⋅
=

!   It follows that

||||||||
),cos(||||

w
w

x
w
wx

wxx 







⋅=

⋅
=

!   Norm of times the cosine between and ,

i.e. the projection of on

x


w
wx



x


Similarity Metrics

!   The simplest distance for continuous m-
dimensional instance space is Euclidian distance.

!   The simplest distance for m-dimensional binary
instance space is Hamming distance (number of
feature values that differ).

!   Cosine similarity is typically the most effective

A Simple Example: Text
Categorization

Sport
 Cn

Politic
 C1

Economic

 C2

.

Bush
declares

war

Wonderful
Totti

Yesterday
match

Berlusconi
acquires

Ibrahimović
before

elections

Berlusconi
acquires

Ibrahimović
before

elections

Berlusconi
acquires

Ibrahimović
before

elections

Text Classification Problem

!   Given:
!   a set of target categories:

!   the set T of documents,

 define f : T → 2C
€

C = C1,.., Cn{ }

The Vector Space Model (VSM)

Berlusconi

Bush

Totti

Bush declares
war.
Berlusconi
gives support

Wonderful
Totti in the
yesterday
match against
Berlusconi’s
Milan

Berlusconi
acquires
Ibrahimović
before
elections

d1: Politic

d1

d2

d3

C1

 C1 : Politics
 Category

d2: Sport d3:Economic

C2

C2 : Sport
 Category

Summary of VSM

!   VSM (Salton89’)
!   Features are dimensions of a Vector Space

Linear Kernel

!   Documents and Categories are vectors of
feature weights.

!   d is assigned to if

!   Changing symbols

€


d ⋅

C i > thiC

€

 w ⋅  x − th > 0⇒  w ⋅  x + b > 0

Summary of Today Machine Learning
Concepts

!   Positive and Negative examples

!   Feature representation
!   Kernels

!   Learning Algorithm

!   Training and test set

!   Accuracy measurement

!   Generalization/Empirical error Trade-off

Several Kinds of Learning Algorithms

!   Logic boolean expressions, (e.g. Decision Trees).

!   Probabilistic Functions, (Bayesian Classifier).

!   Separating Functions working in vector spaces
!   Non linear: KNN, neural network multiple-layers,…
!   Linear: SVMs, neural network with one neuron,…

!   These approaches are largely applied In
language technology

!   Very Simple Example: Text Categorization

What Next?

!   Can we learn any function?

!   Statistical Learning Theory
!   PAC learning

