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Course Schedule - Revised 

!   27 apr 9:30-12:30   Garda  (Introduction to Machine 

Learning -  Decision Tree and Bayesian Classifiers) 

!   2 maggio: 14:30-18:30  Ofek  (Introduction to 

Statistical Learning Theory – Vector Space Model) 

!   4 Maggio 9:30-12:30    Ofek   (Linear Classifier:) 

!   28 maggio 9:30-12:30  Ofek   (VC dimension, 

Perceptron and Support Vector Machines) 

!   29 maggio 9:30-12:30  Garda  (Kernel Methods for 

NLP Applications) 



Lectures 

!   Introduction to ML 
!   Decision Tree 
!   Bayesian Classifiers 
!   Vector spaces 

!   Vector Space Categorization 
!   Feature design, selection and weighting  

!   Document representation 

!   Category Learning: Rocchio and KNN 

!   Measuring of Performance 

!   From binary to multi-class classification 



Lectures 

!   PAC Learning 
!   VC dimension 

!   Perceptron 
!   Vector Space Model 
! Representer Theorem 

!   Support Vector Machines (SVMs) 
!   Hard/Soft Margin (Classification) 
!   Regression and ranking 



Lectures 

!   Kernels Methods 
!   Theory and Algebraic properties 
!   Linear, Polynomial, Gaussian 
!   Kernel construction, 

!   Kernels for structured data 
!   Sequence, Tree Kernels  

!   Structured Output 



Reference Book + some articles 



Today 

!   Introduction to Machine Learning 

!   Vector Spaces 



!   Anything is a function 
!   From the planet motion 

!   To the input/output actions in your computer 

!   Any problem would be automatically solved 

Why Learning Functions 
Automatically? 



More concretely 

!   Given the user requirement (input/output 

relations) we write programs 

!   Different cases typically handled with if-then 

applied to input variables 

!   What happens when 
!   millions of variables are present and/or 

!   values are not reliable (e.g. noisy data) 

!   Machine learning writes the program (rules) for 

you 



What is Statistical Learning? 

!   Statistical Methods – Algorithms that learn 

relations in the data from examples 

!   Simple relations are expressed by pairs of 

variables: 〈x1,y1〉, 〈x2,y2〉,…, 〈xn,yn〉 

!   Learning f such that evaluate y* given a new value 

x*, i.e. 〈x*, f(x*)〉 = 〈x*, y*〉 



You have already tackled the learning 
problem 

Y 

X 



Linear Regression 

Y 

X 



Degree 2 

Y 

X 



Degree  

Y 

X 



Machine Learning Problems 

!   Overfitting 

!   How dealing with millions of variables instead of 

only two? 

!   How dealing with real world objects instead of real 

values? 



Learning Models 

!   Real Values: regression 

!   Finite and integer: classification 

!   Binary Classifiers: 

!   2 classes, e.g. 

   f(x) à {cats,dogs} 



Decision Trees 



Decision Tree (between Dogs/Cats)  

Taller than 50 cm? 

Short hair?  

No  yes 

No  

Mustaches? 

No  

Output: Dog Output: Cat 

Si  

Output: dog 

. . . 



Mustaches or Whiskers 

!   Are an important orientation tool for both dogs 

and cats 

!   all dogs and cats have them 

⟾ not good features 

!   We may use their length 

!   What about mustaches? 



Mustaches? 



END 



Entropy-based feature selection 

!   Entropy of class distribution P(Ci): 

!   Measure “how much the distribution is uniform” 

!   Given S1…Sn sets partitioned wrt a feature the 
overall entropy is: 



Example: cats and dogs classification 

!   p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats) 

!   H(S0) = ½*log(2) * 2 = 1 

S0 



Has the animal more than 6 siblings? 

S0 
S1 

S2 

!   p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats) 

!   H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25 

!   All(S1, S2) = 2*.25 = 0.5 



Does the animal have short hair? 

S0 
S1 

S2 

!   p(dog)= 1/4; p(cat) = 3/4 

!   H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)]  = 

¼ * [½ + 0.31]  = ¼ * 0.81 = 0.20 

!   All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)  



Follow up 

!   hair length feature is better than number of 

siblings since 0.40 is lower than 0.50 

!   Test all the features 

!   Choose the best 

!   Start with a new feature on the collection sets 

induced by the best feature 



Probabilistic Classifier 



Probability (1) 

!   Let Ω be a space and β a collection of subsets of Ω 

!   β is a collection of events 

!   A probability function P is defined as: 

     

     

[ ]      1,0: →βP



Definition of Probability 

1)(0 1) ≤≤ EP

1)( 2) =ΩP

!   P is a function which associates each event E with a 
number P(E) called probability of E as follows: 
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Finite Partition and Uniformly Distributed 

!   Given a partition of n events uniformly distributed 

(with a probability of 1/n); and 

!   given an event E, we can evaluate its probability as: 

€ 

P(E) = P(E ∧ Etot ) = P(E ∧ (E1∨ E2 ∨ ...∨ En )) =

P(E ∧ Ei) = P(Ei)
Ei ⊂E
∑i∑ =
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1
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Conditioned Probability 

A B 

€ 

A∧B
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=

!   P(A | B) is the probability of A given B 

!   B is the piece of information that we know 

!   The following rule holds: 

 



Indipendence 

!   A and B are indipedent iff: 

!   If A and B are indipendent: 

)()|( APBAP =

)()|( BPABP =
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Bayes’s Theorem 

Proof: 

€ 

P(A |B) =
P(A∧B)
P(B)

€ 

P(B | A) =
P(A∧B)
P(A)

€ 

P(A |B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob) 

Def. of. Cond. prob 

€ 

P(A |B) =
P(B | A)P(A)

P(B)



Bayesian Classifier 

!   Given a set of categories {c1, c2,…cn} 

!   Let E be a description of a classifying example. 

!   The category of E can be derived by using the following 

probability: 

€ 

P(ci | E) =
P(ci)P(E | ci)

P(E)

€ 

P(ci
i=1

n

∑ | E) =
P(ci)P(E | ci)

P(E)
=1

i=1

n

∑
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P(E) = P(ci)P(E | ci)
i=1

n

∑



Bayesian Classifier (cont) 

!   We need to compute: 
!   the posterior probability: P(ci)  
!   the conditional probability: P(E | ci) 

!   P(ci) can be estimated from the training set, D.  
!   given ni examples in D of type ci, then P(ci) =  ni / |D| 

!   Suppose that an example is represented by m features: 

!   The elements will be exponential in m so there are not 
enough training examples to estimate P(E |ci) 

meeeE ∧∧∧= 21



Naïve Bayes Classifiers 

!   The features are assumed to be indipendent 

given a category (ci). 

!   This allows us to only estimate P(ej | ci) for each 

feature and category. 

  

€ 

P(E | ci) = P(e1∧e2 ∧∧em | ci) = P(e j | ci
j=1

m

∏ )



An example of the 
Naïve Bayes Clasiffier 

!   C = {Allergy, Cold, Healthy} 

!   e1 = sneeze; e2 = cough; e3 = fever 

!   E = {sneeze, cough, ¬fever} 

Prob Healthy Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze|ci)      0.1       0.9       0.9 

P(cough|ci)      0.1       0.8       0.7 

P(fever|ci)      0.01       0.7       0.4 



An example of the 
Naïve Bayes Clasiffier (cont.) 
 

 

 

 

 

 

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E) 

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E) 

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E) 

The most probable category is allergy 

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379 

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50 

Probability Healthy Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze | ci)      0.1       0.9       0.9 

P(cough | ci)      0.1       0.8       0.7 

P(fever | ci)      0.01       0.7       0.4 

E={sneeze, cough, ¬fever} 



Probability Estimation 

!   Estimate counts from training data. 
!   Let ni be the number of examples in ci 
!   let nij be the number of examples of ci containing the 

feature ej, then: 

!   Problems: the data set may still be too small. 
!   For rare features we may have, ek, ∀ci :P(ek | ci) = 0. 

i

ij
ij n

n
ceP =)|(



Smoothing 

!   The probabilities are estimated even if they are not 

in the data 

!   Laplace smoothing 
!   each feature has a priori probability, p,  

!   We assume that such feature has been observed in an 
example of size m. 
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Naïve Bayes for text classification 

!   “bag of words” model 
!   The examples are category documents 

!   Features: Vocabulary V = {w1, w2,…wm} 

!   P(wj | ci) is the probability to have wj in a category i 

!   Let us use the Laplace’s smoothing 
!   Uniform distribution (p = 1/|V|) and m = |V| 

!   That is each word is assumed to appear exactly one time in a 
category 



Training (version 1) 

!   V is built using all training documents D 

!   For each category ci  ∈ C 

      Let Di the document subset of D in ci  

      ⇒ P(ci) = |Di| / |D| 

   ni is the total number of words in Di  

      for each wj ∈ V, nij is the counts of wj in ci 

              ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)   

 



Testing 

!   Given a test document X 
!   Let n be the number of words of X 
!   The assigned category is: 

 
 
 
     where aj is a word at the j-th position in X 
  

€ 

argmax
ci ∈C

P(ci) P(a j | ci
j=1

n

∏ )



Part I: Abstract View of 
Statistical Learning Theory 



Main Ingredients of Statistical Learning 

!   Training set 
!   Set of objects associated with a label 

!   Similarity Function between the objects 

!   A learning algorithm 
!   loss function: it tells the algorithm if is doing well 



Similarity 
Function 

Intuitions on Machine Learning 
(kernel machines) 

C1: Questions asking 
for a person 

C2: Questions asking 
for a number 

Who is the Italian 
prime minister? 

Who is the US 
 president? C1: Model 

C2: Model 

Learning Algorithm 

When was Martin 
 Luther King born? 



Example based Classifiers 

Category 1
 Category 2


Objects to be classified: 



Learning phase 

Positive Learning Objects 

Negative Learning Objects 

Support vectors 

1 

Category 1

1 

1 

1.5 

1.5 

1.5 

2 

-1 

1.2 

-1 

Weights 

  

€ 

 w 



Similarity in Statistical Learning 
Theory  

!   Similarity is intuitively useful to learn and 

implement the classification function 

!   NB: This does not lead to heuristic models 

!   In statistical learning theory valid similarities are 

called Kernel Functions 
!   Kernels map examples in vector spaces 

!   Examples are classified based on geometric properties 

!   Formally proved upperbound to the system error 



kernels 

In other words 

z1 
z2 

z3 

Category 1


Category 2




Vector Spaces 



Definition (1) 

!   A set V is a vector space over a field F (for example, the field of real 
or of complex numbers) if, given 

!   an operation vector addition defined in V, denoted v + w (where v, w 
∈ V), and  

!   an operation, scalar multiplication in V, denoted a * v (where v ∈ V 
and a ∈ F),  

!   the following properties hold for all a, b ∈ F and u, v, and w ∈ V: 

!   v + w belongs to V. 
(Closure of V under vector addition)  

!   u + (v + w) = (u + v) + w 
(Associativity of vector addition in V)  

!   There exists a neutral element 0 in V, such that for all elements v in V, 
v + 0 = v 
(Existence of an additive identity element in V)  



Definition (2) 

!   For all v in V, there exists an element w in V, such that v + w = 0 
(Existence of additive inverses in V)  

!   v + w = w + v 
(Commutativity of vector addition in V)  

!   a * v belongs to V 
(Closure of V under scalar multiplication)  

!   a * (b * v) = (ab) * v 
(Associativity of scalar multiplication in V)  

!   If 1 denotes the multiplicative identity of the field F, then 1 * v = v 
(Neutrality of one)  

!   a * (v + w) = a * v + a * w 
(Distributivity with respect to vector addition.)  

!   (a + b) * v = a * v + b * v 
(Distributivity with respect to field addition.)  



An example of Vector Space 

!   For all n, Rn forms a vector space over R, with 
component-wise operations.  

!   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi is a 
member of R={real numbers} 

!   Let the field be R, as well 

!   Define Vector Addition: 
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn] 

!   Define Scalar Multiplication: 
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn] 

!   Then V is a Vector Space over R. 
 



Linear dependency 

!   Linear combination: 

!   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero 

  ⇒ y = α1 v1 + …+ αn vn has a unique expression 

!   In case αi > 0 and the sum is 1 it is called convex 
combination 



Normed Vector Spaces 

!   Given a vector space V over a field K, a norm on V is a function 
from V to R,  

!   it associates each vector v in V with a real number, ||v||  

!   The norm must satisfy the following conditions: 
!   For all a in K and all u and v in V,  

  1. ||v|| ≥ 0 with equality if and only if v = 0  

 2. ||av|| = |a| ||v||  

 3. ||u + v|| ≤ ||u|| + ||v||  

!   A useful consequence of the norm axioms is the inequality 
!   ||u ± v|| ≥ | ||u|| - ||v|| |  

!   for all vectors u and v 



Inner Product Spaces  

!   Let V be a vector space and u, v, and w be vectors in 
V and c be a constant.   

!   Then, an inner product ( , ) on V is 
!    a function with domain consisting of pairs of vectors and  

!   range real numbers satisfying 

!    the following properties:  

  1.  (u, u)  >  0 with equality if and only if u  =  0. 

  2.  (u, v)  =  (v, u) 

  3.  (u + v, w)  =  (u, w) + (v, w) 

  4.  (cu, v)  =  (u, cv)  =  c(u, v) 



Example 

!   Let V be the vector space consisting of all continuous functions with the 
standard + and *.  Then define an inner product by 

          

!   For example:          

  

!   The four properties follow immediately from the analogous property of the 
definite integral: 

         



Inner Product Properties 

!    (v, 0)  =   0 

!     

!   If (v, u)  =   0, v,u  are called orthogonal 

!   Schwarz Inequality:  

!   [(v, u)]2 ≤  (v, v) (u, u) 

!   The classical scalar product is the component-wise product 
!   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = x1 y1 + x2 y2+ … +xn yn 

!     

),(|||| vvv =

||||||||
),(

),cos(
vu
vuvu
⋅

=



Projection 

!   From 
||||||||

),cos(
wx
wx

wx 



⋅

⋅
=

!   It follows that 

||||||||
),cos(||||

w
w

x
w
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wxx 

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!   Norm of     times the cosine between      and     , 

i.e. the projection of     on 
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
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Similarity Metrics 

 

!   The simplest distance for continuous m-
dimensional instance space is Euclidian distance. 

!   The simplest distance for m-dimensional binary 
instance space is Hamming distance (number of 
feature values that differ). 

!   Cosine similarity is typically the most effective 



A Simple Example: Text 
Categorization 

Sport 
   Cn 

Politic 
    C1 

Economic 

            C2 

. . . . . . . . . . . 

Bush 
declares 

war 

Wonderful 
Totti 

Yesterday 
match 

Berlusconi 
acquires 

Ibrahimović
before 

elections 

Berlusconi 
acquires 

Ibrahimović
before 

elections 

Berlusconi 
acquires 

Ibrahimović
before 

elections 



Text Classification Problem 

!   Given: 
!   a set of target categories: 

!   the set T of documents,  

     define     f : T  →   2C 
€ 

C = C1,.., Cn{ }



The Vector Space Model (VSM) 

Berlusconi 

Bush 

Totti 

Bush declares 
war. 
Berlusconi 
gives support        

Wonderful 
Totti in the 
yesterday 
match against 
Berlusconi’s 
Milan 

Berlusconi 
acquires 
Ibrahimović
before 
elections 

d1: Politic 

d1 

d2 

d3 

C1 

 C1 : Politics 
      Category 

d2: Sport d3:Economic 

C2 

C2 : Sport 
      Category 



Summary of VSM 

!   VSM (Salton89’) 
!   Features are dimensions of a Vector Space 

Linear Kernel 

!   Documents and Categories are vectors of 
feature weights. 

!   d is assigned to        if  

!   Changing symbols 

  

€ 

 
d ⋅
 
C i > thiC

  

€ 

 w ⋅  x − th > 0⇒  w ⋅  x + b > 0



Summary of Today Machine Learning 
Concepts 

!   Positive and Negative examples 

!   Feature representation 
!   Kernels 

!   Learning Algorithm 

!   Training and test set 

!   Accuracy measurement 

!   Generalization/Empirical error Trade-off 

 



Several Kinds of Learning Algorithms 

!   Logic boolean expressions, (e.g. Decision Trees). 

!   Probabilistic Functions, (Bayesian Classifier). 

!   Separating Functions working in vector spaces 
!   Non linear: KNN, neural network multiple-layers,… 
!   Linear: SVMs, neural network with one neuron,… 

!   These approaches are largely applied In 
language technology 

!   Very Simple Example: Text Categorization 



What Next? 

!   Can we learn any function? 

!   Statistical Learning Theory 
!   PAC learning 


