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Course Schedule - Revised

27 apr 9:30-12:30 Garda (Introduction to Machine
Learning - Decision Tree and Bayesian Classifiers)

2 maggio: 14:30-18:30 Ofek (Introduction to
Statistical Learning Theory — Vector Space Model)

4 Maggio 9:30-12:30 Ofek (Linear Classifier:)

28 maggio 9:30-12:30 Ofek (VC dimension,
Perceptron and Support Vector Machines)

29 maggio 9:30-12:30 Garda (Kernel Methods for
NLP Applications)




Lectures

= Introduction to ML

Decision Tree
Bayesian Classifiers

» Vector spaces

= Vector Space Categorization

Feature design, selection and weighting
Document representation

Category Learning: Rocchio and KNN
Measuring of Performance

From binary to multi-class classification




Lectures

= PAC Learning
» VC dimension

= Perceptron

» Vector Space Model
» Representer Theorem

= Support Vector Machines (SVMs)
» Hard/Soft Margin (Classification)
r Regression and ranking




Lectures

= Kernels Methods
» Theory and Algebraic properties
» Linear, Polynomial, Gaussian
» Kernel construction,

s Kernels for structured data
» Sequence, Tree Kernels

= Structured Output




Reference Book + some articles

Roberto Basili
Alessandro Moschitti

Automatic Text Categorization

From Information Retrieval
to Support Vector Learning
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Today

= Introduction to Machine Learning

= Vector Spaces




Why Learning Functions
Automatically?

= Anything is a function
¥ From the planet motion
» To the input/output actions in your computer

= Any problem would be automatically solved




More concretely

= Given the user requirement (input/output
relations) we write programs

= Different cases typically handled with if-then
applied to input variables
= What happens when

» millions of variables are present and/or
» values are not reliable (e.g. noisy data)

= Machine learning writes the program (rules) for
you




What is Statistical Learning?

= Statistical Methods — Algorithms that learn
relations in the data from examples

= Simple relations are expressed by pairs of
variables: (X.,¥,), (X5, Vo)s+--, (X, V)

= Learning f such that evaluate y” given a new value
X', i.e. (X, X))y = (X, y)




You have already tackled the learning
problem




Linear Regression




Degree 2




Degree




Machine Learning Problems

= Overfitting

= How dealing with millions of variables instead of
only two?

= How dealing with real world objects instead of real
values?




Learning Models

= Real Values: regression

= Finite and integer: classification

= Binary Classifiers:

r 2 classes, e.g.
f(x) - {cats,dogs}




Decision Trees




Decision Tree (between Dogs/Cats)

Taller than 50 cm?

No / \yes

Short hair?

N/\

Mustaches?

No/ \Si




Mustaches or Whiskers

= Are an important orientation tool for both dogs
and cats

= all dogs and cats have them
= not good features

= We may use their length

= What about mustaches?




Mustaches?
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Entropy-based feature selection

= Entropy of class distribution P(C)):

H(P)=)» —P(Cj)log2(P(C}))

1=1

= Measure “how much the distribution is uniform”
= Given S,...S, sets partitioned wrt a feature the

overall entropy is:

— qQ o m HP\’
H(P%,. Po) =Y ?’g., )

i=1




Example: cats and dogs classification

= p(dog)=p(cat) = 4/8 = "> (for both dogs and cats)
= H(So) = %2"log(2) * 2 =1




Has the animal more than 6 siblings?

= p(dog)=p(cat) = 2/4 = > (for both dogs and cats)
s H(S1) = H(S2) =7 " [\2*log(2) * 2] = 0.25
s All(S1, S2) =2*.25=0.5




Does the animal have short hair?

S,

—(
S,
= p(dog)= 1/4; p(cat) = 3/4 ’

s H(S2)=H(S1) =7 " [(1/4)*log(4) + (3/4)*log(4/3)] =
Va*[2+0.31] =% *0.81=0.20
s All(S1,52) = 0.20*2 = 0.40 (note that |S1| = |S2])




Follow up

hair length feature is better than number of
siblings since 0.40 is lower than 0.50

Test all the features
Choose the best

Start with a new feature on the collection sets
induced by the best feature




Probabilistic Classifier




Probability (1)

= Let Q be a space and 3 a collection of subsets of €2

= 3 1S a collection of events

= A probability function P is defined as:

P:B—|0,1]




Definition of Probability

= P is a function which associates each event E with a
number P(E) called probability of E as follows:

0= P(E)=<1
2) P(Q) =1
3)P(E,VE,v.VE,Vv..)=
=EP(E1') ifE,ANE; =0,Vizj
i=1




Finite Partition and Uniformly Distributed

= Given a partition of n events uniformly distributed
(with a probability of 1/n); and

= given an event E, we can evaluate its probability as:

P(E)=P(EANE, )=P(EAN(E,VE,v..VE )) =

S PENE)= I P(E)=Y %

E.CE E.CE
Target Cases
All Cases

1 L. )
;21=;(‘{1.EiCE}‘)—

E,CE




Conditioned Probability

= P(A | B) is the probability of A given B
= B is the piece of information that we know
= The following rule holds:




Indipendence

= A and B are indipedent /ff:
P(A|B) = P(4)
P(B| A) = P(B)

= If A and B are indipendent:

P(4) = P(4| B) = 2N D)

P(B)
P(A A B) = P(4)P(B)




Bayes’s Theorem

P(B|A)P(A)
P(B)

P(AIB) =

Proof:

P(A AB)
P(B)

P(A AB)
P(A)

P(AIB) =

P(B|A)=

peAlp) < LPBIAPA)

P(B)




Bayesian Classifier

= Given a set of categories {c,, c,,...C,}
= Let E be a description of a classifying example.

= The category of E can be derived by using the following
probability:

Ple, 1 )= OO 2

P(E) = P(c)P(E Ic)




Bayesian Classifier (cont)

We need to compute:

» the posterior probability: P(c;)

» the conditional probability: P(E | c))

P(c,) can be estimated from the training set, D.

¥ given n. examples in D of type ¢, then P(c;) = n,/ |D|
Suppose that an example is represented by m features:

E=e ne, AN---Ne,

The elements will be exponential in m so there are not
enough training examples to estimate P(E |c,)




Naive Bayes Classifiers

= The features are assumed to be indipendent
given a category (c;).
P(Elc,))=P(e,ne, A---ne, Ic)= HP(ej lc,)
j=1
for each

N—" I

= This allows us to only estimate P(g;| c,
feature and category.




An example of the
Naive Bayes Clasiffier

= C ={Allergy, Cold, Healthy}

= €, = sneeze; e, = cough; e; = fever

= E ={sneeze, cough, -fever}

Prob Healthy Cold Allergy
P(c)) 0.9 0.05 0.05
P(sneeze|c)) 0.1 0.9 0.9
P(cough|c)) 0.1 0.8 0.7
P(fever|c;) 0.01 0.7 04




An example of the
Naive Bayes Clasiffier (cont.)

Probability Healthy Cold Allergy

P(c) 0.9 0.05 0.05

P(sneeze | ¢) 0.1 0.9 0.9 E={sneeze, cough, —fever}
P(cough | ¢) 0.1 0.8 0.7

P(fever | c¢) 0.01 0.7 0.4

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50




Probability Estimation

= Estimate counts from training data.
= Let n, be the number of examples in c;

= let n; be the number of examples of ¢, containing the

feature e, then: "
Ty
P(ej | Ci) —

n.

l

= Problems: the data set may still be too small.

= Forrare features we may have, e,, Vc; :P(e,| c;) = 0.




Smoothing

= [he probabilities are estimated even if they are not
In the data

= Laplace smoothing
» each feature has a priori probability, p,

¢ We assume that such feature has been observed in an
example of size m.

n.+mp
P(ej |Ci)= .
n.+m




Naive Bayes for text classification

= ‘bag of words” model
» The examples are category documents
» Features: Vocabulary V = {w,, w,,...w,}
* P(w;| ¢ is the probability to have w; in a category i

= Let us use the Laplace’s smoothing

» Uniform distribution (p = 1/|V|) and m = |V

» Thatis each word is assumed to appear exactly one time in a
category




Training (version 1)

= Vs built using all training documents D
= For each category c, € C
Let D, the document subset of D in ¢,
= P(c,) = |Dj]| / |D|
n. is the total number of words in D,

for each w, eV, n; IS the counts of w;in ¢,
= P(w;| c)=(n;+1)/(n,+[V])




Testing

= Given a test document X
= Let n be the number of words of X
= [he assigned category is:

argmaXP(ci)nP(aj lc,)

ciEC =1

where a, Is a word at the j-th position in X




Part |I: Abstract View of
Statistical Learning Theory




Main Ingredients of Statistical Learning

= [raining set
» Set of objects associated with a label

= Similarity Function between the objects

= A learning algorithm
» loss function: it tells the algorithm if is doing well




Intuitions on Machine Learning
(kernel machines)

C1: Questions asking
for a person ﬂ_earning Algorithm \

Who is the US
president?
Similarity
Function

1r

l

Who is the Italian
prime minister?

When was Martin
Luther King born?

C2: Questions asking \

for a number




Example based Classifiers

Objects to be classified: O -

*

Category |

me O
.
.O

-

Category 2




Learning phase

Positive Learning Objects O @l BNK

Negative Learning Objects ‘ * A

Weights 1.5
Category | /
Support vectors | 1.2
O O W //-
N // 1
// -
//




Similarity in Statistical Learning
Theory

= Similarity is intuitively useful to learn and
iImplement the classification function

s NB: This does not lead to heuristic models

= In statistical learning theory valid similarities are

called Kernel Functions

» Kernels map examples in vector spaces
» Examples are classified based on geometric properties

= Formally proved upperbound to the system error




In other words
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Vector Spaces




Definition (1)

= AsetVis avector space over a field F (for example, the field of real
or of complex numbers) if, given

= an operation vector addition defined in V, denoted v + w (where v, w
e V), and

= an operation, scalar multiplication in V, denoted a * v (where v e V
and a e F),
= the following properties hold for all a, b € F and u, v, and w € V:

= V+wbelongstoV.
(Closure of V under vector addition)
= Ut(v+w)=(u+v)+w
(Associativity of vector addition in V)

= [ here exists a neutral element 0 in V, such that for all elements vin V,
v+0=v
(Existence of an additive identity element in V)




Definition (2)

= ForallvinV, there exists an elementw in V, suchthatv+w=20
(Existence of additive inverses in V)
s VIW=wW+vV
(Commutativity of vector addition in V)
= a”*vbelongstoV
(Closure of V under scalar multiplication)
= a*(b*v)=(ab)*v
(Associativity of scalar multiplication in V)
= If 1 denotes the multiplicative identity of the field F, then 1 *v =v
(Neutrality of one)
= a*(vtw)=a*v+a*w
(Distributivity with respect to vector addition.)
(@a+b)*v=a*v+b*v
(Distributivity with respect to field addition.)




An example of Vector Space

= Forall n, R" forms a vector space over R, with
component-wise operations.

s LetV be the set of all n-tuples, [v,,v,,v;,...,v,] Where v, is a
member of R={real numbers}

= Let the field be R, as well
= Define Vector Addition:

For all v, w, in V, define v+w=[v,+W,V,+W,,V;+W;,...,v tW,]
= Define Scalar Multiplication:
Forallain FandvinV, a*v=[a*v,,a*v,,a*v,,...,a"v,]

= Then Vis a Vector Space over R.




Linear dependency

= Linear combination:
= oV, + ...+ a,v,=0 for some a,...a,not all zero
=Yy=a,V,*+ ...+ 0,V, has a unique expression

= In case a,> 0 and the sum is 1 it is called convex
combination




Normed Vector Spaces

Given a vector space V over a field K, a norm on V' is a function
from Vto R,

it associates each vector v in V with a real number, ||v||

The norm must satisfy the following conditions:
» ForallainKandalluandvinV,
1. ||v]| 2 O with equality ifand only if v=0
2. [|lav|| = |al [Iv]]
3. [lu+ || = [[uf] +[|v]]
A useful consequence of the norm axioms is the inequality
o |lutv|[ =] ][uf]-[|v]]]

for all vectors u and v




Inner Product Spaces

= LetV be a vector space and u, v, and w be vectors In
V and c be a constant.
= Then, an inner product (, )onV is
» a function with domain consisting of pairs of vectors and
» range real numbers satisfying
» the following properties:
1. (u, u) > 0 with equality if and only if u = 0.
2. (u,v) = (v, u)
3. (Uu+v,w) = (u,w)+ (v, w)
4. (cu,v) = (u,cv) = c(u, v)




Example

Let V be the vector space consisting of all continuous functions with the

standard + and *. Then define an inner product by
1

(f.8)= !..f (©)g @)dt |
For example: (x,x?) = g(x)(xg)aix =

B =

The four properties follow immediately from the analogous property of the

definite integral:
1

(f+ §>h)=l(f +£)O)AE) dt

1 1 1

: J[f(r)h(mg(r)h(f)) dt = h[f(r)h(r) dt + D[g(r)h(a‘) dt

=(/,+(g,h)




Inner Product Properties

= (v,0) = 0
" [[v]=y (V)
=« If(v,u) = 0, v,u are called orthogonal

= Schwarz Inequality:

e [(v, W= (v, V) (u, u)
= The classical scalar product is the component-wise product

n (X, X)) (Y Ve V) TX Y XY X, Y,

(,v)

full-lv]

= cos(u,v)=




Projection

—_—

.o X W
s From cos(x,w)=— —
[ x| -]| wl]
= It follows that
. L XTW LW
| x [ cos(X, W) =——=Xx-—
W | w]

= Norm of X times the cosine between x and w ,
i.e. the projection of X onw




Similarity Metrics

= The simplest distance for continuous m-
dimensional instance space is Euclidian distance.

= he simplest distance for m-dimensional binary
iInstance space is Hamming distance (number of
feature values that differ).

= Cosine similarity is typically the most effective




A Simple Example: Text

Categorization

Berlusconi
acquires
Ibrahimovi¢
before
elections

Politic Economic
C, C,




Text Classification Problem

= Given: C = {Cl,.., C”}
r a set of target categories:
» the set T of documents,

define f: T — 2¢




The Vector Space Model (VSM)

Berlusconi

d,: Politic

A Bush declares
war.
Berlusconi
gives support

d,

5

d,: Sport d,:Economic
Wonderful Berlusconi
Totti in the acquires
yesterday [brahimovié
match against before
Berlusconi’s elections

Milan

C, : Politics

Category




Summary of VSM

= VSM (Salton89’)

» Features are dimensions of a Vector Space
Linear Kernel

» Documents and Categories are vectors of
feature weights.

¥ dis assigned to C' if d-C'>th
= Changing symbols

—_

w-x—-th>0=w-x+b>0




Summary of Today Machine Learning
Concepts

= Positive and Negative examples

= Feature representation
r Kernels

= Learning Algorithm
= [raining and test set
= Accuracy measurement

= Generalization/Empirical error Trade-off




Several Kinds of Learning Algorithms

= Logic boolean expressions, (e.g. Decision Trees).
= Probabilistic Functions, (Bayesian Classifier).

= Separating Functions working in vector spaces
¥ Non linear: KNN, neural network multiple-layers,...
» Linear: SVMs, neural network with one neuron,...

= These approaches are largely applied In
language technology

= Very Simple Example: Text Categorization




What Next?

= Can we learn any function?

= Statistical Learning Theory
» PAC learning




