
Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Introduction to Algorithms

1.1 Introduction

The Algorithms and Data Structures thread of Informatics 2B deals with the issues
of how to store data efficiently and how to design efficient algorithms for basic
problems such as sorting and searching. This thread is taught by Kyriakos
Kalorkoti (KK).

There will generally be a lecture note for each lecture of this thread—these are
adaptations of earlier notes of Don Sannella, John Longley, Martin Grohe, Mary
Cryan and many others from the School of Informatics, University of Edinburgh.
Some exercises will be included at the end of each lecture note, attempting these
(in addition to the tutorial exercises) is a good way of reenforcing your under-
standing of the material.

Prerequisites. You have seen a few algorithms and data structures in Infor-
matics 1B. Amongst these are sorting algorithms (MergeSort and Selection Sort);
you should also understand the principle of recursion. Arrays, lists, and trees
were also introduced in Inf1B. If for some reason you didn’t take Inf1B, then you
should check the notes on these topics.

In addition to the Computer Science prerequisites, you will need to know some
mathematics. We will assume that you are familiar with: proofs by induction,
series and sums, recurrences, graphs and trees. Reminders of many of these will
be included in the lectures.

Textbooks. The lecture notes provide the essentials for each topic, for further
material or a different slant you should consult an appropriate book. Two rec-
ommended (though not required) algorithms textbooks for this thread are:

[CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein, Introduction to Algorithms. McGraw-Hill, 2002 (now in its third
edition, published September 2009).

[GT] Michael T. Goodrich and Roberto Tamassia, Algorithm Design – Foundations,

Analysis, and Internet Examples. Wiley, 2002 (now in its fourth edition.

Both of these books cover most of the Algorithms and Data Structures material
of Informatics 2B. [GT] puts a lot of emphasis on well-designed JAVA implemen-
tations of the algorithms, whereas [CLRS] is more theoretical. Of the two books,
[GT] covers the course more closely (and is easier to read). However, [CLRS] is the
textbook used in the third year Algorithms and Data Structures (ADS) course.
Therefore if you expect to be taking this course (quite likely if you are on the CS
degree) it is clearly a good idea to buy [CLRS], if you do feel the need to make a
purchase at all. It is comprehensive and therefore makes an excellent reference
book.

1

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Online resources. Wikipedia has good coverage on many of the topics covered
in the Algorithms and Data structures thread, as well as the Learning and Data
thread.
Studying the notes. You should get into the habit of making a careful study of
the lecture notes soon after each lecture. Skim reading them is not sufficient.
Have pen and paper to hand so that you can work through technical details
whenever appropriate. If an assertion is made without further justification then
work out why it is true (unless the notes state that the assertion is beyond the
scope of this course). There are some occasional reminders in the notes of the
need to engage in this way (mostly by putting “[why?]” after an assertion) but
you should always be asking yourself why something is true. The material of
this course goes well beyond mere parrot fashion recitation of facts.

When reading the notes for the first time it is unrealistic to expect to follow
everything. At times there is a fair amount of technical detail and this can get
in the way of appreciating the bigger picture. So a good strategy is likely to be
to leave details for a subsequent reading and aim initially to understand the role
that various things play. This does not mean that you can ignore the details, you
do need to understand them.
Lectures. You should attend all lectures. Notes are made available in order to
free up lecture time for the discussion of essentials and intuitive explanations.
At first the lectures will follow the notes fairly closely in order to set up the
basics. Once that is done, lectures will focus on discussions that are best carried
out orally. During a live presentation you should not be overly concerned with
following every technical detail exactly but should be able to see the overall thrust
of what is being discussed. Minute details are best studied in your own time and
at your own pace. If, however, you find that you are frequently unable to follow
large parts of a lecture then that is a sure sign that you are falling behind and
should therefore make every effort to catch up.
Tutorials. There will be a number of tutorials (split about equally between the
two threads). Appropriate exercise sheets will be issued for each tutorial. Again
you should attend all of these and attempt a fair proportion of the exercises, this
is an excellent way to develop your understanding and uncover any difficulties
you have. The fact that these exercise sheets do not carry any marks is irrelevant.
The aim is to help you learn, that in turn will lead to much better performance
in the longer term. The absence of marks for these sheets means that you have
time to improve your understanding without facing a penalty.
Practicals. There will be one practical for each thread. These are marked and
the marks go towards your final assessment for the course. You should make an
early start on each practical, this will allow you time to explore it and uncover
any problem areas for you. Just as importantly you will have time to revise your
efforts and present them clearly. Last minute attempts generally lead to poor
results and you learn much less; the only increased outcome being more stress.
Summary. Those who choose not to engage actively with the various aspects of

the course are choosing to underperform at the very least and fail at worst. The
material that must be mastered builds up quite quickly both in amount and
relative difficulty, consistent regular effort is the most efficient way to make good

2

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

progress.

1.2 Evaluating Algorithms

Intuitively speaking, an algorithm is a step-by-step procedure (a “recipe”) for
performing a task. A data structure is a systematic way of organising data and
making it accessible in certain ways. The two tasks of designing algorithms,
and designing data structures, are closely linked; a good algorithm needs to
use data structures that are suited to the problem. You have already seen some
examples of data structures (arrays, linked lists, and trees) and some examples of
algorithms (such as Linear search, Binary search, Selection Sort, and Mergesort)
in Informatics 1B. Throughout this course we will cover these in more detail (a
reminder of each of them will be included as well) and introduce more.

How do we decide whether an algorithm is good or not, or how good it is? This
is the question we are going to to discuss in this introductory lecture.

The three most important criteria for an algorithm are correctness, efficiency,
and simplicity. Correctness is clearly the most important criterion for evaluat-
ing an algorithm. If the algorithm is not doing what it is supposed to do, it is
worthless. All the algorithms we present in this course are guaranteed to per-
form their tasks correctly, although we will not always cover the proofs. Some
proofs of correctness are simple while other, more subtle, algorithms require
complicated proofs of correctness.

The main focus of this thread will be on efficiency. We would like our algo-
rithms to make efficient use of the computer’s resources. In particular, we would
like them to run as fast as possible using as little memory as possible (though
there is often a trade off here). To keep things simple, we will concentrate on the
running time of the algorithms for a large part of this thread, and not worry too
much about the amount of space (i.e., amount of memory) they use. However,
in our lectures on algorithms for the internet, space will be an issue since these
deal with huge quantities of data.

The third important criterion of an algorithm is simplicity. We would like our
algorithms to be easy to understand and implement. Unfortunately, there is of-
ten (but not always) a trade-off between efficiency and simplicity: more efficient
algorithms tend to be more complicated. Which of the two criteria is more im-
portant depends on the particular task. If a program is used only once or a few
times, the cost of implementing a very efficient but complicated algorithm may
exceed the cost of running a simple but inefficient one. On the other hand, if
a program will be used very often, the cost of running an inefficient algorithm
over and over again may exceed by far the cost of implementing an efficient but
complicated one. It is up to the programmer (or system designer) to decide which
way to go in any particular situation. In some application areas (e.g., real time
control systems) we cannot afford inefficiency even for very rare events. For ex-
ample the shutting down of some critical reaction in a chemical factory should
be a rare event but it must be done in good time when necessary.

3

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

1.3 Measuring the Running Time

The running time of a program depends on a number of factors such as:

(1) The running time of the algorithm on which the program is based.

(2) The input given to the program.

(3) The quality of the implementation and the quality of the code generated by
the compiler.

(4) The machine used to execute the program.

Warning. These are not the only factors. An approach that uses heavy recur-
sion can often be slow when it is coded as a program (especially in an imperative
language such as JAVA—functional languages such as Haskell are better at man-
aging recursion efficiently). Moreover, JAVA (the language we use in Inf2B) has
a heavy garbage collection overhead, so when we estimate running times with
JAVA’s System.currentTimeMillis() command, the cost of garbage collection
often drowns out the true running time of the computation (unfortunately, for
this reason, we often don’t see the effect of an efficient algorithm until the input
is very large).

Anyhow, in developing a theory of efficiency, we don’t want a theory that
is only valid for algorithms implemented by a particular programmer using a
certain programming language as well as compiler and being executed on a par-
ticular machine. Therefore, in designing algorithms and data structures, we will
abstract away from all these factors. We do this in the following way: We de-
scribe our algorithms in a pseudo-code that resembles programming languages
such as JAVA or C, but is less formal (since it is only intended to be read and
understood by humans). We assume that each instruction of our pseudo-code
can be executed in a constant amount of time (more precisely, in a constant
number of machine cycles that does not depend on the actual values of the vari-
ables involved in the statement), no matter which “real” programming language
it is implemented in and which machine it is executed on. This can best be illus-
trated by a very simple example, Linear search, which you are very likely to have
seen before.
Example 1.1. Algorithm 1.2 is the pseudo-code description of an algorithm that
searches for an integer in an array of integers. Compare this with the actual
implementation as a JAVA method displayed in Figure 1.3. The easiest way
to implement most of the algorithms described in this thread is as static JAVA
methods. We can embed them in simple test applications such as the one dis-
played in Figure 1.4.

The pseudocode is fairly self explanatory, note that we use indentation to
indicate scope. This avoids unnecessary clutter and works well for our purposes
because our pseudocode tends to be quite short.

We now want to get an estimate of the running time of linSearch when the
input consists of the array A = h2, 4, 3, 3, 5, 6, 1, 0, 9, 7i and the integer k = 0. The
length of A is 10, and k occurs with index 7.

What we would like to estimate is the number of machine cycles an execution
of the algorithm requires. More abstractly, instead of machine cycles we usually

4

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Algorithm linSearch(A, k)

Input: An integer array A, an integer k

Output: The smallest index i with A[i] = k, if such an i exists,
or �1 otherwise.

1. for i 0 to A.length � 1 do

2. if A[i] = k then

3. return i

4. return �1

Algorithm 1.2

public static int linSearch(int[] A,int k) {

for(int i = 0; i < A.length; i++)

if (A[i] == k)

return i;

return -1;

}

Figure 1.3. An implementation of Algorithm 1.2 in JAVA

speak of computation steps. If we wanted to, we could multiply the number of
steps by the clock speed of a particular machine to give us an estimate of the
actual running time.

We do not know how many computation steps one execution of, say, Line 1
requires—this will depend on factors such as the programming language, the
compiler, and the instruction set of the CPU—but clearly for every reasonable im-
plementation on a standard machine it will only require a small constant number
of steps. Here “constant” means that the number can be bounded by a number
that does not depend on the values of i and A.length. Let c1 be such a constant
representing the number of computational steps to execute line 1 (for a single i).
Similarly, let us say that one execution of Lines 2,3,4 requires at most c2, c3, c4
steps respectively1.

To compute the number of computation steps executed by Algorithm 1.2 on
input A = h2, 4, 3, 3, 5, 6, 1, 0, 9, 7i and k = 0, we have to find out how often each line
is executed. Line 1 is executed 8 times (for the values i = 0, . . . , 7). Line 2 is also
executed 8 times. Line 3 is executed once, and Line 4 is never executed. Thus

1Note that in effect we are assuming that the numbers held by the array (and the input
integer k) are bounded in size. This is realistic for any actual computer. If we postulated a
theoretical model in which numbers of arbitrary size can be held in array locations then we
would have to take the size of the numbers into account. Even so our analysis as presented here
would still be useful; to obtain an upper bound on runtime we multiply our result by an upper
bound estimate on the worst case cost of any of the operation involving the numbers. Such a
separation of concerns is often vital in making progress.

5

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

public class LinSearch{

public static int linSearch(int[] A,int k) {

for(int i = 0; i < A.length; i++)

if (A[i] == k)

return i;

return -1;

}

public static void main(String[] args) {

int[] A = {2,4,3,3,5,6,1,0,9,7};

System.out.println(linSearch(A,0));

System.out.println(linSearch(A,10));

}

}

Figure 1.4. A simple (but complete) JAVA application
involving Algorithm 1.2

overall, for the particular input A and k, at most

8c1 + 8c2 + c3

computation steps are performed. A similar analysis shows that on input A =

h2, 4, 3, 3, 5, 6, 1, 0, 9, 7i and k = 10 at most

11c1 + 10c2 + c4

computation steps are performed. (Line 1 is performed 11 times, the last time to
check that 11 � 10 = A.length.)

So far, this looks like a tedious exercise. All we have obtained is a dubious-
looking estimate, involving unknown constants, on the number of computation
steps performed by our algorithm on two particular inputs. What we would
like to have is an estimate on the number of computation steps performed on
arbitrary inputs. But clearly, we cannot just disregard the input: an execution
of our algorithm can be expected to perform more computation steps if the input
array has length 100,000 than if the input array has length 10. Therefore, we
define the running time of the algorithm as a function of the size of the input,
which in Example 1.1 is the length of A (plus 1, for the value of k). But even for
input arrays of the same length the execution time may vary greatly, depending
on where the key k actually appears in the array. We resolve this by giving an
estimate on the number of computation steps needed in the worst case.

In these notes the symbol N denotes the set {0, 1, 2, 3, . . .} of natural numbers
(including 0)2.
Definition 1.5. The (worst-case) running time of an algorithm A is the function
T

A

: N! N where T
A

(n) is the maximum number of computation steps performed

2Some authors exclude 0 from the natural numbers (which I find rather unnatural)–KK.

6

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

by A on an input of size n.
Remark 1.6. Note that for a given size there are only finitely many possible
inputs of that size. For example if we are considering arrays of size n each
location can only hold integers up to some maximum size. Let’s say there are B
of these, then the number of arrays of size n is Bn [why?].

The point of this observation is that T
A

is always well defined: for a given n
we just have a finite number of runtimes to consider so there will indeed be a
maximum. If there were infinitely many possible runtimes there might not be a
maximum since the runtime numbers could keep growing.
Remark 1.7. For most of our algorithms we will represent the size of the input
by one quantity (usually denoted n). In some cases is is more convenient to
use two or more such quantities, each corresponding to the size of an input
parameter (e.g., two arrays). The definition above has an obvious counterpart for
this situation.
Remark 1.8. There is also a notion of average time complexity (it is not central
to Inf2B). Average-case complexity is measured by considering all possible sets
of inputs for a given problem, and taking the average of the running-times for all
those inputs. [GT] and [CLRS] have more details of average case complexity.
Example 1.1 (cont’d). Let us analyse the worst-case time complexity of algo-
rithm linSearch. It is obvious that the worst-case inputs are those where either k
only appears as the last entry of A or where k does not appear at all (this is
obvious because in these cases, we have to execute the loop A.length times). For
more complicated situations the worst case is not necessarily so obvious.

Suppose A has length n. If k appears at the last entry, the number of compu-
tation steps performed is at most

c1n+ c2n+ c3 = (c1 + c2)n+ c3,

and if k does not appear at all it is

c1(n+ 1) + c2n+ c4 = (c1 + c2)n+ (c1 + c4).

Thus the time complexity of linSearch is

T
linSearch

(n)  max

�
(c1 + c2)n+ c3, (c1 + c2)n+ (c1 + c4)

= (c1 + c2)n+max

�
c3, (c1 + c4)

Since we do not know the constants c1, c2, c3, c4, we cannot tell which of the two
values is larger. But the important thing we can see from our analysis is that the
time complexity of linSearch is a function of the form

an+ b, (1.1)

for some constants a, b. This is a linear function, therefore we say that linSearch

requires linear time.
We can compare linSearch with another algorithm, which you are very likely

to have seen before:
Example 1.9. Algorithm 1.10 is the pseudo-code of an algorithm that searches
for an integer in a sorted array of integers using binary search. Note that

7

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Algorithm binarySearch(A, k, i1, i2)

Input: An integer array A sorted in increasing order, integers i1, i2 and k

Output: An index i with i1  i  i2 and A[i] = k, if such an i exists,
or �1 otherwise.

1. if i2 < i1 then

2. return �1
3. else

4. j b i1+i2
2 c

5. if k = A[j] then

6. return j

7. else if k < A[j] then

8. return binarySearch(A, k, i1, j � 1)

9. else

10. return binarySearch(A, k, j + 1, i2)

Algorithm 1.10

binary search only works correctly on sorted input arrays [why?]. In this case
we assume the input array is sorted in increasing order, there is an obvious
modification for arrays that are sorted in decreasing order.

Let us analyse the algorithm. Again, we assume that each execution of a
line of code only requires constant time3 and we let ci be the time required
to execute Line i once. However, for the recursive calls in Lines 8 and 10, c8
and c10 only account for the number of computation steps needed to initialise
the recursive call (i.e., to write the local variables on the stack etc.), but not for
the number of steps needed to actually execute binarySearch(A, k, i1, j � 1) and
binarySearch(A, k, j + 1, i2).

The size of an input A, k, i1, i2 of binarySearch is

n = i2 � i1 + 1,

i.e., the number of entries of the array A to be investigated. If we search the
whole array, i.e., if i1 = 0 and i2 = A.length � 1 then n is just the number of entries
of A as before. Then we can estimate the time complexity of binarySearch as
follows:

T
binarySearch

(n) 
10X

i=1

ci + T
binarySearch

(bn/2c).

Here we add up the number of computation steps required to execute all lines of
code and the time required by the recursive calls. Note that the algorithm makes

3Note that this means we are assuming that compound structures, such as arrays, are passed
by reference. If local copies were made there would be a very significant effect on runtime, usually
resulting in a very inefficient algorithm. In this example setting up each recursive call would cost
time proportional to the size of the array being passed rather than constant time.

8

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

at most one recursive call, either in Line 8 or in Line 10. Observing that

(j � 1)� i1 + 1 =

�
i1 + i2

2

⌫
� i1 =

�
i2 � i1

2

⌫
=

�
n� 1

2

⌫
 bn/2c

and
i2 � (j + 1) + 1 = i2 �

�
i1 + i2

2

⌫
=

�
i2 � i1

2

⌫
=

�
n� 1

2

⌫
 bn/2c,

we see that this recursive call is made on an input of size at most bn/2c. Thus
the cost of the recursive cost is at most T

binarySearch

(bn/2c). Note that we have
assumed that T

binarySearch

is a non-decreasing function of its argument. This is
clearly a very plausible assumption and is easy to establish (we will not do so
here in order not to disrupt the key point). We let c =

P10
i=1 ci and claim that

T
binarySearch

(n)  c(lg(n) + 2) (1.2)

for all n 2 N with n � 1 (recall that lg(n) = log2(n) , i.e., “log to the base 2”).
We prove (1.2) by induction on n. For the induction base n = 1 we obtain

T
binarySearch

(1)  c+ T
binarySearch

(0) 
(?)

2c = c(lg(1) + 2).

The inequality (?) holds because T
binarySearch

(0)  c1 + c2  c.
For the inductive step, let n � 2. We assume that we have already proved (1.2)

for all n0 < n and now want to prove it for n. We have

T
binarySearch

(n)  c+ T
binarySearch

(bn/2c)
 c+ c(lg(bn/2c) + 2)

 c+ c(lg(n)� 1 + 2)

�
since lg(bn/2c)  lg(n/2) = lg(n)� 1

�

= c(lg(n) + 2).

This proves (1.2).
Remark 1.11. The preceding proof by induction gives us an unimpeachable
demonstration that (1.2) is indeed correct. However it provides no intuitive
insight as to why. Let us reconsider the problem. What we know is that when
binarySearch is called on an array of size n it does a constant amount of work
(which we have denoted by c) and then recurses on an array of size around n/2
(unless it has finished). Well at this level it also does a constant amount of work
(i.e., c) and then recurses on an array of size around n/22 (unless it has finished).
So in the worst case it keeps recursing having done c amount of work each time.
When does this stop? It does so when we get to an array of size 1 and then it
makes one more call (we could avoid this by changing the code slightly). After r
recursive calls the size of the array is around n/2r so we get to a size 1 aray when
2

r
= n, i.e., when r = lg(n) (strictly we should adjust this as r must be an integer,

but we are just trying to get a rough idea of the situation). Thus the number of
recursive calls is at most lg(n)+1 and each of them does c amount of work but we
also do c amount of work before the first recursive call. This gives us c(lg(n) + 2)

as an upper bound for the total amount of work (or time). Having obtained this
we can then proceed to prove its correctness by induction.

9

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Hence we get the following bound on the running time of linSearch:

T
linSearch

(n)  an+ b

for suitable constants a, b, and for the running time of binarySearch we have

T
binarySearch

(n)  c lg(n) + d

for suitable constants c, d. Now what does this mean? After all, we don’t know
the constants a, b, c, d. Well, even if we don’t know the exact constants, it tells
us that binary search is much faster than linear search. Remember where the
constants came from: they were upper bounds on the number of machine cycles
needed to execute a few very basic instructions. So they won’t be very large. To
support our claim that binary search is faster than linear search, let us make an
assumption on the constants that strongly favours sequential search: Assume
that a = b = 10 and c = d = 1000. Table 1.12 shows the number of computation
steps performed by the two algorithms for increasing input sizes. Of course for
small input arrays, the large constants we assumed for binarySearch have a
strong impact. But already for arrays of size 10,000 binarySearch is more than 6

times faster, and for arrays of size 1,000,000, binarySearch is about 50 times
faster. Figure 1.13 shows the graph of the two functions up to n = 10000 (going

n T
linSearch

(n) T
binarySearch

(n)
10 110 4, 322
100 1, 010 7, 644

1, 000 10, 010 10, 966
10, 000 100, 010 14, 288
100, 000 1, 000, 010 17, 610

1, 000, 000 10, 000, 010 20, 932

Table 1.12. The time complexity of linSearch and binarySearch

under the assumption that T
linSearch

(n) = 10n+ 10 and
T

binarySearch

(n) = 1000lg(n) + 1000.

much higher tends to conceal the crossover point).
The message of Table 1.12 and the graph is that the constant factors a, b, c, d

are dominated by the relationship between the growth rate of n versus lg(n). So
what will be most important in analysing the efficiency of an algorithm will be
working out its underlying growth rate, forgetting constants.

It is easy to understand the behaviour of the two functions. By definition

n = 2

lg(n).

Thus in order to increase the value of lg(n) by 1 we must double the value of n.
So to increase lg(n) by 10 we must multiply the value of n by 2

10
= 1024 and to

increase the value of lg(n) by 20 we must multiply the value of n by 2

20
= 1, 048, 576.

This behaviour is an example of exponential growth.

10

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

Figure 1.13. The graph of T
linSearch

(n) = 10n+ 10 and
T

binarySearch

(n) = 1000lg(n) + 1000.

11

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

We have encoded both of the linSearch and binarySearch algorithms in JAVA,
and have run tests on arrays of various sizes (performed on a DICE machine
in January 2008), in order to see how the details of Table 1.12 influence the
performance of the algorithms in practice. A line of the table is to be read as
follows. Column 1 is the input size. Each of the two algorithms was run on 200

randomly generated arrays of this size. Column 2 is the worst case time (over
the 200 runs) of linSearch, Column 3 the average time. Similarly, Column 4 is the
worst-case time of binarySearch and Column 5 the average time.

size wc linS avc linS wc binS avc binS
10  1 ms  1 ms  1 ms  1 ms
100  1 ms  1 ms  1 ms  1 ms
1000  1 ms  1 ms  1 ms  1 ms
10000  1 ms  1 ms  1 ms  1 ms
100000  1 ms  1 ms  1 ms  1 ms
200000  1 ms  1 ms  1 ms  1 ms
400000 3 ms  1 ms  1 ms  1 ms
600000 3 ms 1.3 ms  1 ms  1 ms
800000 3 ms 1.5 ms  1 ms  1 ms
1000000 5 ms 2.1 ms  1 ms  1 ms
2000000 7 ms 3.7 ms  1 ms  1 ms
4000000 12 ms 6.9 ms  1 ms  1 ms
6000000 24 ms 11.6 ms  1 ms  1 ms
8000000 24 ms 15.6 ms  1 ms  1 ms

Table 1.14. Running Times of linSearch and binarySearch

The complete test application we used is Search.java, and can be found on
the Inf2B webpages. The way the running time is measured here is quite primi-
tive: The current machine time4 before starting the algorithm is subtracted from
the time after starting the algorithm. This is not a very exact way of measuring
the running time in a multi-tasking operating system. However, in current JAVA
compilers, there is unfortunately no way of turning off the garbage collection
facility, so a rough estimate is the best we can hope for.

Before we leave this comparison it is well worth thinking about the reason for
the far superior efficiency of binarySearch over linSearch. Compare the following
observations on what happens after one comparison:

linSearch: we either succeed or have dismissed just one item of current data
and the rest of the data to be examined.

binarySearch: we either succeed or have dismissed around half of the current
data with the other half remaining to be examined

Clearly for both algorithms the worst case is that we do not succeed early. Now
linSearch plods its way dismissing one item at a time while binarySearch dis-
misses half the data (and does so without doing any more work than linSearch

4Given by java.lang.System.currentTimeMillis().

12

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

when dismissing the current item under consideration). An intuitive understand-
ing such as this underpins the design of new efficient algorithms.

The preceding discussion shows that the replacement of the factor n in the
worst case runtime of linSearch with lg n in the worst case runtime of binary-

Search is a huge improvement. We will see similar gains, e.g., when we consider
sorting where various simple algorithms have worst case runtime proportional
to n2 whereas more sophisticated ones have worst case runtime proportional
to n log n. No improvement of hardware speed can match this, since such an
improvement is by some constant factor.

1.4 The need for theoretical analysis

Finally in this note we discuss why a theoretical analysis of algorithms is essen-
tial. It might at first seem to be sufficient to implement algorithms of interest to
us and run some timing experiments. There are many problems with taking this
approach exclusively; we will focus on the two most critical ones.

First of all our experiments can only go up to some upper bound on the size n
of the input. Thus they cannot show us the trend as n increases. However we
could just note here that in any realistic context there will indeed be an upper
bound to n albeit we might be hard put to it to fix it precisely. Let’s concede this
point, even though it is not as clear as it might seem.

The real problem is as follows. Consider one of the most fundamental compu-
tational problems: sorting objects on which we have a known linear order, let’s
say integers. It is surely reasonable to expect that in many applications we will
have n = 100 or indeed much more (i.e., the algorithm could be expected to sort
100 objects). Let’s consider trying to obtain a reliable estimate for the runtime of
an algorithm just on this size of input (to keep things simple we will assume that
each input consists of the integers 1, 2, . . . , 100 in some order). We will be gen-
erous and accept the timings based on just 1% of all possible inputs (of course
this is very unreliable for worst case runtimes5). How many experiments does
this imply? There are n! different ways of ordering n distinct objects so this is
the number of possible inputs. Thus we must carry out n!/100 expriments, i.e.,
99! experiments. A direct calculation shows that

99! = 9332621544394415268169923885626670049071596826438162146859296389

521759999322991560894146397615651828625369792082722375825118521

09168640000000000000000000000.

Now even if the algorithm could sort 10

50 instances per second(!) the experiment
would take at least

99!

60⇥ 60⇥ 24⇥ 366⇥ 10

50
⇡ 2.951269209⇥ 10

98

years to complete (we have been generous again and taken each year to be a leap
year). Time enough for a cup of tea then!

5Such a sample size might well provide a reliable estimate but we cannot know this without
further reasoning about our algorithm. Here we are addressing the shortcomings of an approach
based solely on experiments.

13

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

This section must not be taken to imply that experiments have no value.
However it is always essential to have a clear idea about the significance of any
conclusions reached. When coupled with a good analysis experiments are an
invaluable addition to our knowledge.

1.5 Reading Material

[CLRS], Chapter 1 and Sections 2.1-2.2.

Exercises

1. Consider the algorithm findMax (Algorithm 1.15) that finds the maximum
entry in an integer array.

Algorithm findMax(A)

Input: An integer array A

Output: The maximum entry of A.

1. m A[0]

2. for i 1 to A.length � 1 do

3. if A[i] > m then

4. m A[i]

5. return m

Algorithm 1.15

Show that there are constants c1, d1, c2, d2 2 N such that

c1n+ d1  T
findMax

(n)  c2n+ d2.

for all n, where n is the length of the input array.

Argue that for every algorithm A for finding the maximum entry of an integer
array of length n it holds that

T
A

(n) � n.

2. You have 70 coins that are all supposed to be gold coins of the same weight,
but you know that 1 coin is fake and weighs less than the others. You have
a balance scale; you can put any number of coins on each side of the scale
at one time, and it will tell you if the two sides weigh the same, or which
side is lighter if they don’t weigh the same. Outline an algorithm for finding
the fake coin. How many weighings will you do? What does this puzzle have
to do with the contents of this lecture note?

14

Inf2B Algorithms and Data Structures Note 1 Informatics 2B (KK1.2)

3. Algorithm 1.10 makes use of recursion which is an unnecessary overhead if
we want the fastest runtime in practice. Produce a version of the algorithm
that uses only a while loop. This is a simple exercise and gives you an
opportunity to get used to expressing things with pseudocode (much easier
than any actual programing language, no rigid syntax for a start!).

15

