5.1

Greedy Algorithms

The algorithm USCHANGE in chapter 2 is an example of a greedy strategy: at
each step, the cashier would only consider the largest denomination smaller
than (or equal to) M. Since the goal was to minimize the number of coins re-
turned to the customer, this seemed like a sensible strategy: you would never
use five nickels in place of one quarter. A generalization of USCHANGE, BET-
TERCHANGE also used what seemed like the best option and did not consider
any others, which is what makes an algorithm “greedy.” Unfortunately, BET-
TERCHANGE actually returned incorrect results in some cases because of its
short-sighted notion of “good.” This is a common characteristic of greedy
algorithms: they often return suboptimal results, but take very little time to
do so. However, there are a lucky few greedy algorithms that find optimal
rather than suboptimal solutions.

Genome Rearrangements

Waardenburg’s syndrome is a genetic disorder resulting in hearing loss and
pigmentary abnormalities, such as two differently colored eyes. The disease
was named after the Dutch ophthalmologist who first noticed that people
with two differently colored eyes frequently had hearing problems as well.
In the early 1990s, biologists narrowed the search for the gene implicated in
Waardenburg’s syndrome to human chromosome 2, but its exact location re-
mained unknown for some time. There was another clue that shed light on
the gene associated with Waardenburg’s syndrome, that drew attention to
chromosome 2: for a long time, breeders scrutinized mice for mutants, and
one of these, designated splotch, had pigmentary abnormalities like patches
of white spots, similar to those in humans with Waardenburg’s syndrome.
Through breeding, the splotch gene was mapped to one of the mouse chro-
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Figure 5.1 Transformation of the mouse gene order into the human gene order on
the X chromosome (only the five longest synteny blocks are shown here).

mosomes. As gene mapping proceeded it became clear that there are groups
of genes in mice that appear in the same order as they do in humans: these
genes are likely to be present in the same order in a common ancestor of
humans and mice—the ancient mammalian genome. In some ways, the
human genome is just the mouse genome cut into about 300 large genomic
fragments, called synteny blocks, that have been pasted together in a different
order. Both sequences are just two different shufflings of the ancient mam-
malian genome. For example, chromosome 2 in humans is built from frag-
ments that are similar to mouse DNA residing on chromosomes 1, 2, 3, 5, 6,
7,10, 11, 12, 14, and 17. It is no surprise, then, that finding a gene in mice
often leads to clues about the location of the related gene in humans.

Every genome rearrangement results in a change of gene ordering, and a
series of these rearrangements can alter the genomic architecture of a species.
Analyzing the rearrangement history of mammalian genomes is a challeng-
ing problem, even though a recent analysis of human and mouse genomes
implies that fewer than 250 genomic rearrangements have occurred since the
divergence of humans and mice approximately 80 million years ago. Every
study of genome rearrangements involves solving the combinatorial puzzle
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of finding a series of rearrangements that transform one genome into an-
other. Figure 5.1 presents a rearrangement scenario in which the mouse X chro-
mosome is transformed into the human X chromosome.! The elementary
rearrangement event in this scenario is the flipping of a genomic segment,
called a reversal, or an inversion. One can consider other types of evolution-
ary events but in this book we only consider reversals, the most common
evolutionary events.

Biologists are interested in the most parsimonious evolutionary scenario,
that is, the scenario involving the smallest number of reversals. While there is
no guarantee that this scenario represents an actual evolutionary sequence, it
gives us a lower bound on the number of rearrangements that have occurred
and indicates the similarity between two species.?

Even for the small number of synteny blocks shown, it is not so easy to ver-
ify that the three evolutionary events in figure 5.1 represent a shortest series
of reversals transforming the mouse gene order into the human gene order
on the X chromosome. The exhaustive search technique that we presented
in the previous chapter would hardly work for rearrangement studies since
the number of variants that need to be explored becomes enormous for more
than ten synteny blocks. Below, we explore two greedy approaches that work
to differing degrees of success.

Sorting by Reversals

In their simplest form, rearrangement events can be modeled by a series
of reversals that transform one genome into another. The order of genes
(rather, of synteny blocks) in a genome can be represented by a permutation®

1. Extreme conservation of genes on X chromosomes across mammalian species provides an
opportunity to study the evolutionary history of X chromosomes independently of the rest of the
genomes, since the gene content of X chromosomes has barely changed throughout mammalian
evolution. However, the order of genes on X chromosomes has been disrupted several times. In
other words, genes that reside on the X chromosome stay on the X chromosome (but their order
may change). All other chromosomes may exchange genes, that is, a gene can move from one
chromosome to another.

2. In fact, a sequence of reversals that transforms the X chromosome of mouse into the X chro-
mosome of man does not even represent an evolutionary sequence, since humans are not de-
scended from the present-day mouse. However, biologists believe that the architecture of the X
chromosome in the human-mouse ancestor is about the same as the architecture of the human
X chromosome.

3. A permutation of a sequence of n numbers is just a reordering of that sequence. We will
always use permutations of consecutive integers: for example, 21345 is a permutation of
12345.
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T = M7y - Ty. The order of synteny blocks on the X chromosome in hu-
mans is represented in figure 5.1 by (1, 2, 3,4, 5), while the ordering in mice
is (3,5,2,4,1).4

A reversal p(i, j) has the effect of reversing the order of synteny blocks

TTi41 " Tj—1T5
In effect, this transforms
T=T1" " T—1TT41 " Tj—1TjTj41 T
into
T p(i,5) = M1 - My AT 1 -+ Wi ATl -~ T

For example, if 7 = 1243756, then 7 - p(3,6) = 1257346. With this rep-
resentation of a genome, and a rigorous definition of an evolutionary event,
we are in a position to formulate the computational problem that mimics the
biological rearrangement process.

Reversal Distance Problem:
Given two permutations, find a shortest series of reversals that trans-
forms one permutation into another.

Input: Permutations 7 and o.

Output: A series of reversals p1, p2, ..., p; transforming w
into o (i.e., - p1 - p2 -+ pt = o), such that ¢ is minimum.

We call ¢ the reversal distance between m and o, and write d(m, o) to denote
the reversal distance for a given 7 and ¢. In practice, one usually selects the
second genome’s order as a gold standard, and arbitrarily sets o to be the
identity permutation 12 --- n. The Sorting by Reversals problem is similar to
the Reversal Distance problem, except that it requires only one permutation
as input.

4. In reality, genes and synteny blocks have directionality, reflecting whether they reside on the
direct strand or the reverse complement strand of the DNA. In other words, the synteny block
order in an organism is really represented by a signed permutation. However, in this section we
ignore the directionality of the synteny blocks for simplicity.
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Sorting by Reversals Problem:

Given a permutation, find a shortest series of reversals that transforms
it into the identity permutation.

Input: Permutation 7.

Output: A series of reversals pq, p2, ..., p; transforming =
into the identity permutation such that ¢ is minimum.

In this case, we call ¢ the reversal distance of m and denote it as d(7w). When
sorting a permutation 7 = 123645, it hardly makes sense to move the
already-sorted first three elements of 7. If we define prefix(r) to be the num-
ber of already-sorted elements of 7, then a sensible strategy for sorting by
reversals is to increase prefix(m) at every step. This approach sorts 7 in 2
steps: 123645 — 123465 — 123456. Generalizing this leads to an algo-
rithm that sorts a permutation by repeatedly moving its ith element to the
ith position.’

SIMPLEREVERSALSORT(7)
1 fori—1lton—1

2 j < position of element i in 7 (i.e., m; = 1)
3 if j#£1i

4 ™ — - p(i, j)

5 output 7

6 if 7 is the identity permutation

7 return

SIMPLEREVERSALSORT is an example of a greedy algorithm that chooses
the “best” reversal at every step. However, the notion of “best” here is rather
short-sighted—simply increasing prefix(m) does not guarantee the smallest
number of reversals. For example, SIMPLEREVERSALSORT takes five steps to
sort 612345:

612345 —162345—126345—123645—123465—123456
However, the same permutation can be sorted in just two steps:

612345 —543216 —123456.

5. Note the superficial similarity of this algorithm to SELECTIONSORT in chapter 2.
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Therefore, we can confidently say that SIMPLEREVERSALSORT is not a correct
algorithm, in the strict sense of chapter 2. In fact, despite its commonsense
appeal, SIMPLEREVERSALSORT is a terrible algorithm since it takes n—1 steps
to sort the permutation t =n12 ... (n — 1) even though d(7) = 2.

Even before biologists faced genome rearrangement problems, computer
scientists studied the related Sorting by Prefix Reversals problem, also known
as the Pancake Flipping problem: given an arbitrary permutation , find
dpref(m), which is the minimum number of reversals of the form p(1, %) sort-
ing m. The Pancake Flipping problem was inspired by the following “real-
life” situation described by (the fictitious) Harry Dweighter:

The chef in our place is sloppy, and when he prepares a stack of pan-
cakes they come out all different sizes. Therefore, when I deliver them
to a customer, on the way to a table I rearrange them (so that the small-
est winds up on top, and so on, down to the largest at the bottom) by
grabbing several from the top and flipping them over, repeating this
(varying the number I flip) as many times as necessary. If there are n
pancakes, what is the maximum number of flips that I will ever have
to use to rearrange them?

An analog of SIMPLEREVERSALSORT will sort every permutation by at
most 2(n — 1) prefix reversals. For example, one can sort 1236 4 5 by 4 prefix
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reversals (123645 — 632145 — 541236 — 321456 — 123456) but
it is not clear whether there exists an even shorter series of prefix reversals
to sort this permutation. William Gates, an undergraduate student at Har-
vard in the mid-1970s, and Christos Papadimitriou, a professor at Harvard in
the mid-1970s, now at Berkeley, made the first attempt to solve this problem
and proved that any permutation can be sorted by at most 2(n + 1) prefix
reversals. However, the Pancake Flipping problem remains unsolved.

Approximation Algorithms

In chapter 2 we mentioned that, for many problems, efficient polynomial
algorithms are still unknown and unlikely ever to be found. For such prob-
lems, computer scientists often find a compromise in approximation algorithms
that produce an approximate solution rather than an optimal one.® The ap-
proximation ratio of algorithm A on input w is defined as %, where A(m)
is the solution produced by the algorithm .4 and OPT'() is the correct (op-
timal) solution of the problem.” The approximation ratio, or performance guar-
antee of algorithm A is defined as its maximum approximation ratio over all

inputs of size n, that is, as

max 7A(7T)

[x|=n OPT ()"
We assume that A is a minimization algorithm, i.e., an algorithm that attempts
to minimize its objective function. For maximization algorithms, the approx-
imation ratio is

min 7'/4(”) .

|x|=n OPT(m)

In essence, an approximation algorithm gives a worst-case scenario of just
how far off an algorithm’s output can be from some hypothetical perfect al-
gorithm. The approximation ratio of SIMPLEREVERSALSORT is at least %51,
so a biologist has no guarantee that this algorithm comes anywhere close to
the correct solution. For example, if n is 1001, this algorithm could return
a series of reversals that is as large as 500 times the optimal. Our goal is

6. Approximation algorithms are only relevant to problems that have a numerical objective
function like minimizing the number of coins returned to the customer. A problem that does
not have such an objective function (like the Partial Digest problem) does not lend itself to ap-
proximation algorithms.

7. Technically, an approximation algorithm is not correct, in the sense of chapter 2, since there
exists some input that returns a suboptimal (incorrect) output. The approximation ratio gives
one an idea of just how incorrect the algorithm can be.
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Figure 5.2 Breakpoints, adjacencies, and strips for permutation 21345876 (ex-
tended by 0 and 9 on the ends). Strips with more than one element are divided into
decreasing strips (<) and increasing strips (—). The boundary between two non-
consecutive elements (in this case, 02, 13, 58, and 69) is a breakpoint; breakpoints
demarcate the boundaries of strips.

to design approximation algorithms with better performance guarantees, for
example, an algorithm with an approximation ratio of 2, or even better, 1.01.
Of course, an algorithm with an approximation ratio of 1 (by definition, a
correct and optimal algorithm) would be the acme of perfection, but such al-
gorithms can be hard to find. As of the writing of this book, the best known
algorithm for sorting by reversals has a performance guarantee of 1.375.

Breakpoints: A Different Face of Greed

We have described a greedy algorithm that attempts to maximize prefix()
in every step, but any chess player knows that greed often leads to wrong
decisions. For example, the ability to take a queen in a single step is usually
a good sign of a trap. Good chess players use a more sophisticated notion
of greed that evaluates a position based on many subtle factors rather than
simply on the face value of a piece they can take.

The problem with SIMPLEREVERSALSORT is that prefix(r) is a naive mea-
sure of our progress toward the identity permutation, and does not accu-
rately reflect how difficult it is to sort a permutation. Below we define break-
points that can be viewed as “bottlenecks” for sorting by reversals. Using
the number of breakpoints, rather than prefix(w), as the basis of greed leads
to a better algorithm for sorting by reversals, in the sense that it produces a
solution that is closer to the optimal one.

It will be convenient for us to extend the permutation = - - - 7, by mp = 0
and 7,41 = n+ 1 on the ends. To be clear, we do not move 7 or 7,41 during
the process of sorting. We call a pair of neighboring elements m; and m;41,
for 0 < i < n, an adjacency if 7; and m; 41 are consecutive numbers; we call



5.4 Breakpoints: A Different Face of Greed 133

the pair a breakpoint if not. The permutation in figure 5.2 has five adjacen-
cies (21, 34, 45, 87, and 76) and four breakpoints (02, 13, 58, and 69). A
permutation on n elements may have as many as n + 1 breakpoints (e.g., the
permutation 061357248 on seven elements has eight breakpoints) and as
few as 0 (the identity permutation 012345678).8 Every breakpoint corre-
sponds to a pair of elements 7; and ;4 that are neighbors in 7 but not in
the identity permutation. In fact, the identity permutation is the only per-
mutation with no breakpoints at all. Therefore, the nonconsecutive elements
m; and m; 11 forming a breakpoint must be separated in the process of trans-
forming = to the identity, and we can view sorting by reversals as the process
of eliminating breakpoints. The observation that every reversal can eliminate
at most two breakpoints (one on the left end and another on the right end of
the reversal) immediately implies that d(w) > @, where b(r) is the number
of breakpoints in 7. The algorithm BREAKPOINTREVERSALSORT eliminates
as many breakpoints as possible in every step in order to reach the identity
permutation.

BREAKPOINTREVERSALSORT ()
1 while b(7) >0

2 Among all reversals, choose reversal p minimizing b(r - p)
3 T—T-p

4 output =

5 return

One problem with this algorithm is that it is not clear why BREAKPOINTRE-
VERSALSORT is a better approximation algorithm than SIMPLEREVERSAL-
SORT. Moreover, it is not even obvious yet that BREAKPOINTREVERSALSORT
terminates! How can we be sure that removing some breakpoints does not
introduce others, leading to an endless cycle?

We define a strip in a permutation 7 as an interval between two consecutive
breakpoints, that is, as any maximal segment without breakpoints (see fig-
ure 5.2). For example, the permutation 0213458769 consists of five strips:
0,21, 345,876, and 9. Strips can be further divided into increasing strips
(345) and decreasing strips (21) and (87 6). Single-element strips can be con-
sidered to be either increasing or decreasing, but it will be convenient to

8. We remind the reader that we extend permutations by 0 and n + 1 on their ends, thus intro-
ducing potential breakpoints in the beginning and in the end.
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define them as decreasing (except for elements 0 and n + 1 which will always
be classified as increasing strips).

We present the following theorems, first to show that endless cycles of
breakpoint removal cannot happen, and then to show that the approxima-
tion ratio of the algorithm is 4. While the notion of “theorem” and “proof”
might seem overly formal for what is, at heart, a biological problem, it is
important to consider that we have modeled the biological process in math-
ematical terms. We are proving analytically that the algorithm meets certain
expectations. This notion of proof without experimentation is very different
from what a biologist would view as proof, but it is just as important when
working in bioinformatics.

Theorem 5.1 If a permutation 7 contains a decreasing strip, then there is a reversal
p that decreases the number of breakpoints in m, that is, b(m - p) < b(mw).

Proof: Among all decreasing strips in 7, choose the strip containing the
smallest element & (k = 3 for permutation 012765 8 43 9). Element k& — 1
S = —

in m cannot belong to a decreasing strip, since otherwise we would choose a
strip ending at k£ — 1 rather than a strip ending at k. Therefore, k£ — 1 belongs
to an increasing strip; moreover, it is easy to see that £ — 1 terminates this
strip (for permutation 0127658 43 9, k — 1 = 2 and 2 is at the right end
of the increasing strip 012). Therefore elements k£ and k£ — 1 correspond to
two breakpoints, one at the end of the decreasing strip ending with k and
the other at the end of the increasing strip ending in k — 1. Reversing the
segment between k and k — 1 brings them together, asin 0127658439 —
01234 8 567 9, thus reducing the number of breakpoints in 7. O
—_— S ——

For example, BREAKPOINTREVERSALSORT may perform the following four
steps when run on the input (08276514 39) in order to reduce the number
of breakpoints:

(0827651 439) bm=6
B e e e

(00287651 439) b(r)=5
B e e e

(0,234156789) blr)=3
(2)432156789) b(m) =2
(0123456789 bm=0

In this case, BREAKPOINTREVERSALSORT steadily reduces the number of

breakpoints in every step of the algorithm. In other cases, (e.g., the permu-

tation (0156723489) without decreasing strips), no reversal reduces the
e g

number of breakpoints. In order to overcome this, we can simply find any
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increasing strip (excluding 7y and ,1, of course) and flip it. This creates a
decreasing strip and we can proceed.

IMPROVEDBREAKPOINTREVERSALSORT ()
1 while b(7) >0

2 if 7 has a decreasing strip

3 Among all reversals, choose reversal p minimizing b(7 - p)
4 else

5 Choose a reversal p that flips an increasing strip in =

6 MT—T-p

7 output =

8 return

The theorem below demonstrates that such “no progress” situations do not
happen too often in the course of IMPROVEDBREAKPOINTREVERSALSORT. In
fact, the theorem quanitifes exactly how often those situations could possibly
occur and provides an approximation ratio guarantee.

Theorem 5.2 IMPROVEDBREAKPOINTREVERSALSORT is an approximation al-
gorithm with a performance guarantee of at most 4.

Proof: Theorem 5.1 implies that as long as = has a decreasing strip, IM-
PROVEDBREAKPOINTREVERSALSORT reduces the number of breakpoints in
7. On the other hand, it is easy to see that if all strips in 7 are increasing,
then there might not be a reversal that reduces the number of breakpoints.
In this case IMPROVEDBREAKPOINTREVERSALSORT finds a reversal p that
reverses an increasing strip(s) in 7. By reversing an increasing strip, p cre-
ates a decreasing strip in  implying that IMPROVEDBREAKPOINTREVERSAL-
SORT will be able to reduce the number of strips at the next step. Therefore,
for every “no progress” step, IMPROVEDBREAKPOINTREVERSALSORT will
make progress at the next step which means that IMPROVEDBREAKPOINTRE-
VERSALSORT eliminates at least one breakpoint in every two steps. In the
worst-case scenario, the number of steps in IMPROVEDBREAKPOINTREVER-

SALSORT is at most 2b(7) and its approximation ratio is at most 2;((;? . Since
d(m) > ") IMPROVEDBREAKPOINTREVERSALSORT has a performance guar-
antee’ bounded above by % < 2@) =4. O

9. To be clear, we are not claiming that IMPROVEDBREAKPOINTREVERSALSORT will take four
times as long, or use four times as much memory as an (unknown) optimal algorithm. We



