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Abstract—Several novel metrics have been proposed in recent a sample graph, consider Figure 1. Note that by definition
literature in order to study the relative importance of nodes in  cores are nested, meaning that nodes belonging t8-the
complex networks. Among those, k-coreness has found a number  ~qra belong to the-core andl-core, as well. Larger values
of applications in areas as diverse as sociology, proteinomics, of “coreness”, though, cIearIy correspond to nodes with a

graph visualization, and distributed system analysis and design. tral it in th ¢ K struct
This paper proposes new distributed algorithms for the computation more central position In the network structure.

of the k-coreness of a network, a process also known as k—core

decomposition. This technique (i) allows the decomposition, over a 5 Core 1-Core
set of connected machines, of very large graphs, when size does

not allow storing and processing them on a single host, and (ii) 3-Core \
enables the run-time computation of k-cores in “live” distributed

systems. Lower bounds on the algorithms complexity are given,

and an exhaustive experimental analysis on real-world datasets is

provided.
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Index Terms—k-core decomposition, Graph analysis, Bulk Syn-
chronous Parallel

1 INTRODUCTION

N the last few years, a number of metrics and methods
have been introduced for studying the relative “im-

portance” of nodes within complex network structures.

Examples include betweenness, eigenvector and CIOS‘enl@ﬁb?ivation: k-core decomposition has found a number of

centrality indexes [2], [3]. Such studies have been appligd i -rions: for example, it has been used to characterize

in a variety of settmgs,. including re.al networks I'k_esocial networks [4], to help in the visualization of complex
the Internet topology, social networks like co-authorshi

h e works. in bio-inf i d pgraphs [6], to determine the role of proteins in complex
graAp S pr;)heln ne t(')r S In bio-informa |cs,”ant ?)(I) (:]n. roteinomic networks [7], to analyze the static structure

mong these me ncdg-corer?ess IS a well-establisheg,¢ large-scale software systems [8], to describe the archi-
method for identifying a special family of maximal in-

tect f I lat twork .
duced subgraphs of a graph calledores or k-shells[4]. ecture of randomly damaged uncorrelated networks [9]

d finally to identi d*“ ders” i idemiological
Informally, a k-core is obtained by recursively removingztrLdi:ensa[i/o]OI entify good "spreaders” in epidemiologica

all nodes of degree smaller than until the degree of all

remaining vertices is larger than or equaktorhis is also already exist [5]. The distributed version of this problem

the intuition of the standard Batagelj-Zaseik algorithm s\ qtivated by two possible scenarios: the graph could be
for k-coreness calculation [5]. The process of computing large to not fit into a single host, due to memory re-

the k-c%renehss is also callddcore Qecl:orrwlp03|t|8n|: nOdesstrictions; or its description could be inherently distitiéd
are said to have coreness(or, equivalently, to belong to over a collection of hosts, making it inconvenient to move

”}le kiShe”) |fAthey belongltod;hek-co;e but not_ _to t]t\e each portion to a central site. As examples of the former
(k +1)-core. As an example df-core decomposition for g.onario consider the Facebook social graph, with 800
A preliminary version of this work appeared as brief annament in million l_Jsers (nodes)_ and more than 100 billion friend

the Proceedings of ACM PODC, San Jose (CA), Jun. 2011 [1]. connections (edges) in January 2012; or the web crawls
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Fig. 1: k—core decomposition for a sample graph.
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of the latter, consider “live” distributed systems, such abe literature. This field attracted considerable atteniio
P2P overlays, that self-inspect their topologies (peegs dhe last few years, when the need of effectively performing
nodes in the graph, and their network connections acemputations over large-scale graphs became very relevant
edges): given that cores with largérare known to be for a number of Web-related applications. An overview of
good spreaders [10], this information can be used at rutfte problems related to the processing of massively large
time to optimize the diffusion of messages in epidemigraphs can be found in [13].

protocols [11]. One popular framework for massively parallelizing
Contribution : We consider two computational models: computational tasks is MapReduce [14], introduced by
Google in 2004 for the parallel processing of large data-
ciated withonenode in the graph and communicatiorisets' MapReduce is.me_ant to allow developers to quickly
occurs only through direct messages between nod d easily write applications that can process vast amounts

connected through an edge. This is the model und f data on large clusters built using commodity hardware.
lying Pregel [12], a distribut.ed framework propose apReduce builds around a recursive structure, with the

: . ta-sets being split into independent chunks that can be
by Google for processing large-scale graphs; but(?fa : .
cZn alsg be appplied to 316 IiE\J/e distribgteg syste ocessed in parallel. While Map-Reduce can be used for

described above processing graphs, its structure is not optimized for such
« One-to-manyin Which one host storesmany nodes tasks. This is the reason that led Google researchers to

together with their local and remote edges, whil evelop another framework, called Pregel [12], optimized

communication occurs through messages betwetH mining_graphs dgta. .

hosts. This model is not supported by any existin Pregel is largely inspired by the Bulk Synchronpus

distributed framework, but it well fits a cloud and/oﬂgara”el model .(BSP) [15], [16], [17]. The cqmputaﬂon

iPregel consists of a sequence of iterations, called
u

o One-to-onein which onecomputational unit is asso-

grid computing scenario where the graph is alread duri hich the f c
distributed over a collection of storage units, and th persteps, auring - whic the ramework runs a user-
fined function on each vertex. In this function, a node

computation can be efficiently performed as close _ . _

possible to them. receives messages from neighbor nodes sent during the
Th . tributi fthi . | alaorith revious superstep, modifies its local state and sends

€ main contribution ot this paper 1S a novel algori essages to its neighbor nodes, to be received in the next

for distributed k-core distributed decomposition that Ca%uperstep Barrier synchronization is used, so that each
be applied to both models. Section 4 first proposes ' !

i . ; erstep is separated from the next one. Individual nodes
version that can be used in the one-to-one scenario, arﬂéJ

th h how to miarate it to th ¢ y leave the computation when they have reached the
en shows now to migrate It to € one-to-many Scenar@y o rqence to their final state. Although they can run in
by efficiently placing a collection of nodes under th

%N asynchronous environment, the algorithms described in

. L "Bhis paper can be directly translated in the Pregel model.
algorithm completes thé-core decomposition (N In [18], the authors propose DisNet, a master-worker

rounds, with\V being the number of nodes; more prec'sel¥ramework for parallel computation over large graphs. In

‘[Q"(egt'?: 5tﬁhor\:vsmal;1 lr“'pﬁfer: t;oun\c;vifr?urs:\r}f;r}n K|Z L :N'th nt e paper, the authors present the computation of between-
desceribgs aeclgss gf Ora Ohseihat a roaci th’v:eg beoet’ma:j ess centrality as a use case. Similarly to Pregel, DisNet
grap PP iSbuilt around a vertex-centric approach to parallelize th

requmngN N K& rounds. While such upper bounds ar omputational process. The main difference with Pregel
rather high, it turns out that real worlld graphs —such s in the way communication with workers take place.
the Slashdot comment network, the C|tat!on graph O.f Arxu'che solution proposed by DisNet is able to achieve higher
or the Gnutella overlay network— require a surprlslnglii()e

9

X . rformance at the cost of lower flexibility.
low number of rounds, as demonstrated in the experime . e ,
. : : n [19] a programming model (called 'Signal/Collect’)
described in Section 6.

for synchronous and asynchronous graph algorithms is
presented. The work is motivated by some issues arising
2 RELATED WORK in the Semantic Web domain, relative to the processing

In this section we revise the relevant state-of-art in tH 1arge graphs of RDF triplets. Signal/Collect is also
field. We consider two research areas. models for did-vertex-centric parallel model. The synchronous case is
tributed and parallel graph computation and centraliz&fmilar to computations in Pregel. A use case based on the

algorithms for computing thé-core decomposition. computation of PageRank is considered. .
A distributed framework for large graphs processing

o ) is presented in [20]. Distributed computations are orga-
2.1 Distributed Graph Computation Models nized into a hierarchy and coordinated by appropriate
A number of related works for the distributed and/or pasynchronizers. This framework is vertex-centric as well;
allel processing of graph structures has been presentegét, coordination is achieved by means of asynchronous



messages. Let kg(u) denote the coreness of in G. In what

In [21] deterministic parallel algorithms for solving afollows, G will be dropped by the notation when it is clear
number of graph computation problems (list ranking, Euldérom the context which subgraph 6f we are referring to.
tour, connected components, spanning forests, etc.) oveiThe distributed system is composed by a collection of
BSP and coarse grained multicomputer are presented. hosts H, whose overall goal is to compute thiecore

In [22] the authors evaluate the performance of thredecomposition ofy. Each node: is associated to exactly
platform models (relational, data-parallel and speciapne hosth(u) € H, that is responsible for computing
purpose in-memory) for computing a number of metriche coreness ofi. Each hostr is thus responsible for a
for very large-scale graphs (including, PageRank, Stgongtollection of nodes/ (), defined as follows:

Connected Components and Approximate Shortest Paths). V(2) = {u: h(u) = 7}

Their results show that, for metrics like PageRank, data- ' ’
parallel models present very good performance levels. Each host: has access to two functionseighboy; ()

and neighbog; (), that return a set ofieighbor nodesaind
neighbor hostsrespectively. Host: may apply these func-
tions to either itself or to the nodes under its responsyhili
The de facto standard algorithm for computikgcore it cannot obtain information about neighbors of other hosts
decomposition is the one originally proposed by Batagedy nodes under the responsibility of other nodes. Formally,
and Zavesnik (BZ) [5]. Their algorithm is based on thefor eachu € V and eachr € H, the functions are defined
recursive deletion of vertexes (and edges incident to thes follows:

of degree less thak. The algorithm makes use of bin-
?ort, and can run i (max(m,n)), which equalsO(m) neighbor, (z) () € EAue V(D)
or connected networks. .

BZ algorithm requires random access to the Whol’éelghboﬁ(x) ={y:(wv)e BAueV(z)rveV(y)}
graph, which should therefore be kept in the main memory A special case occurs when the graph to be analyzed
for the sake of performance. In [23] the authors address tbaincides with the distributed system, iH.= V. When
case in which the graph cannot — due to size constrairtkés happens, the label will be used to denote both the
— be kept in the main memory, but has to be accessedde and the host, and in general we will use the terms
through a (slow) external memory. They propose a modede and host interchangeably. Also, note that in this case
ification of BZ algorithm that require®(k,,..) scans of neighbog, (u) = neighbo; (u).
the graph, wheré,,, ... is the largest coreness index of the Hosts communicate through reliable channels. For the
graph. duration of the computation, we assume that hosts do not

The BZ algorithm does not lend itself to a distributearash.
implementation. When dealing with extremely large-scale
graphs, which can neither be held in the main memory n@gr - A | GoORITHM
stored on a single external memory, novel approaches %r
necessary.

2.2 k-Core Decomposition

neighboy, (u) = {v : (u,v) € E}
={v

Sr distributed algorithm is based on the propertylosf
cality of the k-core decomposition: due to the maximality
of cores, the coreness of nodes the largest valué such
3 NOTATION AND SYSTEM MODEL thatu has at leask neighbors that belong to /core or

) ] a larger core. The locality property writes:
Let G be an undirected grapfl = (V, E) with N = |V|

nodes andV = |E| edges. We denotég (u) the degree Theorem 1 (Locality). Vu € V' : k(u) = k if and only if
of u in G, whereas7(C) = (C, E|C) is the subgraph of (i) there exist a subset);, C neighboy,(u) such that

G induced by subset of nod€s, whereE|C = {(u,v) € |Vi| = k andVv € Vj, : k(v) > k and
E : u,v € C}. The concept ok—core decompositiofb] (ii) there is no subseV,,; C neighboy, (u) such that
is condensed in the following two definitions: [Vit1]| =k +1andVv € Viyq: K(v) > k4 1.

Definition 1. A subgraphG(C) induced by the sef’ C V' Proof.

is a k-coreif and only if Vu € C : dg(c) (u) > k, and =) Sincek(u) = k, W, C V exists such that. € Wy
G(C) is maximal, i.e., folC O C, there exist® € C such andG(Wy,) is ak-core, and there isno sBt.; C V
that d; ) (v) < k. such thatu € Wy1; andG(Wy.41) is a(k+ 1)-core.
Part (i) follows sincedg(w,)(u) > k, so that at least
k neighbors ofu belong tok-core G(W},).

Part (ii) follows by contradiction: assume that
Definition 2. A node inG is said to havesoreness if and v1,...,Vp+1 are k + 1 neighbors ofu with core-
only if it belongs to thé:-core but not thgk + 1)-core. nessk + 1 or more. Fori = 1,...,k + 1, denote

Maximality of k-cores guarantees uniqueness, i.e., there
exists at most oné-core inG for everyk =1,2,.. ..



W; C V such that; € W; andG(W;) is a (k + 1)-
core. Consider seV/ = {u} U Ufjll W;. Indeed,
u, indeed

if v e U, dc;(U)(U) > Ek+ 1 if v

value ofcorg coreis modified and thehangedlag is set

to true. Functiorcomputelndex() returns the largest value

1 such that there are at leas¢ntries equal or larger than
d(u) > k+1 by construction, whereasif # v € W;, in est computed as follows: the first three loops compute
dew)(v) > dgw,)(v) > k+1. Hence, ak+1)-core  how many nodes have estimater more,1 <i < k, and
exists G(U) may well not be maximal) and it is the store this value in arragount The while loop searches

(k 4 1)-core foru. Contradiction. the largest value such thatcounti] > i, starting fromk

For each nodey; € Vi, 1 < i < k, k(v;) > k and going down td.

there existsW; C V such thatG(W;) is a k-core The protocol execution is divided in periodic rounds:
andv; € W;. Consider set/ = {u} U Ule W;. everyd time units, variablehangeds checked,; if the local
With the same argument used above we see tregtimate has been modified, the new value is sent to all the
for eachv € U, dg)(v) > k: if v = u, indeed neighbors ancthangeds set back to false. This periodic
d(u) > k by construction, whereas if # v € W;, behavior is used to avoid flooding the system with a flow
dewy(v) > dew,)(v) > k. Again, this proves that of estimate messages that are immediately superseded by
k(u) > k. the following ones.

Suppose now that(u) = k' > k + 1, by contradic- It is worth remarking that during the execution, variable
tion. This means that there is sub®8tC V such that coreat nodeu (i) is always larger or equal than the real
G(W) is a k’-core containingu, i.e. v has at least coreness value of;, and (ii) cannot increase upon the
k' > k+1 neighbors ind ) (u), each of them thus receipt of an update message. Informally, these two ob-
with corenessk’ > k + 1; but this contradicts our servations are the basis of the correctness proof contained
hypothesis (ii). We can conclude thetz) = k. O in Section 5.

The locality property tells us that the information about
the coreness of the neighbors of a node is sufficient té\lgorithm 1: Distributed algorithm to compute the
compute its own coreness. Based on this idea, our alggore decomposition; routine executed by nade
rithm works as follows: each node producesestimate  on initialization do

of its own coreness and communicates it to its neighbors;
at the same time, it receives estimates from its neighbors
and use them to recompute its own estimate; in the case
of a change, the new value is sent to the neighbors and
the process goes on until convergence.

This outline must be formalized in a real algorithm; we ©
do it twice, for both the one-to-one and the one-to-many
scenarios. We conclude the section with a few ideas about
termination detection, that are valid for both versions.

4.1 One host, one node
Each nodex maintains the following variables:

changed— false;

core+ d(u);

foreach v € neighboy, (u) do esfv] + oo;
| send(u, coré to neighbot; (u);

n receive(v, k) do
if k& < esfv] then
estv] « k;
t < computelndex(est u, corg);

if ¢ < corethen
L core+t;

changed— true;

« coreis an integer that represents the local estimaterepeateveryé time units (round duration)

of the coreness of; it is initialized with the local
degree.

est] is an integer array containing one element for
each neighborgstv] represents the most up-to-date

if changedhen
send (u, core to neighboy, (u);
changed— false;

estimate of the coreness of known by «. In the

Algorithm 2: int computelndex(int[] est int wu, k)

absence of more precise information, all its entries
are initialized to+oo.

changeds a Boolean flag set to true dorehas been
recently modified; initially set to false.

The protocol is described in Algorithm 1. Each node
u starts by broadcasting a messaged(u)) containing
its identifier and degree to all its neighbors. Whenever
receives a message, k) such thatk < esfv], the entry
esfv] is updated with the new value. A new temporary
estimatet is computed by functioncomputelndex() in
Algorithm 2. If ¢ is smaller than the previously known

1

for i =1 to k do counti] < 0;
foreach v € neighboy, (u) do

L

for ¢ = k downto 2 do
| counti — 1] « counti — 1] + counti];

Jj < min(k, esfv]);
countj] = countj] + 1;

— k;

while ¢ > 1 and counfi] < i do
| i+ 11—1;
return i;

4



Step 1 can be actually implemented through a broadcast. If the
1, 2 3 4 2 <« S send toprimitive is implemented through point-to-point
8 [‘3’] % [‘g’] 3 [?] send operations, a simple optimization is the following:

i message updatés, core are sent to a node if and only

Step 2 if core< esfv]; in other words, it is sent only if a node

u knows that the new local estimaterecan potentially
lower the coreness estimation at nodeotherwise, it is
skipped. In our experiments, described in Section 6, this
optimization has shown to be able to reduce the number
of exchanged messages by approximatél}.

D

i N

o O

[1] [2] [3]\ [3] [2]

é/N :
Q O/

[2] [2] [2] [2]

Step 3
1

®
(1]

] 4.2 One host, multiple nodes
The algorithm described in the previous section can be

easily generalized to the case where a hastresponsible
Fig. 2: A simple example describes the run of the afor a collection of noded/(x): z runs the algorithm on
gorithm: corgu| value at nodeu is reported in squared behalf of its nodes, storing the estimates for all of them
brackets, a node marked blue is active, i.echangefl] and sending messages to the hosts that are responsible for
is true, whereas arrows along edges denote wisie] their neighbors. Described in this way, the new version of
triggerscorgu| to change at the receiving node the algorithm looks trivial; an interesting optimizatios i
possible, though. Whenever a host receives a message for
. ) a nodeu € V(z), it “internally emulates” the protocol:
The pseudo-code algorithm 1 can be easily adoptggh estimates received from outside can generate new
to existing frameworks like Map-Reduce or Pregel. ggiimates for some of the nodeslitfz); in turn, these can
Pregel, for_example, all the new estimates received &t arate other estimates, agaifvif); and so on, until no
the beginning of a superstep are storedast and a ey internal estimate is generated and the nodes(ir)
single invocation tocomputeindex is performed. If the po.ome quiescent. At that point, all the new estimates
local k variable is decreased, its value is sent to all it$,5t have been produced by this process are sent to the

neighbors; otherwise, the node leaves the computation,j@ighhoring hosts, where they can ignite these cascading
be awakened again when new estimates are received. changes all over again.

Each noder maintains the following variables:

. esf] is an integer array containing one element for
each node i/ (x) U neighboy, (x); esfv] represents
the most up-to-date estimate of the corenesw of
known by z. Given that elements ofieighboy, (x)
could belong toV(x) (i.e. some of the neighbors
nodes of nodes if¥' (z) could be under the responsi-
bility of ), we store all their estimates &s{ ] instead

of having a separate arrayord | for just the nodes

41.1 Example

We describe here a run of the algorithm on the sample
graph reported in Fig. 2. At the first round, all nodes
v have core = d(v); nodes2,3,4 and5 send the same
value core = 3 to their neighbors: these messages do
not cause any change in the estimates of the coreness
of receiving nodes. However, in the same round, nodes
1 and 6 notify their core = 1 value to node® and 5,
respectively: as a consequence, n@dend5 update their

estimates tacore= 2. Thus, in the second round another
message exchange occurs, since n@dasd5 notify their ¢
neighbors that their local estimate changed, i.e., thed sen
core = 2 to nodesl, 3,4 and 3,4, 6, respectively. This

in V(x).

changed is a Boolean array containing one element
for each node inV(x); changefl] is true if and
only if the estimate ofv has changed since the last

causes an updateore= 2 at nodes3 and4, which have broadcast.

to send out another updatere= 2 to nodes2 and4 and The protocol is described in Algorithm 3. At the begin-

nodes3 and 5, respectively, in the third round. However,ning, all nodesy € V(X)) are initialized toesfv] = d(v);

no local estimate changes from now on, which in turn® the absence of more precise information, all other

means that the algorithm converged. Finallgre= 2 for ~entries are initialized toroco. FunctionimproveEstimate ()

v=2,3,4,5 andcore= 1 for v = 1, 6. is run to compute the best estimatesan obtain with the
local information; then, all the current estimates for the

4.1.2  Optimization nodes inV (z) are sent to all nodes.

Depending on the communication medium available, someWhenever a message is received, the aeafis up-

optimizations are possible. For example, if a broadcagated based on the content of the message; function

medium is used (like in a wireless network) and the neiglimproveEstimate() is called to take into account the new

bors are all in the broadcast range, gend to primitive information thatx may have received.



Algorithm 3: Distributed algorithm to compute the
core decomposition, executed by hast

on initialization do

foreach v € neighboy, (x) do esfv] < +oo;
foreachu € V(z) do esfu] < d(u);
improveEstimate(es);

S <« {(u,esfu]) :u e V(x)};

4.2.2 Node-hosts assignment policy

The graph to be analyzed could be “naturally” split among
different hosts, or nodes could be assigned to hosts based
on a well-defined policy. It is difficult to identify efficient
heuristics to perform the assignment in the general case.
In this paper, we adopt a very simple policy: assuming that
nodes identifiers are integers in the ran@e. . n — 1] and
hosts identifiers are integers in the rarige..|H| — 1],

send (S) to neighboy, (z);

each nodeu is assigned to host mod |H]).

o

n receive(S) do
foreach (v, k) € S do

Algorithm 4 : improveEstimate(int[] es?)

| if k < esfv] then esfv] « k;
| improveEstimate(es);

—

epeat everyd time units (round duration)
S« 0;
foreach u € V(z) do
if changefl:] then
S« SU{(u,estu))};
L changefl:] + false
if S # 0 then

again« true;
while againdo

again« false
foreach u € V(z) do
k « computelndex(est u, estu));
if k& < esfu] then
estu] « k;
L changefli] < true;
again« true;

| send(S) to neighboy, (x);

Algorithm 5: Code to be substituted in Algorithm 3

Periodically, nodex computes the seb of all pairs
(v, esfv]) such that (i) is responsible for and (i) estv]
has changed since the last broadcastS lis not empty,
it is sent to all nodes in the system. Alternatively, barrier
synchronization could be adopted, starting a new round
whenever all the messages sent during the previous round
from all hosts have been received.

FunctionimproveEstimate() (Algorithm 4) performs the

repeat every§ time units (round duration)

foreach y € neighbog; (z) do
S« { (u,estu]) :u e V(z)A
(u,v) e EAvEV(y) 1
if S# 0 then
| send(S) to y;

foreach u € V(z) do
| changefli] < false;

local emulation of our algorithm. In the body of the
while loop, z tries and improve the estimates by calling, 5
computelndex() on each of the nodes it is responsible fo
If any of the estimates is changed, varialsigainis set
to true and the loop is executed another time, because
variation in the estimate of some node may lead to changV
in the estimate of other nodes.

4.2.1 Communication policy

There are two policies for disseminating the estimate
updates. The above version of the algorithm assumes that
a broadcast medium is available. This means that a single,
message containing all the updates received since the last
round could be created and sent to all.

Alternatively, we could adopt a communication system
based on point-to-point send operations. In this case, it
does not make sense to send all updates to all nodes,
because each update is interesting only for a subset of
nodes. So, for each hogt € H, we create a message
containing only those updates that could be interesting
for y. The modification to be applied to Algorithm 3 are
contained in Algorithm 5.

Termination

I . .

To complete both algorithms, we need to discuss a mech-
anism to detect when convergence to the correct coreness
e%ues has been reached. There are plentiful of altersative

Centralized approacheach host may inform a cen-
tralized server whenever no new estimate is generated
during a round; when all hosts are in this state, mes-
sages stop flowing and the protocol can be terminated.
This is particularly suited for the “one node, multiple
hosts” scenario, where it corresponds to a master-
slaves approach.

Decentralized approachepidemic protocols for ag-
gregation [24] enable the decentralized computation
of global properties inO(log|H|) rounds. These
protocols could be used to compute the last round in
which any of the hosts has generated a new estimate
(namely, the execution time): when this value has
not been updated for a while, hosts may detect
the termination of the protocol and start using the
computed coreness.

Barrier synchronization if barrier synchronization

is adopted in the one-to-many version, nodes may



decide to stop when none of them has produced any nodesv such thatcorgv) is always at leas?; clearly,

new estimate update during the previous round.

« Fixed number of roundss shown in Section 6, most
of real-world graphs can be completed in a very small
number of rounds (few tens); furthermore, after very
few rounds the estimation error is extremely low.

Results show that if one tolerates a small error, i.e., o

on the order of a few units, an approximatecore

decomposition can be generated running the protocol

for a fixed number of rounds, i.el5—20 rounds.

5 CORRECTNESS PROOFS

u € D.E By Algorithm 1 and 2, each node € D
must have two neighbors belonging fa Therefore,
for all v € D, dg(py(v) > 2 and D is contained in
a 2-core. Given that, € D, u belongs to a 2-core, a
contradiction.

Induction step by contradiction, suppose there is a
nodew; such thatk(u,) = k& > 1 and cordu;) > k
forever. By Theorem 1, there arg > k neighbors
of u with coreness greater than or equal Apand
d(u) — f neighbors ofu whose coreness is smaller
thank.

If f = k, by the inductive assumptiony;, will

We now prove that our algorithms are correct and eventu- ] -
ally terminate. While we focus on the one-to-one scenario, €ventually received(u;) — k estimates smaller than
the results can be easily extended to the one-to-many case. *» While the otherk estimates will always be larger

5.1 Safety and liveness

Theorem 2 (Safety) During the execution, variableore
at each node: is always larger or equal than(k).

Proof. By contradiction, assume there exists nagesuch
that cordu,) < k(ui). By Theorem 1, there is a set
Vi C V such that|Vi| = k(uq) and for eachw € V;:
k(v) > k(uy). In order to setordu,) smaller thark(u,),

u; must have received a message containing an estimate

smaller thank(u;) from at least one of the nodes 1.
Notice this cannot happen at time= 0, since initialization

or equal tok by Theorem 2. Soy; eventually sets
corduy) equal tok, a contradiction.

If f > k+ 1, let C be the set of nodes such
that k(v) = k but corgv) > k + 1 forever. Because
f >k, we know that every € C has at leasff + 1
neighbors, such that for each of these neighhgrs
eitherk(u) > k+1 or k(u) = k but cordu) > k+1
forever. Also, letD be the set of all nodes such that
corgv) is at leastt 4 1 forever and note that C D.
By Algorithm 1 and 2, for anyw € D, v must have
at leastk + 1 neighbors belonging t@®. Therefore,
forallv € D, dg(py(v) > k+1 and D is contained

to ak + 1-core. Given thatC C D, this means that
nodes inC' belong to ak + 1-core, which contradicts
the definition ofC. O

forces dg(v) = cordv) > k(v), Vv € V. Thus, let
us consider any subsequent round at titne- 1,2,...
Formally,u; must have received a message, corgusz))
from uy at time to, such thatus € V; and cordus) <
K(uy1). Given thatk(u;) < k(uz) (becauseus € V;), we ) )
conclude thatordus,) < k(us): in other words, we found -2 Time complexity

another node whose estimate is smaller than its coren&gf proved that our algorithms eventually converge to the
By applying Theorem 1 again, we derive thatreceived correct coreness; we now discuss upper bounds on the
a messaggus, Corgu)) from uz at time ¢z < 1y, SUCh execution time defined as the total number of rounds
that corgluz) < k(uz) < k(uz). This reasoning leads gyring which at least one node broadcasts its new estimate
to an infinite sequence of nodes, uy, us, ... such that (when no new estimates are produced, the algorithm stops
corgu;) < K(u;) andu; received a message from. at  gng the correct values have been obtained).

time ¢;, with ¢; > ¢;,1. Given the finite number of nodes, g this purpose, we assume that rounds are syn-

this sequence contains a cyalg ui1, ..., u; = ui; Ut opronaus: during one round, each node receives all mes-
this means; > t;11 > ... > t; = t;, a contradiction. L q5465 addressed to it in the previous round (if any), com-
Theorem 3 (Liveness) There is a time after which the putes a new coreness estimate and broadcasts a message to
variable coreat each node: is always equal to (). all its neighbors if the estimate has changed with respect

¢ h bl b I to the previous round. At rount each node broadcasts its
Proof. By Theorem 2 variableorgu) cannot be smaller current estimate (equal to its degree) to all its neighbors.

thank(u); by construction, variableorecannot grow. So, 1o gimplify the analysis, no further optimizations are
if we prove that the estimate will eventually become eq“ﬁlpplied. In the final round, messages are sent but they do

to the actual coreness, we have proven the theorem. The .5\ se any variation in the estimates, so the protocol
proof is by induction on the corenekg:) of nodeu € V. terminates

« k(u) = 0:in this casey is isolated. Its degree, used e first observation is that after the first round, in any
to initialize corg(u), is equal to its coreness and theypsequent round before the final one at least one node
protocol terminates at the very beginning for nade st change its own estimate, reducing it by at ldast

o k(u) = 1: assume, by contradiction, thieu) = 1 but  This brings to the following theorem:
cordv) is always at leas?. Let D be the set of all



Theorem 4. Given a graphG = (V, E), the execution 2) k(v;) < m(r): from the definition ofm(r), v; €

time is bounded by + " [d(u) — k(u)]. A(r), and they never notify such value at rounds
uev r+2,7+3,... due to ii);

Proof. The quantity[d(u) — k(u)] represents the “initial ~ 3) k(v) = m(r): eitherv;s belong toA(r), and they

error’ at nodeu, i.e. the difference between the initial will never notify such value at + 2 due to ii), or

estimate (the degree) and the actual coreness &f the they belong toM(r) = M(r + 1), so that if any

worst case, at most one message is broadcast per round, value is notified by such nodes, it will lBorgv;) >
and each broadcast reduces the error by one unit, apart m(r)+ 1 at roundr + 2.
from the last one which has no effect. Thus the executigfence, all nodes inv, ... Um(ry11 Wil still have
time is bounded by the sum of all initial errors plus oneorev;) > m(r) + 1 at roundr + 2, so thatM (r + 2) =
M(r+1) = M(r). We can iterate the same argument at
While the previous bound is based on the knowledge pdundsy + 3, + 4, . . ., so that for all nodes i (r), the

the actual coreness index of nodes, we can define a bofrect estimaten(r) will never be attained, contradicting
on the execution time that depends only on the graph sizgeorem 3.

Theorem 5. The execution time is not larger tha¥. We hence proved thab(r) = A(r) \ A(r — 1) # 0
forr =1,...,T, where we letA(0) = @ for the sake of
Proof. , notation andA(1) # 0 because of i). Also, it is easy to
Given a run of the algorithm, denote see thatV = A(T) = UT_, D(r) and D(r) N D(s) = 0
A(r) = {u € V| corgu) = k(u) at roundr }. for r # s. Thus,
We make the following observations: N T DOl — ) Dl > T
i) A(1) # (: each nodey with minimum degree’ is = Ql (r)l = ;' ()| =

included in A(1). In fact, u is such thatk(u) = 4,

otherwise there would be a nodec neighbog,(u) ~ The tighter boundl" < N — 1 is obtained by contra-
with a degree less thaf which is impossible. Given diction. Consider roundV — 2 and assumd” > N — 1.
that corqu) = 4 at round 1 by initialization, » Using the same arguments as abdvg N —2)| > N —2.

belongs toA(1). Case|A(N —2)| = N — 1: considerv such that{v} =
iy If uwe A(r), thenu does not send any message fof (IV — 2); due to ii) all neighbors ofv would notify

all remaining rounds: + 2,7 + 3, .. .. their true coreness at round — 1 at the latest. Hence,
iy A(r) CA(r+1) Vr. v could calculatecorgv) = k(v) at round N — 1, i.e,,

It is easy to see that the statement is true for< 2, so v € AN —1). Finally, A(N —1) =V, so thatl’ = N —1
that we will consider onlyV > 3 in the rest of the proof. 29ainst our assumption.
We denote byT the smallest round index at which Case[A(N —2)| = N —2: denotev; andv, such that
A(T) = V. By definition, the execution time equafs-1.t  v1,v2 € A(N —2). Indeed,v; andwv, must be neighbors:
Denote m(r) = min{k(u) : u & A(r)}, ie., the otherwise from ii) all their neighbors would notify their
minimal coreness of a node that did not yet attain tH&U€ core value byV —1 so thatv, andv, would compute
correct value at round. Also, denoteM () = {v : k(v) = their own correct core valge by — 1. Observe that poth
m(r),v & A(r)}, the set of all such nodes. v; andwvy have neighbors in the set(NV — 2), otherwise
AssumeA(r) # V so thatM(r) # (: at roundr + 1 one of them would have degrée which is not possible
there must exist € M(r) such thaty € A(r + 1), i.e.,» Since it would belong toA(1).
attains the correct value at roumd+ 1 and thus notifies ~ Consider nodev; for simplicity: at roundN — 1, v
such value at round + 2 to its neighbors. To see this, €stimatesorgv;) > k(v1)+1. However, since only, has
assume by contradiction that no nodein M (r) attains @ Wrong estimation, from Thm. 1 there need tokje; )

the correct value at round+ 1, i.e., M(r) = M(r 4 1): nodesvy # u;, & = 1,... u,) such thatcorgu,) =
this means that all nodes i () havem(r)+1 neighbors, K(ui) = k(v1) + 1. But,
V1. Um(r)4+1, SUCh thatcorgv;) > m(r) + 1 at round e cordvs) > K(vy)+1 because; estimatexorgv,) >
r+1fori=1,...,m(r)+ 1. We claim that for all such k(vy) +1
nodescorgv;) > m(r)+1 at successive roundst+ 2, + o cordv;) = k(v1) + 1 for only ve has a wrong
3,.... estimation.
There are three possible cases for the: The same reasoning applies 4g: cordv,) > k(vy) + 1
1) k(v;) > m(r)+1: due to Theorem 2 such nodes camnd corgvy) = K(vs) + 1 Thus, corgv,) = K(vy) + 1 >
only notify corgv;) > m(r) + 1 to nodeu; K(vo) + 1 and alsocorévs) = k(vs) + 1 > k(v1) + 1 so

that cordv,) = cordvs). However, nodes ilA(N — 2
1. This is due to the fact that, by our definition, the executione E( 1) E( 2) ( )

includes also the last round, in which updates are sent leyttiave no will not notify again their f:OI’I’eCt estimate from rOl_“M
further effect on the computed coreness. on and nodes; and v, will perform the same estimate



they had at roundV — 1, i.e., k(ve) + 1 = cordvy) = 3 5
corgvs) = k(v1)+ 1. Thus, no message can be exchanged )
from round N on, while cordv;) # k(v;) i = 1,2. But,
this contradicts the liveness property so that it must be 6
T<N-1. 1
- 7
From the proof, we observe that the nodes of minimal
degree attain the correct coreness at the first round. We 1
can slightly refine the bound as: 7 8

Corollary 1. Let K be the number of nodes with minimafig. 3: The worst-case graph, for which the execution time
degree inG. Then the execution time af is not larger IS exactly N —1 rounds,N' = 12.
than N — K + 1 rounds.

~ We observe that the bound provided by Theorem 5 isone would expect that there should be a relation

tighter than that provided by Theorem 4 if and only ihetween diameter and execution time. This is true for

the initial average estimation errog Zv (d(u) — k(u)) example for linear chains ofV, where [N/2] rounds

is larger thanl — % e are required. The smaller the diameter, the shorter should

Some important questions are (i) how tight is the bourRf the execution time. However, despite we noticed a
of Theorem 5, and (ii) is there any graph that actuaHpeneﬂua! effect of small dlameterg, this does _not hold in
requiresN rounds to complete? Experimental results witg€neral: in fact, the example of Figure 3 provides a case
real-life graphs show that the bound is far from being tigh"€n the convergence time increases linearly viitfbut
(graphs with millions of nodes converge in less than orf8€ diameter iss, i.e., a constant regardiess f.
hundred rounds, see Sec. 6). However, we managed to
identify a class of graphs close to the bound, i.e., with3 Message complexity

execution time equal t0/—1 rounds forN' > 5. ASSUMING - 1o mayimum number of exchanged messages can be
that nodes are n-umbered fromto NV, the rules to build ;o5 ted using a double counting argument: during the
such graphs are: run of the algorithm, each node can at most receive

« node N is connected to all nodes apart from node(v)—k(v) updates from each neighbore neighboy; (u).

N -3, If a node is connected (and thus exchange messages), its
» each nodei = 1...N — 2 is connected with its coreness is at least thus, there are at modtu)+d(v)—2

successof + 1; messages that can be exchanged over the undirected edge
e nodeN — 3 is also connected with nod¥ — 1. (u,v).

Figure 3 shows the graph obtained by this scheme fr[n
N = 12. Graphically, it is convenient to represent node
N as thehub of a polygon, where nodes are located at
the corners. All nodes have degrgeapart from the hub Proof; It is simple to note that each node contributes

which has degre&V — 2 and nodel which has degree. (,) times a value ofi(v) — 1 to the sum; summing over
When starting our algorithm, nodeacts as drigger: it  g|| Jinks,

has the smallest degree and its broadcast causes2rtode
change its estimate t®, which in turn will cause nodé

heorem 6. Given a graphG = (V, E), the message
omplexity is bounded by, cy () *(v)| — 2.

2
to change its estimate &y and so on until the estimate of Z [d(u) +d(v) — 2] = Z d*(v)| —2- M
node N — 4 changes t@. Note that nodeV has changed (“v)€F veV(G)
its estimate fromV — 2 to 3 after the first round, and has O

maintained this estimate so far. In the next next round, Denoting the maximum degree in the graph withan
nodesN —3 and N change their estimate @ in the last upper bound to the above sum33/(A — 1), which is
round, nodeN — 1 and N — 2 change their estimate toO(A - M).

2 as well and the algorithm terminates. Given that during

each round apart from the last two, at most one node hﬁaﬁ Special h

changed its estimate, the total number of rounds is exactly pecial graphs

N —1 (N — 2 plus the last round). We can observe the convergence properties and the mes-
It is worth remarking that other simple structures ongage complexity of the algorithm in some particular cases:

may think of as potential worst cases offer lower execution « The algorithm converges in exactlyround and2 M

time. As an example, a linear chain of si2é requires messages for every graph of given constant degree, or,

[N/2] rounds to converge. more in general, for all graphs such that= k(v);



« The algorithm converges iH-L rounds and witt3 M/ 100 " AstoPh ——
messages for every tree with levels; observe that ) CondMat ———

. ; i 0l _ Gnutella3l - ]
the calculation of thé:-shell of a tree is equivalent to 1) sign-Slashdot -
the recursive removal of edges, so that the minimal roadNet-TX ------

. L . 3 1 BerkStan -~~~
required number of rounds coincides with the numberc wiki-Talk ——-
of levels; in this case the algorithm convergence times o1t
scales linearly withl; o \

« For all grid-type of topologies, e.g., meshes, triangu-2 001 L
lar grids or where all nodes have same degree apart
from border nodes, the convergence time is dictated  o.001 +
by the maximum distance of an inner node from the
border. For instance, in the case of a mesh with 0.0001 20 40 60 80 100 12 140
nodes, the number of roundsjidor p even angp+1 Round
for p odd: this is also the number of hops that are
required for the information on the degree of cornegfig. 4: One-to-one distributekl-core decomposition: per-
nodes to reach the opposite side of the grid. In thientage of active nodes versus time.
example the convergence time scales linearly with the
diameter, i.e.2(p — 1).

experimentsmg,, and m,,., represent the average and

6 EXPERIMENTAL EVALUATION maximum number of messages per node.
A few observations are in order. First of all, the ex-

This section reports experimental results, both throughtion time is of the order of few tens of rounds for
a simulator and a r_eal implementation. Simulations haygost of the graphs, with only a couple of them requiring
been performed using Peersim [25], on both the one-tRsy hundreds of rounds (web-Berkstan, the web graph of
one and the one-to-many versions of the algorithm, ovBerkeley and Stanford, and RoadNet-TX, the road network
a selection of graphs contained in the Stanford Largg Texas). Compared with our theoretical upper bounds
Network Dataset collectiorf. Undirected graphs have (nymber of nodes and total initial error), this suggests tha
been transformed in directed graphs by considering baify, aigorithm can be efficiently used in real-world settings
directions (i.e., two edges) for each link present in the 1o average and maximum number of messages per
original one. We deployed a real implementation of thg,qe is, in general, comparable to the average and max-

one-to-many version of the algorithm in Amazon ECZ,m degree of nodes. Clearly, nodes with several thou-
and compared it with the state-of-the-art BZ algorithm [Skanqs neighbors will be more overloaded than others.

using a social network model called Nearest Neighbor [26] |, order to understand why web-Berkstan requires so

to generate graphs of increasing size. many rounds to complete, we performed an in-depth

Unless otherwise stated, the results show the avera&?awsis of the dynamic behavior of the proposed algo-

over 50 experiments. Experiments differ in the (NON3jhms. In particular, we considered, for each core, the

dete_rministic) order with which operations are performegh,e taken for all nodes within it to reach the correct

at different nodes. coreness value. Results are reported in Table 2. The
first two columns report the problematic cores and their

6.1 One-to-one version cardinality, respectively. The remaining columns repnése

For this version, the main results are summarized me percentage of nodes whose estimate is still erroneous at

Table 1, which is divided in two parts. On the left, thé"“gg’f = 25,00, 300 an emply i]o'“rl” CO”eSpOI“Ot'S .
main features of each graph considered are reported: nanie,. 0, I.€., In€ core computalion has been completed.
number of nodes, number of edges, diameter, maxim first look, the 55-core seems particularly problematic,

degree, to conclude with maximum and average corene%’.er::J ;gathtozﬁ tg;n one half IO]; It 's fSt'" mcorr;ggt at
On the right, the table reports information about theoun - but the bo-core completes betore rou '
ell before thel-core that terminates after rourgfO.

performance of the one-to-one protocol, based on twWo ; ) .
figures of merit: execution time (measured in roundv],lé)eIays in computing th@-core may be associated to the

i.e., fixed-size time intervals during which each nodeigh diameter of this particular graph, with “deep” pages

has the opportunity to send one update message to i[h far away from the highest cores.

its neighbors) and total number of messages exchang%d'.Add't'onalI mforbmatl(t))n gb%ugthe telmporalhbehawor of
I Particular,taug, tmim @nd tmes represent the average,t e protocol can be obtained by analyzing the percentage

minimum and maximum execution time measured &\er of active n(_)des over time, _shown n F_lg_ure 4 — where a
node is defined active at a given round if it has sent at least

2.http://snap. stanford. edu/ dat a/ one message during that round. It is possible to see that by
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Name |V‘ |E‘ %) dmaz kmag km)g tavg tmin tmaz Mayg Mmazx

1) CA-AstroPh 18772 198110 14 504 56 | 12.62 19.55 18 21| 47.21 807.05
2) CA-CondMat 23133 93497 15 280 25 4.90 15.65 14 17 | 13.97 410.25
3) p2p-Gnutella31l 62590 147895 11 95 6 2.52 27.45 25 30 9.30 131.25
4) soc-sign-Slashdot09022[L 82145 500485 11 2553 54 6.22 25.10 24 26 | 29.32 3192.40
5) soc-Slashdot0902 82173 582537 12 2548 56 7.22 21.15 20 22 | 31.35 3319.95
6) Amazon0601 403399 | 2443412 21 2752 10 7.22 55.65 53 59 | 24.91 2900.30
7) web-BerkStan 685235 | 6649474 | 669 84230 201 | 11.11 || 306.15| 294 322 | 29.04 86293.20
8) roadNet-TX 1379922 | 1921664 | 1049 12 3 1.79 98.60 94 103 4.45 19.30
9) wiki-Talk 2394390 | 4659569 9 | 100029 131 1.96 31.60 30 33 5.89 | 103895.35

TABLE 1: Results obtained for one-to-one distributedore decomposition. Name of the data set, number of nodes,
number of edges, diameter, maximum degree, maximum c@e@@srage coreness, average-minimum-maximum
number of cycles to complete, average/maximum number ofages sent per node.

[k #] 25 | 50 | 75] 100 125] 150] 175] 200 225] 250 275] 300 |
1 ][ 55776 14.12% | 10.26% | 7.36% | 4.07% | 2.09% | 1.65% | 0.92% | 0.56% | 0.21% | 0.13% | 0.08% | 0.02%
2 [ 83109 381% | 1.35% | 0.55% | 0.27% | 0.14% | 0.06%
367910 1.42% | 0.23%
4 || 44548 0.95% | 0.07%
5 || 68728 0.46% | 0.05%
6 | 35985| 348% | 1.01% | 0.01%
8| 32412 121%| 0.46% | 0.10%
9 [[28042] 0.18%
10 || 22322 | 1.96% | 0.64%
15 || 6842 0.99%
55 || 2548 | 50.78% | 43.84% | 36.77% | 29.71% | 22.76% | 15.46% | 8.40% | 1.73%

TABLE 2: Information about nodes that are delaying the completion of the protodbke web-Berkstan graph. The first column
k represents a coreness value; the second column # represents tbets&g-core, i.e., the number of nodes whose corenegs is
the column labeled = 25, 50, ..., 300 represents the percentage of nodes in the given core that do nottkeaverrect coreness
value aftert rounds. Empty cells corresponds@®o. All other coreness are correctly computed at ro@ad
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Fig. 5: One-to-one distributekl-core decomposition: evo- Fig. 6: One-to-one distributekl-core decomposition: evo-
lution of evaluation error (averaged over all nodes ardtion of maximum evaluation error (over all nodes and
all repetitions) versus time. The smaller graph shows tladl repetitions) versus time.

details of the first rounds of the computation.

Figure 5 shows the average error for our experimental
round 20, less than 1% of the nodes are still active, witfraphs. When the line stops, it means that the algorithm
BerkStan and wiki-Talk showing residual activity everhas reached the correct coreness estimate, so the error
after one hundred rounds. is zero. The “subfigure” zooms over the first rounds,

Another figure of merit is the temporal evolution ofto provide a closer look to the test cases that converge
error, measured as the difference — at each node — betwepiickly. Figure 6 shows the maximum error (computed
the current estimate of the coreness and its correct valoger all nodes, and oveb0 experiments) for all our
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Fig. 7: One-to-one distributetl-core decomposition: per- Fig. 8: One-to-many distributed—core decomposition:
centage of correctly identified nodes in the top 1% rankingverhead per node — with broadcast medium.

graphs (points have been slightly translated to improwveachine. Experimental results showed that the number of
visualization). As it can be seen, in all our experimentabunds needed to complete the protocol was equivalent to
data sets, the maximum error is at most equal to 1 by cydleat of the one-to-one version. One of the key performance
22. figures to be considered for the one-to-many version is the
Error can be measured in yet another way — the ceemmunication overhead generated by update messages
pability of the protocol to identify the inner cores of theexchanged among hosts. The overhead is computed as the
graph. This is relevant in applications where the goal s/erage number of times a node generates a new estimate
to identify the most influential nodes within a complexhat has to be sent to another host.
networked structure instead of actually computing the Figures 8 and 9 show the overhead per node with a
exactk—coreness of all nodes. To measure this, we rankedriable number of hosts, with and without a medium
the nodes by decreasing shell index, and we selected Breadcast available, respectively. For visualizatiosoes,
first 1% of nodes; we then counted, after each roundnly some of the original data sets have been considered,;
the number of nodes whose estimate is correctly includédt the results are similar for all of them. Twenty exper-
in the top 1%. This metric tells us that although indeiments were considered for this case. In the graph, the
estimates may be approximate, the composition of tlmitcome of each experiment was represented as a point
inner cores (the more important ones) has been corredthfightly translated for the sake of visualization clayity
discovered. The results, averaged ovér rounds, are  When a broadcast medium is not available and point-
shown in Figure 7. The outcome is consistent with oup-point communication is used, the overhead increases
previous evaluations, with the top 1% nodes being cowith the number of hosts available, tending to stabilize
rectly identified in few rounds. Two facts are worth beingo the levels of the one-to-one protocol (see thgyg
mentioned: in all our datasets, the correct identificatibn column of Table 1 — values are slightly higher given that
the inner cores happens suddenly; and wiki-Talk is agatine optimization of Section 4.1.2 cannot be applied in this
the most problematic one, with none of the members ofise). When a broadcast medium is available, on the other
the inner cores identified by roungD, to sudden reach hand, the efficiency is much higher. In this case, a single
100% by round32. message is sent at each round, containing all the estimates
These error figures tell us that if the exact computatiadhat have changed since the previous one. Most of the
of coreness is not required (for example if coreness is useddes reach the correct estimate after few rounds and very
to optimize gossip protocols in a social network), the few estimates are sent on their behalf after the first rounds;
core decomposition algorithms proposed may be stoppie: effect is that the average number of estimates sent per
after a predefined number of rounds, knowing that botiode is extremely low, always smaller thanmaking the
the average and the maximum errors would be extremealpe-to-many algorithm particularly well-suited for clest
low. connected through fast local area networks.

6.2 One-to-many version 6.3 Realistic deployment

The main reason for running the one-to-many version @b test our protocol in a real deployment, we implemented
the protocol is to compute thie-core decomposition over the one-to-many version with barrier synchronization and
large graphs, that cannot fit into the memory of a singkxecuted it using machines rented from Amazon EC2.
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Fig. 9: One-to-many distributed—core decomposition: Fig. 10: One-to-many distributetl—core decomposition:
overhead per node — without broadcast medium. computation time with respect to the centralized version.

Furthermore, we compared it with the state-of-the art Bgf online and/or large graphs. While theoretical analysis
algorithm executed in the same environment. provided us with fairly large upper bounds on the number
The implementation of the BZ algorithm is based 0@f rounds required to complete the algorithm, which
the following assumptions: (i) it is possible to store iRyre strict for specific worst-case examples, experimental
main memory a small, constant-size amount of informatiqasylits have shown that for realistic graphs, our algorthm
associated to each of the nodes in the graph; (ii) t@ficienﬂy converge in few rounds.
entire graph can be randomly accessed through an externaje provided a distributed implementation of the one-
storage, but storing it entirely in memory is not possip-many version and deployed on a fairly large network
ble. While these assumption are somehow realistic (teg@mposed by Amazon EC2 nodes. These results are far
“High-Memory Quadruple Extra Large Instance” rente¢yom being definitive (many optimizations could be still
by Amazon has 68GB of main memory and 1.7TB ofe applied to both the centralized and distributed versions
storage, which are sufficient for a few billions of nodeg g exploring the use of threads in modern multi-threaded
in- memory and hundreds of billions of edges on storaggjsocessors); yet, the results suggest that a distribute ap-
still they show that computing large-scale graphs canngfoach could enable the analysis of larger graphs in less
be done on commodity hardware. time. The next logical step will be the implementation
We rented up to 16 “small instances” from Amazon angs these algorithms in Pregel-like frameworks [27], [28],
run the BZ algorithm on one of them, and then the one-Pr9); unfortunately, at the time of writing, none of them

many version on 4,8,16 maCh_i”%WG created a series of yemonstrated sufficient stability to perform extensivé-tes
graphs using the Nearest Neighbor model [26], with Sizfg.

varying betweer2'® and 2?2 nodes, to illustrate the scal-

ability of our approach. Figure 10 c_:ontglns the .results. "}S\CKNOWLEDGEMENTS
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