
74 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

Proximity-Aware Superpeer Overlay Topologies
Gian Paolo Jesi, Alberto Montresor, and Ozalp Babaoglu

Abstract— The concept of superpeer has been introduced to
improve the performance of popular P2P applications. A su-
perpeer is a “powerful” node that acts as a server for a set
of clients, and as an equal with respect to other superpeers.
By exploiting heterogeneity, the superpeer paradigm can lead
to improved efficiency, without compromising the decentral-
ized nature of P2P networks. The main issues in constructing
superpeer-based overlays are the selection of superpeers and the
association between superpeers and clients. Generally, superpeers
are either run voluntarily (without an explicit selection process),
or chosen among the “best” nodes in the network, for example
those with the most abundant resources, such as bandwidth
or storage. In several contexts, however, shared resources are
not the only factor; latency between clients and superpeers
may play an important role, for example in online games and
IP-Telephony applications. This paper presents SG-2, a novel
protocol for building and maintaining proximity-aware superpeer
topologies. SG-2 uses a gossip-based protocol to spread messages
to nearby nodes and a biology-inspired task allocation mechanism
to promote the “best” nodes to superpeer status. The paper
includes extensive simulation experiments to prove the efficiency,
scalability and robustness of SG-2.

Index Terms— P2P, superpeer, overlay, latency, quality of
service.

I. INTRODUCTION

MODERN P2P networks present several unique aspects
that distinguish them from traditional distributed sys-

tems. Networks comprising hundreds of thousand of peers
are not uncommon. A consequence of such scale is extreme
dynamism, with a continuous flow of nodes joining or leaving.
Such characteristics present several challenges to the devel-
oper. Neither a central authority nor a fixed communication
topology can be employed to control the various components.
Instead, a dynamically changing overlay topology is main-
tained and control is completely decentralized. The topology
(i.e., the relation “who knows whom” among nodes) is defined
by ”cooperation” links among nodes, that are created and
deleted based on the requirements of the particular application.

The choice of a particular topology is a crucial aspect of
P2P design. Until recently, most deployed P2P applications
were characterized by the absence of a specific mechanism
for enforcing a given topology; for example, Gnutella nodes
were free to accept/refuse connections at will [1]. Inefficient
communication schemes, such as flooding, are a consequence
of this choice.

A distinct, but related problem regards roles that nodes
may assume: original P2P systems were based on a complete

Manuscript received September 1, 2006; revised January 31, 2007; accepted
August 1, 2007. The associate editors coordinating the review of this letter
and approving it for publication were A. Keller and J. P. Martin-Flatin.

Gian Paolo Jesi and Ozalp Babaoglu are with the University of Bologna
(e-mail: jesi@cs.unibo.it).

Alberto Montresor is with the University of Trento.
Digital Object Identifier 10.1109/TNSM.2007.070904.

“democracy” among nodes: “everyone is a peer”. But physical
hosts running P2P software are usually very heterogeneous in
terms of computing, storage and communication resources,
ranging from high-end servers to low-end desktop machines.

The superpeer paradigm is an answer to both issues [1],
[2]. It is based on a two-level hierarchy: superpeers are
nodes faster and/or more reliable than “normal” nodes that
take on server-like responsibilities and provide services to
a set of clients. For example, in the case of file sharing, a
superpeer builds an index of the files shared by its clients
and participates in the search protocol on their behalf. Clients
are leveraged from taking part in costly protocols and the
overall traffic is reduced by forwarding queries only among
superpeers. Superpeers allow decentralized networks to run
more efficiently by exploiting heterogeneity and distributing
load to machines that can handle the burden. On the other
hand, this architecture does not inherit the flaws of the client-
server model, as it allows multiple, separate points of failure,
increasing the health of the P2P network.

The superpeer paradigm is not limited to file sharing: it
can be seen as a general approach for P2P networking. Yet,
the structural details are strongly application-dependent, so we
cannot identify a “standard” superpeer topology. Parameters
to be considered include: how superpeers are linked together;
how to arrange clients; how many superpeers are needed; etc.

In this paper, we focus our investigation on a specific
aspect of the problem: proximity. Our goal is to build a
topology where clients and superpeers are related based on
their distance (in terms of communication latency). The idea
is to select superpeers among the most powerful nodes,
and to associate them with clients whose round-trip time is
bounded by a specified constant. This is a generic problem,
whose solution can be beneficial to several P2P applications.
Examples include online games such as Age of Empires [3],
P2P telephony networks such as Skype [4] and streaming
applications such as PeerCast [5]. In all these cases, com-
munication latency is one of the main concerns.

Our solution, called SG-2, is a self-organizing, decentralized
protocol capable of building and maintaining superpeer-based,
proximity-aware overlay topologies. SG-2 uses an epidemic
protocol to spread messages to nearby nodes, and implements
a task allocation protocol that mimics the behavior of social
insects. These biology-inspired mechanisms are combined to
promote the “best” nodes to the superpeer status, and to
associate them to nearby clients.

To validate the results of our protocol, we considered two
specific test scenarios: online games and P2P IP-Telephony
applications. In the former, a large number of players interact
together (or against each other) in virtual worlds. Most online
games follow a client-server model, where the only function

1932-4537/07$25.00 c© 2007 IEEE

JESI et al.: PROXIMITY-AWARE SUPERPEER OVERLAY TOPOLOGIES 75

of the client software is to present a graphic user interface to
the player, while the state of the simulated persistent world
is hosted on the server side. This approach is scalable only
thanks to the deployment of high-end clusters of replicated
servers. A small number of games have attempted a different
approach. MiMaze [6] and Age of Empires [3] are completely
decentralized, and the game state is replicated at all partici-
pants. In this case, consistency requirements limit the number
of players that may be involved in the same game.

In the P2P Telephony scenario instead, a huge number of
users can locate another (known) party (or a small group
of users) and start a voice conversation as they would do
with normal telephone equipment. The only widely adopted
applications of this kind is Skype [7], but it is a closed software
and therefore there are not many details about its inner
working. However, Skype claims to be a P2P applications
based on superpeers. Other solutions are based on the open
SIP [8] protocol standard, but this technology is mainly based
on the client-server paradigm. However, the idea to merge SIP
and P2P is gathering credit [9], [10].

We believe that the superpeer paradigm could represent an
interesting alternative to the approaches above. We envision
a system where a small number of powerful nodes act as
state servers when needed, with the remaining ones acting
as clients. All nodes run the same code and can switch from
the first role to the second when needed. Thus, superpeers
dynamically change over time, depending on the environment
conditions.

II. SYSTEM MODEL

We consider a network consisting of a large collection of
nodes. The network is highly dynamic; new nodes may join at
any time, and existing nodes may leave, either voluntarily or
by crashing. Since voluntary leaves may be simply managed
through “logout” protocols, in the following we consider only
node crashes. Byzantine failures, with nodes behaving arbi-
trarily, are excluded from the present discussion. We assume
nodes are connected through an existing routed network, such
as the Internet, where every node can potentially communicate
with every other node. To actually communicate with another
node, however, a node must know its identifier, e.g. a pair 〈IP
address, port〉.

The nodes known to a node are called its neighbors, and
as a set are called its view. Together, the views of all nodes
define the topology of the overlay network. Given the large
scale and the dynamism of our envisioned system, views are
typically limited to small subsets of the entire network. Views
can change dynamically, and so the overlay topology.

Nodes are heterogeneous: they differ in their computational
and storage capabilities, and also (and more importantly) with
respect to the bandwidth of their network connection. To
discriminate between nodes that may act as superpeers and
nodes that must be relegated to the role of clients, each node
v is associated with a capacity value cap(v), that represents
the number of clients that can be handled by v. To simplify
our simulations, we assume that each node knows its capacity.
In reality, this parameter is strongly dependent on the specific
application, and can be easily computed on-the-fly through
on-line measurements.

Besides capacity associated to each single node (“how
many”), another parameter to be considered is the end-to-end
latency between nodes (“how well”). In our model, each pair
of nodes (v, w) is associated with a latency distance lat(v, w),
representing the average round-trip time (RTT) experienced by
communications between them. The latency distance between
a specific pair of nodes may be measured directly and precisely
through ping messages, or approximately estimated through a
virtual coordinate service [11]; given the dynamic nature of
our system and the large number of nodes to be evaluated as
potential neighbors, we will adopt the latter approach.

III. THE PROBLEM

Generally speaking, our goal is to create a topology where
the most powerful nodes (in terms of capacity) are promoted to
the role of superpeers, and the association clients/superpeers is
such that each client obtains a configurable quality of service
(in terms of latency distance) from its superpeer.

More formally, we define the problem of building a
proximity-aware, superpeer-based topology as follows. At any
given time, the problem input is given by the current set of
nodes V , and the functions cap() and lat() defined over it.
Furthermore, a global parameter tol expresses the maximum
latency distance that can be tolerated between clients and
superpeers. The constraints describing our target topology are
the following:

• each node is either a superpeer or a client;
• each client c is associated to exactly one superpeer s (we

write super(c) = s);
• the number of clients associated to a superpeer s does

not exceed cap(s);
• given a superpeer s and one of its clients c, we require

that lat(s, c) ≤ tol .
To avoid to end up with a set of disconnected, star-shaped

components rooted at each superpeer, we require that super-
peers form another proximity-based overlay: two superpeers
are connected if their latency distance is smaller than tol +δ,
where δ is another configuration parameter.

We aim at selecting as few superpeers as possible (other-
wise, the problem could be trivially solved by each node acting
as a superpeer, with no client/superpeer connections). This
choice is motivated, once again, by the particular scenarios
we are considering; for example, in online games, superpeers
manage the distributed simulation state, so centralizing as
many decisions as possible is important from the performance
point of view. Note that given the dynamism of our environ-
ment, obtaining the minimum number of superpeers may be
difficult, or even impossible. But even in a steady state, the
resulting optimization problem is NP-complete.

IV. THE SG-2 PROTOCOL

The architecture of SG-2 is shown in Figure 1(a); here, we
briefly describe the rationale behind it, leaving implementation
details to the following subsections.

Our solution to the problem described above is based on
a fundamental observation: measuring precisely the RTT be-
tween all pairs of nodes (e.g., through pings) is extremely slow
and costly, or even impossible due to topology dynamism. To

76 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

Superpeer Management Service

Local Multicast Service

Peer Sampling Service

Virtual Coordinate Service

(a) SG-2 architecture.

(b) A superpeer topology in a 2-D virtual space.

Fig. 1. The figure on the left (Figure 1(a)) depicts the set of services
composing the SG-2 architecture, while the figure on the right (Figure 1(b))
shows a superpeer topology in a bi-dimensional virtual space, where Euclidean
distance corresponds to latency.

circumvent this problem, and allow nodes to estimate their
latency without direct communication, the concept of virtual
coordinate service has been developed [11]. The aim of this
service is to associate every node with a synthetic coordinate
in a virtual, n-dimensional space. The Euclidean distance
between the coordinates of two nodes can be used to predict,
with good accuracy, the RTT between them; in other words,
it is sufficient for two nodes to learn about their coordinates
to estimate their latency, without direct measurements.

Our problem may be redefined based on the concept of
virtual coordinates. Nodes are represented by points in the
virtual space; each of them is associated with an influence
zone, described as a n-dimensional sphere of radius tol
centered at the node. Our goal is to cover the virtual space
with a small number of superpeers, in such a way that all
nodes are either superpeers or are included in the influence
zone of a superpeer. Figure 1(b) shows the topology resulting
from the execution of SG-2 in a bi-dimensional virtual space.

Nodes communicate with each other using a local broadcast
service, whose task is to efficiently disseminate messages to
nodes included in the influence zone of the sender. This service
is used by powerful nodes to advertise their availability to
serve as superpeers, and by ordinary nodes to seek superpeers
whose capacity has not been saturated yet.

The main component of SG-2 is the superpeer management
service, which selects the superpeers and associates clients
to them. The protocol is heavily inspired by the behavior of
social insects [12], such as ants or bees, that have developed
very sophisticated mechanisms for labor division. In summary,
such mechanisms work as follows. In a totally decentralized
fashion, specialized groups of individuals emerge, with each
group aimed at performing some particular task. The task
allocation process is dynamic and follows the community
needs according to changes in the environment. The stimulus
to perform some kind of task or to switch to another one
can be given by many factors, but it is normally given by
high concentrations of chemical signals, such as pheromones,
that are released by other individuals and are spread in the
environment. Each individual has its own response threshold
to the stimulus and reacts accordingly.

The superpeer protocol mimics this general picture. Un-
associated nodes diffuse a “request for superpeers” signal
through local broadcasts; the signal concentration in the net-
work may stochastically trigger a switch to the superpeer role
in some nodes according to their response threshold, which
is proportional to their capacity. On the other hand, powerful
nodes covering the same area of the virtual space compete with
each other to gain new clients, by signaling their availability
through local broadcasts. Clients associate themselves to the
most powerful superpeers, and superpeers with an empty client
set switch back to the client role. The combination of these
two trends (the creation of new superpeers to satisfy client
requests and the removal of unnecessary superpeers) finds
its equilibrium in a topology that approximates out target
topology.

The last component to be described is the peer sampling ser-
vice. The task of this layer is to provide each node with a view
containing a random sample of nodes [13]. The motivation is
twofold: first of all, the random sample is used by the local
broadcast service to perform gossiping; second, the topology
resulting from this layer can be described as a random graph
composed of a single connected component among all nodes.
This topology is extremely robust and present no central point
of failure; it may be used to recover from catastrophic failures
in the overlaying superpeer topology, for example due to a
coordinated attack to the subset of superpeers.

A. Virtual Coordinate Service

In SG-2, the virtual coordinate service is provided by
VIVALDI [11], which is a decentralized, scalable, and efficient
protocol developed at MIT. Using VIVALDI, nodes may obtain
good coordinates with few RTT probes directed to a small
subset of nodes. More importantly, VIVALDI can exploit normal
traffic produced by applications using it, without requiring
further communication.

The estimate of the latency distance between vi and vj

is denoted est(vi, vj). Being estimates, these values may

JESI et al.: PROXIMITY-AWARE SUPERPEER OVERLAY TOPOLOGIES 77

differ from the actual latency. The pairwise error between the
estimate and the actual latency can be computed as:

| lat(vi, vj) − est(vi, vj)|
min{est(vi, vj), lat(vi, vj)}

In our experiments, the number of dimensions of the virtual
space is 5; measuring the error between all pairs of nodes,
we found a median error of only 0.14, and a maximum error
of 3.5. Note that latency distances that are “under-estimated”
may pose a problem: if the actual latency is over tol , but the
estimated latency is smaller, a superpeer may accept a client
out of the tolerated range. For this reason, the maximum error
must be considered when selecting parameter tol .

B. Peer Sampling Service

The sampling service is provided by NEWSCAST [14], which
has proven to be a valuable building block to implement
several P2P protocols [15]. We provide here a brief description
of the protocol and its characteristics.

Each NEWSCAST node maintains a view containing c node
descriptors, each of them composed of a remote node identifier
and a logical time-stamp. NEWSCAST is based on the gossip
paradigm: periodically, each node (i) selects a random peer
from its partial view; (ii) updates its local descriptor; and (iii)
performs a view exchange with the selected peer, during which
the two nodes send each other their views, merge them, and
keep the c freshest descriptors.

This exchange mechanism has three effects: views are
continuously shuffled, creating a topology that is close to
a random graph with out-degree c; the resulting topology
is strongly connected (according to experimental results,
choosing c = 20 is already sufficient for very stable and
robust connectivity); and finally, the overlay topology is self-
repairing, since crashed nodes cannot inject new descriptors
any more, so their information quickly disappears from the
system.

The peer sampling service is a key component both during
the initialization phase (bootstrap) of the other layers, and
during the normal functioning of the protocol, when it allows
the discovery of “distant” or newly joined peers from the entire
network. NEWSCAST is extremely inexpensive: messages are
small, and the periodicity of view exchanges may be as low
as one message per minute [14].

C. Local Broadcast Service

Unlike previous layers, based on existing protocols, the
local broadcast service has adapted an existing protocol for
the specific needs of SG-2 [16]. Each message m is associated
with the sender identifier sm and a radius parameter rm.
Message m is delivered to all those nodes that are within
latency distance rm from sm, as estimated by VIVALDI. Hence,
the name SPHERECAST.

The protocol may be described as follows. When a node
either receives a message or wants to multicast a new one,
it forwards it to its local fan-out. The fan-out of node v for
message m is given by the subset of neighbors known to v that
are potentially interested in the message, i.e. whose distance
from sm is not larger than rm. SPHERECAST does not maintain

its own topology; instead, it relies on the underlying overlay
network provided by the peer sampling service.

When a message is originated locally, or it is received
for the first time, it is forwarded immediately to all nodes
in the fan-out. If a message has been already received, a
node may stochastically decide to drop it (i.e., not forwarding
it). This is a standard approach used to avoid flooding the
network. A strict deterministic approach such as dropping any
multiple copy would not work correctly due to the nature of
the underlying overlay. The actual clustering coefficient of the
underlying topology and the continuous rewiring process may
stop the message spreading. The stochastic approach solves
this issue in a straightforward manner.

The probability of dropping a message is given by the
following formula: p = 1 − e−s/ϑ, where s is the number
of times the node has seen this message and ϑ is a response
threshold parameter. In this way, when a packet is received
multiple times by a peer, it has less and less probability to
be forwarded again. From an implementation point of view,
digests of received messages are stored in a per-node table,
together with the number of times that specific message has
been received. This table is managed with a LRU policy, to
avoid unbounded growth.

D. Superpeer Management Service

This layer is the core component of SG-2. Nodes participate
in this protocol either as superpeers or as clients; a client c
may be either associated to a superpeer (super(c) = s), or
actively seeking a superpeer in its tol range (super(c) = ⊥).
At the beginning, all nodes start as clients; to converge to
the target topology defined in Section III, nodes may switch
role at will, or change their client-superpeer relationship. The
decision process is completely decentralized.

Each node v maintains the following local variables. role
specifies the role currently adopted by v; role = SP if v is a
superpeer, role = CL otherwise. clv and spv are two views,
respectively containing the clients and the superpeers known
to v. They are composed of node descriptors combining an
identifier w and a logical time-stamp tsw; the latter is used
to purge obsolete identifiers, as in NEWSCAST. When v acts
as a superpeer, clv is populated with the clients currently
associated to v; it is empty otherwise. The size of clv is limited
by cap(v). spv contains descriptors for the superpeers that are
in tol +δ range; its size is not explicitly limited, but rather
is bounded by the limited number of superpeers that can be
found within tol +δ distance. When v acts as a client, one of
the descriptors in spv may be the associated superpeer of v.

Two distinct kinds of messages are broadcasted using
SPHERECAST: CL-BCAST and SP-BCAST. The former are sent
while in client state and are characterized by a radius parame-
ter rm equal to tol , i.e. the maximum tolerated latency. The
latter are used in superpeer state and their radius parameter
is equal to tol +δ; superpeers need a wider radius to get a
chance to contact other superpeers; furthermore, nodes with
overlapping influence zones can exchange clients if they find
a better client allocation that reduces their latency.

At each node, two threads are executed, one active and one
passive. The execution of active threads may be subdivided

78 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

TABLE I

BRIEF NODE BEHAVIOR DESCRIPTIONS ACCORDING TO EACH POSSIBLE PAIR OF NODE ROLE AND RECEIVED MESSAGE.

Node role Received message structure Behavior description
superpeer v 〈SP-BCAST, s, tss, cap(s)〉 (1) insert or update (s, tss) in clv;

(2) if cap(v) > cap(s), migrate s clients in v range to SP v until v capacity is exhausted;
(3) if |clv(v)|==0 et est(v, s) ≤ tol, s joins v as a client

superpeer v 〈CL-BCAST, c, tsc〉 if the capacity of v has not ben exhausted, the client c joins v
client v 〈SP-BCAST, s, tss, cap(s)〉 (1) insert or update (s, tss) in spv;

(2) if v has no SP, it asks s to be associated with him (theattampt may fail if s has exhausted its
capacity);
(3) if v is already a client of superpeer s′ and cap(s) > cap(s′), then it tries to migrate to the more
powerful superpeer

� client v 〈CL-BCAST, c, tsc〉 node v can change role according to the probability p = s2

s2+θ2
v

, where s is the signal magnitude
and θv is the response threshold of node v.
Check the text for the full explanation.

in periodic cycles: in each cycle, superpeers emit a SP-BCAST

signal which is broadcast in the surrounding area, to notify
nodes about their presence and its residual capacity. Clients, on
the other hand, periodically emit CL-BCAST messages if and
only if they are not associated to any superpeer. The shorter
the cycle duration, the faster the system converge to the target
topology; but clearly, the overhead grows proportionally. The
passive threads react to incoming messages according to the
message type and the current role as depicted in Table I. The
SG-2 behavior is described in the third column, using a natural
language like pseudo-code. Four distinct cases are possible, as
the number of possible pairs of node role and message type
received.

The fourth case, highligthed by the � symbol in the ta-
ble, is the cornerstone of our approach and needs a deeper
explanation: this kind of message can trigger a role change
from client to superpeer. The willingness of becoming a
superpeer is a function of a node threshold parameter and the
signal concentration perceived by a node in its influence area.
The switching probability can be modeled by the following
function:

P (role(v) = CL → role(v) = SP) =
s2

s2 + θ2
v

where s is the signal magnitude and θv is the response
threshold of node v. This function is such that the probability
of performing a switch is close to 1, if s � θ, and it is close to
0 if s � θ. If cmax is the maximum capacity, θv is initialized
with a value which is cmax − cap(v); in this way, nodes
with higher capacity have a larger probability of becoming
superpeers. The maximum capacity may be either known, or
it can be easily computed by an aggregation protocol in a
robust and decentralized fashion [15].

After the initialization, in order to make the topology
more stable and avoid fluctuations, the response threshold is
modified in such a way that time reinforces the peer role:
the more time spent as a client, the less probable it is to
change role. Once again, the inspiration for this approach
comes from biology: it has been observed, for example, that
the time spent by an individual insect on a particular task
produces important changes in some brain areas. Due to these
morphologic changes, the probability of a task change (e.g.,
from foraging to nursing) is a decreasing function of the time
spent on the current task [12]. For this reason, θv is reinforced

as follows:

θv(t) = θv(t − 1) + (α · (t − t′v))

Where t is the current cycle and t′v is the last cycle in which
v became a superpeer; α is a parameter to limit or increase
the time influence. The peer normal responsiveness is re-
initialized based on its local capacity if its superpeer crashes
or if it becomes a superpeer node.

The reaction to CL-BCAST messages is the only mechanism
to allow a client to become a superpeer. A superpeer can
switch back to the client role only when other higher capacity
superpeers have drained its client set. The θ adaptation process
is only active when a node is in the client state.

V. EXPERIMENTAL RESULTS

We performed a large number of experiments based on
simulation to validate the effectiveness of our approach. The
goal of our experiments was twofold: first of all, we measured
the speed of convergence in a stable overlay, in the absence of
failures; second, we measured the robustness of our approach
in a dynamic environment, where a fixed percentage of nodes
are substituted with fresh ones periodically. Finally, commu-
nication overhead has been measured. The experiments have
been performed using PeerSim [17].

In our experiments, network size is fixed at 1000 and 2000
nodes. Several kinds of networks have been considered, but
here, the focus is on a gaming-oriented scenario [18], [19]; in
addition, we also present some preliminary results regarding
a P2P IP-telephony scenario. The network size for the second
scenario is small compared, for example, with the millions of
Skype users, but we are limited by the simulations constraints
and by the usage of real world latency data.

The approach to build our virtual coordinates distribution
(see Section IV-A) follows a common off-line procedure for
both scenarios: (i) we build a matrix holding for each pair
of nodes v, w the latency distance lat(v, w) between them;
(ii) the Vivaldi [11] algorithm is run on the latency matrix
obtaining the corresponding function est(v, w) for each matrix
location.

The way we have obtained the latency matrix varies accord-
ing to the actual scenario adopted. In the gaming scenario,
supported by the results in [18], [20], we adopted a normal
distribution with average value μ = 250 ms and variance
σ = 0.1. In the IP-Telephony scenario instead, we used the

JESI et al.: PROXIMITY-AWARE SUPERPEER OVERLAY TOPOLOGIES 79

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P C onvergence (1000 nodes network)

=300ms

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 a

ss
oc

ia
te

d
cl

ie
nt

s

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P C onvergence (2000 nodes network)

=300ms

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s

(a) tol = 200 ms

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P C onvergence (1000 nodes network)

=300ms

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 a

ss
oc

ia
te

d
cl

ie
nt

s

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of
 s

up
er

pe
er

s

C ycles

S P C onvergence (2000 nodes network)

=300ms

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
af

is
fie

d
cl

ie
nt

s

(b) tol = 250 ms

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P C onvergence (1000 nodes network)

=300

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 a

ss
oc

ia
te

d
cl

ie
nt

s

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P C onvergence (2000 nodes network)

=300ms

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s

(c) tol = 300 ms
Fig. 2. Convergence time. Three tol values are considered: 200 ms (a), 250 ms (b), 300 ms (c). The main figures show the number of active superpeers
at each cycle, while the small sub-figures show the number of clients that are in tol range.

Meridian data-set [21] as a latency matrix. This data set is
a sample of real world Internet latencies among 2500 nodes
spread all over the world. We decided to build the coordinates
off-line in order to speed up considerably the simulations.
The simulation is organized in synchronous cycles, during
which each node has the possibility to initiate a gossip
exchange; note, however, that in reality nodes do not need to
be synchronized. This fact allows the application designers to
set the cycle length to any wall clock time interval they need.
In both scenarios, we have experimented with distinct δ values
in the range [200 : 400]ms, corresponding to typical round-
trip time that can be accepted for superpeer communication.
We decided to include only the results for δ = 300 ms due
to its small average advantage shown in our simulations.
The capacity function cap(), i.e. the maximum number of
clients that can be served, is generated through an uniform
distribution in the range [1 : 500]. All the results are averaged
over 10 experiments.

A. Gaming scenario discussion

We assume that each SP manages a replica of the global
game state. The actual synchronization mechanism is an
application dependent detail and we do not address it in this
work. In the corresponding virtual space, we have considered
tol values of 200 ms, 250 ms and 300 ms, which are typical
of strategy and role-playing games.

Overlay convergence
Figure 2 illustrates the behavior of the protocol over time.

All the figures in the left column are obtained in networks
whose size is 1000 nodes, while the figures in the right column
are relative to networks with size equal to 2000 nodes. The
content of each sub-figure is divided in two parts; in the main
plot, the number of superpeer active at each cycle is shown; in
the small frame inside the main plot, the percentage of clients
that are already associated is shown. In these experiments, the
network is static; no nodes are removed or added.

Figure 2(a) depicts a rather bad situation: in both network
sizes, the convergence is extremely slow, and the number

80 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

1000 nodes network, tol=300 ms, =300 ms

1% 10 cycles
10% 1 cycle
20% 1 cycle

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s

Fig. 3. Experiments with churn. Network size is 1000; periodically, 1%
(every 10 cycles), 10% or 20% (every cycle) of the nodes are substituted
with new ones.

of nodes that are satisfied is low. This bad performance is
motivated by the characteristics of the latency distributions
[18], [19] and the tolerance value selected; most of the node
pairs have a higher latency than 200 ms, and thus SG-2 cannot
help much. Figure 2(b) shows a much better situation: a large
percentage of clients (between 94% and 100% depending on
size) have been associated after only few cycles (10-20). The
number of superpeers is also very small, after an initial peak
due to a large number of clients reacting to the signal. Almost
every client can reach the required latency because 250 ms
is the average pairwise latency in our game-like coordinates
distribution. However, some nodes lies outside the 250 ms
border and it is challenging for SG-2 to accommodate those
nodes. The node density plays an important role for SG-2.
In fact, the bigger population produces a higher stimulus
concentration that produces a faster reaction; the network can
be organized in a (almost stable) latency-aware fashion in just
20 cycles.

Figure 2(c) shows the performance for 300 ms tol : a re-
sponse time that is perfectly acceptable in a strategic/role
playing game scenario. We obtain 99.9% of in range clients
with about 50 superpeers and 100% with about 63 superpeers
respectively in the small and bigger network; in both cases
the time required is less than 10 cycles.

Churn
Figure 3 is aimed at illustrating the robustness of our

protocol. The size of the network is fixed at 1000 nodes. Its
composition, however, is dynamic: periodically, a fixed set
of the peer population crashes and it is substituted with new
peers. Any node in the network can be affected by substitution,
regardless of its role. Unlike the real world, where a superpeer
is supposed to be more reliable, our choice is stricter and more
“catastrophic”. We consider three distinct set sizes: 1%, 10%,
20% of the network size. The first set is substituted every 10
cycles, while the others are substituted at each cycle. The last
two churning sets are very large and un-realistic, but they are
ideal candidates to show the SG-2 performance in a disastrous
scenario. The first set instead, is realistic and taken from real
world churn measurements in a DHT environment [22]. To

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

A
vg

. b
ro

ad
ca

st
s

C ycles

Average cumulative broadcast messages per node (300ms tol)

C L_B C AS T , 2000 nodes
S P _B C AS T , 2000 nodes
C L_B C AS T , 1000 nodes
S P _B C AS T , 1000 nodes

Fig. 4. Broadcast message traffic; the traffic is made by CL-BCAST and
SP-BCAST message types. Both network sizes results are shown.

conform fairly to the results in [22], we consider the temporal
size of the cycle equal to 1 minute.

Using the “catastrophic” values, Figure 3 shows that the
number of superpeers oscillates over time, as expected, and
that up to 80% and 70% of the clients are associated to
superpeers. The nodes that are not associated are those that
have been recently created and are trying to find a position in
the topology.

The realistic value instead, does not affect the latency-aware
topology. In fact, after cycle 42, the superpeer population is
fully stable and its size is comparable to Figure2(c).

Message overhead and message loss
Finally, we discuss the broadcast message overhead and the

performance in case of message loss.
In Figure 4, we have measured the average number of

diffused broadcast messages, distinguishing among CL-BCAST

and SP-BCAST. The system tol parameter is set to 300 ms as
in Figure 2(c). Since the CL-BCAST message type is broadcast
only in case of lack of satisfaction, only a small number
of them are generated: on average, less than 2 messages if
the SG-2 can fully optimize the overlay (as in the bigger
network shown in Figure 2(c)). Superpeers, on the other
hand, continuously send one broadcast message per cycle.
The bigger network has an advantage since the percentage of
superpeers needed to optimize the network is much less than
that in the smaller overlay, therefore the average number of
SP-BCAST per node is about 30% lower. This fact emphasizes
again how SG-2 is dependent on the virtual space density.

Finally, we run our superpeer architecture over an unreliable
transport layer. We consider a 3% loss probability on any
message exchange; SPHERECAST is the actual protocol layer
affected by the message loss. Figure 5 compares the impact
of the message loss versus the “perfect” (e.g., without loss)
transport scenario on a convergence performance basis. The
comparison regards both network sizes. As expected, SG-2
takes longer to converge to the optimized overlay. In the bigger
network, it takes more than twice the previous time (about 22
versus 8 cycles). The amount of satisfied clients, depicted in
the small sub-figures, is the same at the expense of a longer
time to wait; on the other hand, the number of superpeer

JESI et al.: PROXIMITY-AWARE SUPERPEER OVERLAY TOPOLOGIES 81

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

S P convergence with message loss (2000 nodes network)

no msg loss
3% msg loss

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s

Fig. 5. Experiments with message loss. Each message has a 3% probability
to be lost by the transport layer. The network size is 2000 nodes and the tol
value is 300 ms. The main figure shows the number of active superpeers over
time, while the small sub-figures show the % amount of clients that are in
the tol range.

required is slightly lower than in the case of the absence of
message loss. This fact is due to the longer time taken to
converge: it makes less probable to fall in a local minimum
(see Section III) and allows a more coordinated emergence of
superpeer nodes.

B. IP-Telephony scenario discussion

We consider a particular superpeer-based IP-Telephony
(IPT) system similar to Skype [4], but designed over open
standards such as the SIP protocol [9], [10] and we do not
address the interaction with existing PSTN networks. The
superpeer design makes easier the location of contacts over
the overlay and provides a firewall piercing capability. A caller
locates the desired contact through the facilities provided by its
direct SP, then SP act as a router delivering the compressed
audio speech between its client and the contacted node. In
many cases, the communication would be faster if both parties
could communicate directly among them; however this is not
always a viable solution especially in a P2P overlay (e.g., due
to NAT routing or firewall issues). This routing behavior is
similar to Skype [7].

In this kind of applications the perceived QoS by the users
is mainly influenced by the 1-way latency between them rather
than the RTT. In general, the 1-way latency limit, under which
the user QoS perception is not affected, is 150 ms (see [23]).
This is why we considered tol values (RTT) of 300 and 400
ms for the superpeer overlay construction.

Figure 6 shows the emergence of SP nodes in the IP-
Telephony like scenario; the results for both network sizes
are shown.

In the smaller network, about 30 superpeers are required
to ensure a QoS of at most 200ms 1-way latency for all the
clients, while ensuring a limit of 150 ms requires about 55
super nodes. However, non all clients can acquire this QoS due
to the bandwidth constraint and the latency distribution of the
underlying network, but a 95% of satisfied clients can still
be considered a good compromise. In the bigger network the

 0

 50

 100

 150

 200

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

1000 nodes network, =300 ms

tol=150ms (1-way)
tol=200ms (1-way)

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s

 0

 50

 100

 150

 200

 0 20 40 60 80 100

of

 s
up

er
pe

er
s

C ycles

2000 nodes network, =300 ms

tol=150ms (1-way)
tol=200ms (1-way)

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100%
 o

f s
at

is
fie

d
cl

ie
nt

s
Fig. 6. Convergence to the SP topology in the IP-Telephony latency model.
The results for both network sizes are shown; the tol value are 150 and 200
ms 1-way latency. The main figures show the number of active superpeers
over time, while the small sub-figures show the % of clients that are in the
tol range.

situation is similar; of course more super nodes are required
to satisfy the higher concentration of participants: about 41
and 80 SP respectively in the 200 and 150 ms case. In both
networks, the convergence to a stable SP overlay is achieved
in less than 10 gossip rounds.

In order to quantify the effectiveness of our IPT overlay
we made a particular test in which we simulate a call among
every pair of clients in the system. For each distinct pair of
ordinary nodes (a, b), the caller node a checks which is the
SPi in its range that minimizes the value of lat(a, b), where
lat(a, b) = lat(a, SPi)+lat(SPi, b). Notice that a node holds
in cache the IDs of any SP in the tol range. In other words,
we try to find the “straightest way” to reach node b according
to the available SP links.

The results achieved are summarized in Table II. The
minimum, maximum and average 1-way latency among all call
pairs is reported according to the network size and tol value
adopted. The average latency is close to the optimal tolerable
value (i.e., 150 ms) and becomes slightly higher when the
tol parameter is 200 ms. The maximum values obtained are
interesting: they are far from being optimal, but also far from
being unusable. Of course, this is a simple scenario that does
not consider many additional details, (e.g, such as the latency

82 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

TABLE II

IP-TELEPHONY SCENARIO: MANY-2-MANY CALL EXPERIMENT. ALL

LATENCIES AND TOLERANCES ARE CONSIDERED 1-WAY AND ARE

EXPRESSED IN ms.

Network size tol Min lat. Max lat. Avg. lat.
1000 150 30 339.64 158.2
1000 200 41.7 355.3 163.6
2000 150 23.95 327.19 152
2000 200 30.4 344.1 158.43

introduced by the SP while routing the packets or the audio
buffering delay), but we consider these results encouraging.

VI. RELATED WORK

The superpeer approach to organize a P2P overlay is a
trade-off solution that merges the client-server model relative
simplicity and the P2P autonomy and resilience to crashes.
The need for a superpeer network is mainly motivated by the
fact to overcome the heterogeneity of peers deployed on the
Internet.

Yang and Garcia Molina [24] proposed some design guide-
lines. A mechanism to split node clusters is proposed and eval-
uated analytically, but no experimental results are presented.

Superpeer solutions proved to be effective solutions in the
real world: Kazaa / Fasttrack [2] and Skype [7] are two
outstanding examples. However, their actual protocols are not
publicly available and they cannot be compared with any other
solution or idea. At the time of writing, only a few works [4],
[25] describe some low-level networking details.

The SG-2 protocol can be considered as a natural evolution
of SG-1 [26]; the two solutions, however, cannot be directly
compared from a performance point of view because of their
different goals. SG-1 focuses on optimizing the available
bandwidth in the system, while SG-2 introduces the notion of
latency between peer pairs and poses a QoS limit on it. The
definition of the target topology is straightforward in SG-1
(e.g., the minimum number of superpeers to accommodate all
the peers according to the superpeer capacities), while it is a
NP-problem in the SG-2 case. From the architectural point of
view, they both rely on the existence of an underlying random
overlay, on top of which the superpeer overlay is generated.
The superpeer election process in SG-2 is strongly bio-inspired
and much more randomized than approach used in SG-1.

In [27], the authors propose a socio-economic inspiration
based on Shelling’s model to create a variation of the super-
peer topology. Such variation allows ordinary peers to be
connected with each other and to be clients of more than one
superpeer at the same time. This topology focuses on efficient
search. As in our case, the superpeers are connected to each
other to form a network of hubs and both solutions are suited
for unstructured networks. However, they do not address the
problem of the superpeer election.

In [28], the authors suggest an interesting use of the ag-
gregation protocol [15] in order to build a particular topology
(the gradient topology). The discovery of superpeers nodes
in such topology is a straightforward task. Their algorithm
relies on the existence of an utility function that captures the
peer application specific constraints. An utility value above

a certain threshold makes a node eligible for superpeer role.
The interesting aspect of this work is that it is a very general
superpeer framework in which SG-2 may fit (given a suitable
utility function).

The basic problem of finding the best peer, having the
required characteristics, to accomplish some task (e.i., the
superpeer task) is addressed in a more general form in [29].
The problem is referred as “optimal peer selection” in P2P
downloading and streaming scenarios. The authors use an
economics inspired method to solve the optimization problem;
the developed methodologies are general and applicable to
a variety of P2P resource economy problems. The proposed
solution is analytically strong, but no experimental results are
shown especially regarding a large and dynamic scenario as
the one the authors are addressing.

Our implementation is based on VIVALDI (see section IV-A),
but it is not tied to any particular virtual coordinate service.
Other architectures can be adopted, such as IDMaps [30] and
GNP [31], or PIC [32] and PCoord [33]. The first two rely on
deployment of infrastructures nodes, while the others provide
latency estimates gathered only between end-hosts, as VIVALDI

does. We opted for VIVALDI because of its fully distributed
nature and simple implementation.

In less strict latency context, such as file sharing, hop count
is usually preferred in contrast to actual latency to provide
distance estimation. Pastry [34], [35], for example, uses a hop
distance metric to optimize its response time.

VII. CONCLUSIONS

This paper presented SG-2, a fully decentralized, self-
organizing general protocol for the construction of proximity-
aware, superpeer-based overlay topologies. The protocol pro-
duces an overlay in which almost all nodes (99.5%) are in
range with a tol latency of 300 ms. The number of generated
superpeers is small with respect to the network size (only
3-5%) in both test scenarios. The protocol shows also an
acceptable robustness to churn.

We conclude noting that the results presented in this paper
are only a first step toward the implementation of fully
decentralized P2P latency-aware applications; several other
problems have to be solved, including security, state repli-
cation, state distribution, etc. Our current efforts are mainly
focused on security issues.

ACKNOWLEDGMENT

This work was partially supported by the FET unit of the
European Commission through projects BISON (IST-38923),
DELIS (IST-01907), CASCADAS (IST-27807) and BIONETS

(IST-27748).

REFERENCES

[1] “Gnutella web site,” http://gnutella.wego.com.
[2] “Fasttrack web site,” http://www.fasttrack.nu.
[3] P. Bettner and M. Terrano, “1500 archers on a 28.8: Network program-

ming in Age of Empires and beyond,” in Proc. GDC’01, Mar. 2001.
[4] S. Baset and H. Schulzrinne, “An analysis of the Skype peer-to-

peer internet telephony protocol,” Columbia University, Department of
Computer Science, New York, NY, Tech. Rep. CUCS-039-04, Sept.
2004.

[5] “Peercast p2p radio,” http://www.peercast.org.

JESI et al.: PROXIMITY-AWARE SUPERPEER OVERLAY TOPOLOGIES 83

[6] L. Gautier and C. Diot, “MiMaze, a multiuser game on the internet,”
INRIA, France, Tech. Rep. RR-3248, Sept. 1997.

[7] “Skype: Free internet telephony that just works,” http://www.skype.com.
[8] [Online]. Available: http://www.cs.columbia.edu/sip/
[9] D. Bryan and C. Jennings, “A p2p approach to sip registration and

resource location,” July 2005. [Online]. Available: http://www.p2psip.
org/drafts/draft-bryan-sipping-p2p-01.html

[10] [Online]. Available: http://www.p2psip.org/
[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized

network coordinate system,” in Proc. SIGCOMM ’04, Aug. 2004.
[12] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From

Natural to Artificial Systems. New York: Oxford University Press, Inc.,
1999.

[13] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, “The
peer sampling service: Experimental evaluation of unstructured gossip-
based implementations,” in Proc. 5th Int. Middleware Conf., Oct. 2004.

[14] M. Jelasity, W. Kowalczyk, and M. van Steen, “Newscast computing,”
Vrije Universiteit Amsterdam, Department of Computer Science, Ams-
terdam, The Netherlands, Tech. Rep. IR-CS-006, Nov. 2003.

[15] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, 2005.

[16] P. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec, and
L. Massoulié, “Lightweight probabilistic broadcast,” ACM Trans. Com-
put. Syst., vol. 21, no. 4, pp. 341–374, 2003.

[17] “PeerSim peer-to-peer simulator,” http://peersim.sf.net.
[18] S. Zanikolas and R. Sakellariou, “Towards a monitoring framework for

worldwide grid information services.” in Euro-Par, 2004, pp. 417–422.
[19] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The effect

of latency on user performance in Warcraft 3,” in Proc. 2nd Workshop
on Network and System Support for Games. New York: ACM Press,
2003, pp. 3–14.

[20] M. Allman, “A web server’s view of the transport layer,” Comput.
Commun. Rev., vol. 30, no. 5, pp. 10–20, 2000.

[21] “Meridian internet data set.” [Online]. Available: http://www.cs.cornell.
edu/People/egs/meridian/data.php

[22] R. Mahajan, M. Castro, and A. Rowstron, “Controlling the cost of
reliability in peer-to-peer overlays,” in Proc. IPTPS’03, Feb. 2003.

[23] A. Percy, “Understanding latency in ip telephony.” [Online]. Available:
www.aitel.hist.no/fag/ipt/lek02/iptel latency brooktrout.pdf

[24] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in
Proc. IEEE International Conference on Data Engineering (ICDE’03),
2003.

[25] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the
kazaa network,” in Proc. 3rd IEEE Workshop on Internet Applications
(WIAPP’03), June 2003.

[26] A. Montresor, “A robust protocol for building superpeer overlay topolo-
gies,” in Proc. of the 4th Int. Conf. on Peer-to-Peer Computing. Zurich,
Switzerland: IEEE, Aug. 2004.

[27] A. Singh and M. Haahr, “Creating an adaptive network of hubs using
Schelling’s model,” Commun. ACM, vol. 49, no. 3, pp. 69–73, 2006.

[28] J. S. and Jim Dowling, R. Cunningham, and R. Meier, “Using ag-
gregation for adaptive super-peer discovery on the gradient topology.”
in SelfMan, ser. Lecture Notes in Computer Science, A. K. and Jean-
Philippe Martin-Flatin, Ed., vol. 3996. Springer, 2006, pp. 73–86.

[29] M. Adler, R. Kumar, K. W. Ross, D. Rubenstein, T. Suel, and D. D.
Yao, “Optimal peer selection for p2p downloading and streaming,” in
Proc. IEEE Infocom’05, March 2005.

[30] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz, Y. Shavitt, and
L. Zhang, “IDMaps: a global internet host distance estimation service,”
in Proc. IEEE Infocom’99.

[31] T. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in Proc. IEEE Infocom’02.

[32] M. Costa, M.Castro, A.Rowstron, and P.Key, “Pic: practical Internet
coordinates for distance estimation,” in Proc. ICDCS’04.

[33] L. Lehman and S. Lerman, “Pcoord: network position estimation using
peer-to-peer measurements,” in Proc. 3rd IEEE International Symposium
on Network Computing and Applications (NCA’04.

[34] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in Proc.
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Nov. 2001, pp. 329–350.

[35] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Exploiting network
proximity in distributed hash tables,” in Proc. International Workshop
on Future Directions in Distributed Computing (FuDiCo), O. Babaoglu,
K. Birman, and K. Marzullo, Eds., June 2002, pp. 52–55.

PLACE
PHOTO
HERE

Gian Paolo Jesi is a Ph.D. student in computer
science at the University of Bologna. His research
interests are focused on large-scale P2P systems,
emergent behavior, epidemic protocols and applica-
tion of bio-inspired approaches to distributed sys-
tems problems. He received his MSc in computer
science from the University of Bologna in 2002; af-
ter a short work experience in an Italian IT company,
he had the opportunity to move to the University of
Bologna joining the BISON project.

PLACE
PHOTO
HERE

Alberto Montresor is Associate Professor of Com-
puter Science at the University of Trento, Italy.
He received his Ph.D. in 2000 from the University
of Bologna, Italy, where he designed Jgroup, a
partition-aware group communication system. He
served as Research Associate in Bologna until 2005,
when he moved to Trento. He is author of more than
40 papers in international conferences and journals,
and he has been active in several European projects
in the field of distributed computing and complex
adaptive systems.

PLACE
PHOTO
HERE

Ozalp Babaoglu is Professor of Computer Science
at the University of Bologna, Italy. He received a
Ph.D. in 1981 from the University of California
at Berkeley where he was a principal designer of
BSD Unix. He is the recipient of 1982 Sakrison
Memorial Award, 1989 UNIX International Recog-
nition Award and 1993 USENIX Association Life-
time Achievement Award for his contributions to
the UNIX system community and to Open Indus-
try Standards. Before moving to Bologna in 1988,
Babaoglu was an Associate Professor in the Depart-

ment of Computer Science at Cornell University. He is active in several
European research projects in distributed computing and complex adaptive
systems. Babaoglu is an ACM Fellow and serves on the editorial boards for
ACM Transactions on Computer Systems, ACM Transactions on Autonomous
and Adaptive Systems and Springer-Verlag Distributed Computing.

