
Firefly-inspired Heartbeat Synchronization in Overlay Networks∗

Ozalp Babaoglu
Univ. Bologna, Italy

babaoglu@cs.unibo.it

Toni Binci
Univ. Bologna, Italy
bincit@cs.unibo.it

Márk Jelasity
HAS & Univ. Szeged, Hungary

jelasity@inf.u-szeged.hu

Alberto Montresor
Univ. Trento, Italy

montresor@dit.unitn.it

Abstract

Heartbeat synchronization strives to have nodes in a
distributed system generate periodic, local “heartbeat”
events approximately at the same time. Many useful dis-
tributed protocols rely on the existence of such heart-
beats for driving their cycle-based execution. Yet, solv-
ing the problem in environments where nodes are unre-
liable and messages are subject to delays and failures
is non-trivial. We present a heartbeat synchronization
protocol for overlay networks inspired by mathemati-
cal models of flash synchronization in certain species of
fireflies. In our protocol, nodes send flash messages to
their neighbors when a local heartbeat triggers. They
adjust the phase of their next heartbeat based on in-
coming flash messages using an algorithm inspired by
mathematical models of firefly synchronization. We re-
port simulation results of the protocol in various real-
istic failure scenarios typical in overlay networks and
show that synchronization emerges even when messages
can have significant delay subject to large jitter.

1. Introduction

In cycle- or round-based distributed protocols (such
as gossip protocols), it is often necessary that all nodes
agree on when a new cycle starts. In other words, the lo-
cal perceptions at nodes as to when cycles begin and end
need to be synchronized so that we can talk about “cy-

∗Authors are listed in alphabetical order. Partial support for this
work was provided by the European Union within the 6th Framework
Programme under contracts 001907 (DELIS) and 27748 (BIONETS).

cles” of the system as a whole. For example, if the pro-
tocol requires periodic restarts (that is, all nodes need to
be re-initialized), it is important that this event be syn-
chronized [7,9].

Heartbeat synchronizationstrives to have nodes in
a distributed system generate periodic, local “heartbeat”
events approximately at the same time. It differs from
classical clock synchronization in that nodes are not in-
terested in counting cycles and agreeing on the ID of
the current cycle. Furthermore, there is no requirement
regarding the length of a cycle with respect to real time
as long as the length is bounded and all nodes agree on
it eventually. What we are interested in guaranteeing is
that all nodes start and end their cycles at the same time,
with an error that is at least one, but preferably more, or-
ders of magnitude smaller than the chosen cycle length.

This problem is rather difficult to solve in peer-to-
peer overlay networks due to dynamism, failures and
scale. In overlay networks, message delay can vary
over a wide range [10] and churn can be significant with
nodes leaving and joining the network continuously. In
addition, overlay networks can be extremely large, con-
taining millions of nodes. This implies that any pro-
posed solution must be highly scalable. And finally, the
solution needs to be decentralized for it to be usable in
overlay networks where nodes have only partial infor-
mation regarding the system as a whole.

Our approach to achieving robust, scalable and de-
centralized heartbeat synchronization is based on bio-
logical inspiration drawn from the flashing of fireflies.
It is well know that in certain firefly species, male mem-
bers gather in large numbers at dusk and are able to
synchronize their flashes such that eventually the en-

tire swarm flashes in unison. What is surprising is
that global synchronization emerges despite the fact that
each member can observe only some small neighbor-
hood of the swarm and can modifies its own flashing
behavior based on this limited local information. Sev-
eral mathematical models have been proposed to ex-
plain this phenomenon (see for example [13] and refer-
ences therein). Decentralized synchronization protocols
based on such models have been suggested before in the
context of wireless sensor networks [16]. To our knowl-
edge, mathematical models of firefly synchronization
have not been applied to solve problems in large scale
overlay networks.

The main contribution of the paper is twofold.
First, in Section 3 we introduce a novel protocol for
heartbeat synchronization in overlay networks that is
based on an adaptive mathematical model of emergent
synchronization of firefly flashing [3]. Second, in Sec-
tion 4 we present extensive large-scale event-based sim-
ulation studies of the protocol in realistic scenarios in-
volving message loss and delay, and demonstrate that
the protocol can indeed achieve synchronization to a
sufficient degree.

2. System Model

We assume that nodes are connected through an ex-
isting routed network, such as the Internet, where ev-
ery node can potentially communicate with every other
node. To actually communicate, a node has to know
the address of another node. This is achieved by main-
taining apartial view (view for short) at each node that
contains a set of node descriptors. Views can be inter-
preted as sets of edges between nodes, naturally defin-
ing a directed graph over the nodes that determines the
topology of anoverlay network.

The network is highly dynamic; new nodes may
join at any time, and existing nodes may leave, ei-
ther voluntarily or bycrashing. Our approach does
not require any mechanism specific to leaves: spon-
taneous crashes and voluntary leaves are treated uni-
formly. Thus, in the following, we limit our discussion
to node crashes. Byzantine failures, with nodes behav-
ing arbitrarily, are excluded from the present discussion.

Communication incurs unpredictable delays and is
subject to failures. Single messages may be lost, links
between pairs of nodes may break. Nodes have access
to local clocks that can measure the passage of real time
with reasonable accuracy, that is, with small short-term
drift.

1: loop
2: wait until φ = 1
3: P← selectPeerList()
4: send flash to all peers inP
5: end loop

(a) active thread

1: loop
2: receive flash
3: processFlash()
4: end loop

(b) passive thread

Figure 1. The skeleton of the heartbeat syn-
chronization protocol.

3. The Synchronization Protocol

In this section we present an abstract protocol
skeleton for firefly-inspired heartbeat synchronization
and overview some of its possible instantiations based
on different mathematical models of firefly flashing be-
havior. We briefly discuss the behavior of each model
and argue that the most promising one is the adaptive
model described in [3]. This model will be analyzed
experimentally in Section 4.

3.1. The Protocol Skeleton

The protocol skeleton is shown in Figure 1. We
assume that each node is an oscillator that can be char-
acterized by its phase,φ , and the cycle length,∆. The
phase is a variable in the interval[0,1] and its dynam-
ics are defined by a sawtooth function of timet, where
we have∂φ/∂ t = 1/∆, such that the phase increases
linearly from 0 to 1 in∆ time units. When the phase
reaches 1, the node emits a “flash”, which results in a
ping message being sent to a set of peer nodes. Sub-
sequently, the phase is reset to 0. The cycle length∆
can be initially different (or identical) at all nodes, de-
pending on the implementation ofPROCESSFLASH under
consideration.

When the node receives a flash, methodPROCESS-

FLASH is executed. This method is the heart of the syn-
chronization algorithm. It is responsible for updatingφ
and possibly also∆. That is, it can delay or advance the
phase (and thereby the next flash), possibly as a function
of the current phase, and it can adjust the cycle length as
well. We will examine different implementations later
in the section.

Method SELECTPEERL IST relies on an underlying
overlay network which is used to return a list of neigh-
bors. In our experimental analyses, we will assume
that this overlay network is random and dynamic with
a small, constant number of neighbors for each node.
As such,SELECTPEERL IST returns a small, random set
of peer nodes. More details on the practical implemen-
tation of this random overlay will be given in Section 4.

We now move on to describe three possible imple-
mentations of methodPROCESSFLASH.

3.2. Phase-Advance and Phase-Delay

The simplest possible implementation ofPROCESS-

FLASH setsφ = 0 (phase-delay model) orφ = 1 (phase-
advance model). If we assume instant message delivery
without failures, both choices result in the pairwise syn-
chronization of the peers that sent and received the flash
message. The only difference between the two choices
is that in the case of phase-advance, a flash message
is also emitted alongside the pairwise synchronization
step.

This model assumes that all nodes have exactly the
same fixed cycle length∆. Obviously, since the model
does not involve the adjustment of the cycle length, if
we start with heterogeneous values at the nodes, or if
the skew of the clocks is significant, the model is not
guaranteed to converge.

Furthermore, the phase-advance model is highly
impractical because of the cascading flash messages
that are generated in the initial phase of the synchro-
nization: advanced flash messages trigger more and
more advanced flashes which quickly overloads the net-
work.

We note that if one can guarantee that the cycle
lengths are indeed identical at all nodes, then the phase
delay model performs rather well according to our pre-
liminary experiments. However, due to lack of space,
we do not pursue this model further in this paper, in or-
der to be able to fully focus on the Ermentrout model
described in Section 3.4.

3.3. The Mirollo-Strogatz Model

The model of Mirollo and Strogatz [13] general-
izes the simplistic phase-advance model in the follow-
ing way. It introduces a third variablex, that we will
call “voltage” to illustrate the intuition behind it. Volt-
age is defined by a non-linear functionf : [0,1]→ [0,1]

asx = f (φ), where f is smooth, monotone increasing,

and concave down (in other words, the first two deriva-
tives of f are continuous and satisfyf ′ > 0 and f ′′ < 0).
The model also requiresf (0) = 0 and f (1) = 1.

The reason for introducing this nonlinearity
through the new voltage variable is that it offers us an
easy way to adjust the sensitivity of the phase adjust-
ment depending on the actual phase. We advance the
voltage by a fixed amount:x′= min(x+ε,1) and set the
phase to reflect the new voltage:φ ′ = f−1(x′), wherex′

andφ ′ is the new state after the update.
If the phase is close to zero, then this update rule

will change the phase relatively little, while towards the
end of the cycle the node will become more and more
sensitive to incoming flash messages. Note that ifε ≥ 1
then the model becomes identical to the phase-advance
model.

Theoretical results in [13] indicate that if the un-
derlying overlay network is a clique (all nodes are con-
nected to all other nodes), and messages are delivered
instantly and without failures, then the model guaran-
tees convergence. Recently, the assumption about full
connectivity has been relaxed in [11].

Our preliminary experimental results confirm that,
apart from flooding problems similar to the phase-
advance approach, the model is very sensitive to mes-
sage delay and message loss.

3.4. The Adaptive Ermentrout Model

In the model of Ermentrout, the nodes have a vari-
able cycle length [3]. This model was motivated by
the fact that fireflies indeed cannot have identical cycle
lengths initially.

In this model, the actual cycle length of nodei be-
comes a variableδi which is bounded above and below:
∆l < δi < ∆u. In addition to the new global parameters
∆l and∆u, each node has a parameter∆ (∆l < ∆ < ∆u)
as well: its natural cycle length. A node will flash once
in each∆ time units in the lack of interaction with other
nodes. The model is expressed in terms of the frequen-
ciesΩl = 1/∆u, Ωu = 1/∆l , Ω = 1/∆ andωi = 1/δi.

Previous implementations ofPROCESSFLASH up-
dated the phase variableφ thereby adjusting the time
of the next flash. The interesting feature of the model
of Ermentrout is thatPROCESSFLASH updates the vari-
ableω instead of variableφ . If a flash arrives “too late”
(that is, whenφ < 1/2), then the frequency is decreased
(that is, cycle length is lengthened) while the phase re-
mains unchanged. This increases the time until the next
flash, so that it is more likely to be aligned with the next

flash from the source of the received flash. Similarly, if
the flash is “too early” (φ > 1/2), then the frequency is
increased towardsΩu.

According to [3], the update formula applied by
PROCESSFLASH becomes

ω ′ = ω +ε(Ω−ω)+g+(φ)(Ωl −ω)+g−(φ)(Ωu−ω)

(1)
whereω ′ is the new frequency, and the phaseφ remains
unchanged. The coefficients of the terms areε, a pa-
rameter that controls the tendency of the frequency to
move towards the common natural frequencyΩ, and
two functionsg+ andg− defined as

g+(φ) = max(
sin2πφ

2π
,0) (2)

g−(φ) = −min(
sin2πφ

2π
,0). (3)

Functiong+ is positive whenφ < 1/2, otherwise 0,
while g− is positive whenφ > 1/2, otherwise 0. This
way, (1) formally captures the frequency adjustments
that belong to “late” and “early” received flashes, as ex-
plained in the intuitive discussion above, by moving the
frequency towards the upper or lower bound, respec-
tively.

The model has fewer assumptions (most impor-
tantly, it does not assume identical cycle lengths) which
leads us to believe that it might be more appropriate in
the typical overlay network scenarios we are interested
in. Thus, from now on, we focus on this model only.

4. Experimental Results

The goal of this section is to evaluate the adaptive
Ermentrout model in large overlay networks. Each node
is running our heartbeat synchronization protocol on top
of apeer sampling servicewhich provides functionality
for implementing theSELECTPEERL IST() method.

Peer sampling layer. The peer sampling service pro-
vides each node with a continously up-to-date random
sample from the entire network. In this paper, we con-
sider an instantiation of the peer sampling service based
on theNEWSCASTprotocol [8], which is attractive for its
low cost, extreme robustness and minimal assumptions.
The basic idea ofNEWSCAST is that each node main-
tains a local set of random node addresses: the (partial)
view. Periodically, each node sends its view to a ran-
dom member of the view itself. When receiving such
a message, a node keeps a fixed number of freshest ad-

dresses (based on timestamps), selected from those lo-
cally available in the view and those contained in the
message. The protocol provides high quality (i.e., suffi-
ciently random) samples not only during normal opera-
tion (with relatively low churn), but also during massive
churn and even after catastrophic failures (up to 70%
nodes may fail), quickly removing failed nodes from
the local views of correct nodes.

In the following experiments, each node starts a
NEWSCAST exchange every 10 seconds and messages
contain 30 entries composed of IP address, port, and
timestamp. Such a large number of entries avoids prob-
lems of disconnections [8]. A rough estimation of the
overhead gives 16 bytes per entry× 30 entries, which
means that a traffic of less than 50 bytes is generated at
each node.

Synchronization layer. The heartbeat flash messages
are simulated as simple UDP pings. The default cycle
length∆ is equal to 1 second; the choice of such a small
value is motivated by our desire to test the protocol in a
difficult scenario where the cycle length is comparable
to message latency. As supported by our simulations,
synchronization can be obtained even in this case.

We use f to denote thefan-outof a node which
determines the number of messages sent at each cycle.
In our simulations, the fan-out is equal to the size of the
NEWSCASTview, which is 30. We show, however, that a
smaller fan-out (as low as 10 neighbors) is sufficient to
correctly synchronize nodes.

Apart from∆ and f , the only other free parameter
of the protocol isε. Unless stated otherwise, in all our
simulationsε will be equal to 0.01, a value which has
proven to deliver good results.

Simulation environment. All of our experiments are
event-based simulations performed usingPEERSIM , an
open-source simulator designed for large-scale peer-
to-peer systems. It is publicly available on Source-
Forge [14]. Unless otherwise stated, our graphs show
the averages over 50 experiments. When graphically
feasible, individual results are displayed as distinct dots;
a small random translation may be added to separate
dots that are too close to be distinguishable.

All our experiments apply a transport layer that em-
ulates some model of random latencies. To allow for
scalability of simulations, if not otherwise stated, we
adopt a simple transport layer that emulates random la-
tencies, uniformly distributed between 1 and 200 ms.

This is consistent with several measurements of all-
pairs latencies of a group of nodes such as the King
and Meridian data sets [4, 17]. Furthermore, it intro-
duces the additional difficulty of a totally unpredictable
latency. Further simulations with a publicly available
data set will also be discussed.

Initial settings. At the beginning, a network contain-
ing between 210 and 216 nodes is created. Nodes emit
their first flash in the first three seconds of their life and
set their period randomly selected uniformly between
0.85s and 1.15 seconds, which also corresponds to the
minimum and maximum cycle lengths∆l and ∆u, re-
spectively. In other words, nodes start completely un-
synchronized, and their internal periods are subject to
large skew. In simulations where churn is present, nodes
joining the network are also initialized in this manner.

Measures of synchronization quality. Our main
measure of the quality of synchronization is theemis-
sion windowlength, which measures the time between
the first and the last flashes of a coherent emission (as
described below). Anemissionis a collection of flash
events, potentially occurring at different nodes. Infor-
mally, an emission iscoherentif it is preceeded and fol-
lowed by long “silent” intervals without flashes. For
example, in most of our experiments, the protocol al-
ternates short periods of time with flashes (few tens of
milliseconds), with long intervals of silence (approxi-
mately one second, or longer depending on∆). In our
simulations, emissions are coherent when they are pre-
ceeded and followed by at least 200ms of silence. This
value is used only for presentation purposes and has no
effect on the protocol execution.

When experimenting with different cycle lengths,
we will consider additional measures: therelative emis-
sion window length, expressed as percentage over the
cycle length, and theoverhead, measured as the average
number of bytes transmitted, per node and per second.
To estimate the latter, we assume that a ping message
requires 32 bytes (IP header + UDP header + 4 bytes of
message identification).

Graphical intuition of the behavior of the protocol.
We begin with three figures that graphically depict the
behavior of the protocol as a function of time. To be
graphically appealing, they are obtained from a single
experiment.

In Figure 2, 1024 nodes are synchronized using our
protocol. The time evolves along thex-axis, while in-

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

N
od

e
Id

Time (s)

Figure 2. Flashes emitted by a network of 210

nodes over an interval of 60 seconds.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

N
od

e
Id

Time (ms)

Figure 3. Flashes emitted by 210 nodes during
a single coherent emission.

dividual nodes are shown on they-axis. A dot with co-
ordinate(x,y) represents a flash event executed by node
y at timex. In the first seconds of simulation, flashes
look like random noise, and no coherent emission can
be identified. This is the effect of the initialization de-
scribed above. After about 10 seconds, however, nodes
starts to emit coherent emissions, represented by verti-
cal lines, that become more and more defined as time
passes.

Figure 3 zooms in on a single coherent emission
(the last one of Figure 2). Thex-axis is now relative
to the beginning of the emission window, which lasts
approximately 30ms. Each dot, again, represents an in-
dividual flash. The figure shows that nodes are even
more synchronized than the 30ms value could suggest:

 850

 900

 950

 1000

 1050

 1100

 1150

 0 10 20 30 40 50 60

C
yc

le
 L

en
gt

h
(m

s)

Time (s)

Figure 4. Individual periods for a network of 210

nodes over an interval of 60 seconds.

 10

 100

 1000

 20 40 60 80 100 120 140 160 180

E
m

is
si

on
 w

in
do

w
 (

m
s)

Time (s)

size=216

size=215

size=214

size=213

size=212

size=211

size=210

Figure 5. Length of the emission window as
a function of time for different network sizes
ranging from 210 to 216. Each line represents a
single experiment.

many of the flashes are between 15ms and 27ms, with
very few flashes outside this range.

While a short emission window is a good indicator
of good synchronization, it does not tell the whole story:
we need to examine the length of time between two co-
herent emissions. Figure 4 illustrates the time occurring
between two consecutive flashes at each node. After the
initial period, where synchrony is missing, nodes tend
to adopt a uniform value that tends toward the maxi-
mum initial delay.

Scalability. For the sake of graphical presentation, the
previous figures have been obtained by simulating a rel-

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

E
m

is
si

on
 w

in
do

w
 (

m
s)

Cycle #

size=216

size=215

size=214

size=213

size=212

size=211

size=210

Figure 6. Length of the emission window as
a function of cycle number, averaged over 50
experiments. Network sizes ranging from 210

to 216.

atively small network (210 nodes). Figures 5 and 6 show
that our model is highly scalable by plotting the length
of the emission window for network sizes ranging from
210 to 216 nodes. Figure 5 depicts seven individual ex-
periments, one for each of the different sizes. The fig-
ure illustrates that fluctuations are possible, but are rel-
atively small with respect to both the cycle length and
the emission window. Figure 6 shows the average of
50 experiments; here, each flash is tagged by an incre-
mental counter maintained at each of the nodes, and ex-
periments are aggregated based on this counter, rather
than time. The reason is that coherent emissions occur
at different time instants in distinct experiments, so ag-
gregating them over time is meaningless.

Experimenting with parameters. So far, each flash
event has been transmitted to all 30 neighbor nodes
returned by NEWSCAST through the selectPeerList()
method. We wondered whether this is strictly neces-
sary to obtain convergence, and found that this is not
the case. Figure 7 shows the length of the emission
window as a function of the fan-out in a network of 213

nodes. When fan-out isk, a flash is transmitted to only
k nodes, selected randomly from theNEWSCASTview. It
is interesting to discover that with as few as 10 mes-
sages, convergence to small emission window is still
possible. With fewer nodes, however, it is possible to
observe emission windows longer than∆ (i.e. larger
than 1 second), meaning that no coherent emission is
emitted for long periods of time.

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

E
m

is
si

on
 w

in
do

w
 (

m
s)

Fan-out (# messages per node)

Average
Individual experiments

Figure 7. Length of the emission window as a
function of fan-out.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

is
si

on
 w

in
do

w
 (

m
s)

Cycle length (s)

Average
Individual experiments

Figure 8. Length of the emission window as a
function of cycle length.

Choosing the cycle length involves a trade-off be-
tween the speed of convergence and communication
overhead. So far, we have demonstrated that 1 second
is a feasible choice that allows for fast convergence (re-
quiring only about 10 seconds); but the resulting over-
head is quite large (32× 30 = 960 bytes per second).
Figures 8 and 9 show that enlarging the cycle length not
only reduces the overhead, but also improves the rela-
tive emission window length. Once again, the size of
these networks is 213. In fact, with a cycle length of 10
seconds, the relative emission window is around 1.5%
of the cycle length, compared to 4% with a cycle length
of 1 second; and overhead is reduced by a factor of 10,
requiring only 96 bytes per second. The only drawback
is the slowing down of the protocol, which now requires

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

is
si

on
 w

in
do

w
 (

%
 o

ve
r

cy
cl

e
le

ng
th

)

Cycle length (s)

Average
Individual experiments

Figure 9. Relative emission window as a func-
tion of cycle length ∆.

 0.1

 1

 10

 100

 1000

 1 10 100 1000

E
m

is
si

on
 W

in
do

w
 (

m
s)

Delay Range (ms)

Individual experiments
Cycle length = 1s
Cycle length = 2s
Cycle length = 4s

Figure 10. Length of the emission window as a
function of maximum message latency.

up to 100 seconds before achieving the first coherent
emission. But once nodes are synchronized, this prob-
lem will not be relevant any more.

Message latency. All experiments discussed so far
were based on a simplified transport layer that deliv-
ers messages with random delays in the interval 1ms-
200ms. This maximum value is obtained from the King
data set [4], which reports the average pairwise latency
between more than 1500 nodes. Both the King and
the Meridian data sets [17] consider only the average
latency without reporting the variance of the measure-
ments. Raw data, when available, only show few mea-
surements per pair of nodes.

To understand how our protocol behaves in other

 100

 1000

 10000

 100000

 0 20 40 60 80 100

E
m

is
si

on
 w

in
do

w
 (

m
s)

Cycle number

size=216

size=215

size=214

size=213

size=212

size=211

size=210

Figure 11. Length of the emission window at
different cycles for the Harvard data trace.

delay scenarios, we tried two alternative approaches.
First, we studied the effect of the maximum delay on
the emission window length as illustrated in Figure 10.
There is a clear correlation between the maximum delay
and the emission window length.

Next, we decided to use the Harvard data set [10],
where the pairwise latency distance between 226 nodes
in PlanetLab has been measured. An average of 100
measurements have been performed for each pair of
nodes. Figure 11 is the corresponding of Figure 6 under
this data set. This is a demanding data set: several mea-
surements are larger than 1 second (the cycle length),
and the maximum possible latency is equal to 41 sec-
onds. Despite this wide variability, our algorithm is still
able to synchronize large collections of nodes.

Churn. We conclude the experimental section show-
ing the robustness of our protocol by testing it under
two failure scenarios: churn and message losses.

A network is subject tochurn if its membership is
continously evolving due to nodes joining and leaving
the network. We simulated churn by “killing” a given
percentage of nodes at each cycle, and substituting them
with new ones. In other words, the size of the network
remains constant, while its composition changes.

When analyzing the problem of churn, a small
modification to the algorithm is required. If new nodes
were allowed to emit flashes as soon as they join, identi-
fying coherent emissions would be difficult, if not even
impossible: not only their flashes could be outside the
emission window of pre-existing nodes, but also they
could perturb or even destroy the current synchronism.

 10

 100

 1000

 20 40 60 80 100 120 140 160 180

E
m

is
si

on
 w

in
do

w
 (

m
s)

Time (s)

Churn = 0.01%
Churn = 0.10%
Churn = 1.00%

Figure 12. Three experiments with churn lev-
els of 0.01%, 0.1%, 1%. The listening period is
equal to 16 flashes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16

E
m

is
si

on
 w

in
do

w
 (

m
s)

Listening period (# flashes)

Churn = 0.01%
Churn = 0.10%
Churn = 1.00%

Figure 13. Emission windows as function of
the listening period for churn levels of 0.01%,
0.1%, 1%.

For this reason, when a node joins the network, it
initially behaves only as a listener: it receives flashes
and modifies its period accordingly, but it does not
emit flashes. In our protocol, this “listening” period is
bounded by a predefined number of flashes, after which
the node acts normally.

Figure 12 shows the temporal behavior of the pro-
tocol under three different churn scenarios: after the
initial 60 seconds, 0.1%, 0.5% and 1.0% of the nodes
are killed and substituted with new ones at each second.
These scenarios are extremely harsh when compared to
typical churn rates of 0.01% nodes per second that are
observable in file sharing environments [1,15]. The de-

lay between when churn starts (60 seconds) and the time
when the first “tooth” is observed is due to the listening
period, which is fixed at 16 cycles. Cycle length, as il-
lustrated in Figure 4, is equal to 1.13 seconds; so, 16
cycles corresponds approximately to 18 seconds. The
“sawtooth” aspect of the Figure can be easily explained
as follows. After its listening period, a recently added
node may still not be in perfect sync, flashing a few hun-
dred milliseconds before or after the others. A single
outlier node may greatly enlarge the emission window;
visually, this appears as a tooth. After its first flash, the
outlier node is progressively brought in sync by the pro-
tocol, until the next outlier starts to emit flashes.

Our churn analysis is completed by Figure 13,
where the behavior of the algorithm for different lev-
els of churn and different lengths of the listening period
are shown. Here, the size of the network is 213 nodes.
Each dot corresponds to one of 50 experiments, rep-
resented by the length of the emission window at the
end of the simulation. It is possible to observe that, for
short listening periods and large churn rates, the emis-
sion window can be located anywhere between 0 and 1
second. Furthermore, few dots are very close to 0 (iso-
lated flashes with more than 200ms of silence before
and after) and some dots are larger than 1 second (no
periods of silence), suggesting a complete loss of syn-
chrony. On the other hand, for longer listening periods
and smaller churn rates, our algorithm works perfectly
fine and maintains nodes in good synchrony.

Message losses.We do not include graphical results
for our message loss studies, because there is a direct
relationship between fan-out and message loss. A sys-
tem that sends only 10 messages to random neighbors
(out of 30 possible neighbors) can be compared to a
system that sends 30 messages, 20 of which are lost at
each cycle. Experimental results confirm that the emis-
sion window length remains acceptable for up to 66%
of messages being lost. Beyond this threshold, quality
of results rapidly degrades and becomes unusable.

5. Related Work

Synchrony has long received a lot of attention in
many disciplines including mathematics, physics, biol-
ogy and many others. In this section we focus on pro-
tocols that are responsible for creating and maintaining
synchrony in networks.

In computer networks,clock synchronizationhas
received the most attention, where each node in the net-

work is required to align its own clock with a reference
clock. The nature of the network on which a protocol
is deployed largely determines the approach to be fol-
lowed.

On the Internet, and similar networks, where the
reference clock can be accessed in relatively few hops,
and where the reference clock is reliable, the major is-
sues in designing a protocol are to deal with the skew
of the local clock and to approximate, predict and neu-
tralize the probabilistic delays resulting from message
transmission delays while communicating with the ref-
erence clock (for example, [2,12]).

In dynamic overlay networks, time synchronization
remains relatively unexplored. An interesting example
is [6]. However, as with all time synchronization proto-
cols, a robust and accurate reference clock is assumed
to exist.

In wireless sensor networks the topology is geo-
graphic in nature and the reference clock can be many
hops away which motivates different approaches to time
synchronization (see [5] for an overview).

Heartbeat synchronization, where the nodes have
to align with each other and not with a reference clock,
has received little attention. This problem is interest-
ing both as a primitive to achieve clock synchroniza-
tion and also as a service in its own right. One example
is [16], where the target environment is a sensor net-
work. We have no knowledge of heartbeat synchroniza-
tion approaches for peer-to-peer overlay networks, that
are different from both sensor networks and static wired
networks in that the network diameter is typically low,
while at the same time unreliability and dynamism is
very high.

6. Conclusions

In this paper we tackled the heartbeat synchroniza-
tion problem in the context of overlay networks. Peer-
to-peer overlay networks represent a special environ-
ment: nodes can communicate with each other directly
using a routing service, involving relatively few hops in
the physical network, unlike in the case of sensor net-
works, that have a geographic topology with a large di-
ameter. However, the major challenge is represented by
the dynamic character of overlay networks, the unreli-
able communication channels and the lack of reliable
and robust components.

We proposed the application of the adaptive Er-
mentrout model [3] of firefly flashing synchronization
to deal with the requirements of overlay networks. We

have demonstrated that under various scenarios and pa-
rameter settings, the nodes synchronize their heartbeats
to fall in an interval of 1%-10% of the cycle length of
the periodic heartbeats.

Finally, we would like to stress that the scenarios,
and especially the performance metrics were intention-
ally pessimistic, in order to represent a worst case anal-
ysis. For example, the emission window is defined to
include all the flashes of all nodes, so a single outlier
can have an arbitrarily large effect.

References

[1] Miguel Castro, Manuel Costa, and Antony Rowstron.
Performance and dependability of structured peer-to-
peer overlays. InProceedings of the 2004 Interna-
tional Conference on Dependable Systems and Networks
(DSN’04). IEEE Computer Society, 2004.

[2] Flaviu Cristian. Probabilistic clock synchronization.
Distributed Computing, 3(3):146–158, September 1989.

[3] Bard Ermentrout. An adaptive model for synchrony in
the firefly pteroptyx malaccae.Journal of Mathematical
Biology, 29(6):571–585, June 1991.

[4] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Grib-
ble. King: estimating latency between arbitrary inter-
net end hosts.Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet Measurment, pages 5–18, 2002.

[5] An-Swol Hu and Sergio D. Servetto. On the scalability
of cooperative time synchronization in pulse-connected
networks. IEEE Transactions on Information Theory,
52(6):2725–2748, June 2006.

[6] Konrad Iwanicki, Maarten van Steen, and Spyros Voul-
garis. Gossip-based clock synchronization for large
decentralized systems. In Alexander Keller and Jean-
Philippe Martin-Flatin, editors,Self-Managed Networks,
Systems and Services, volume 3996 ofLecture Notes in
Computer Science, Dublin, Ireland, June 2006.

[7] Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-
based overlay topology management. In Sven A.
Brueckner, Giovanna Di Marzo Serugendo, David
Hales, and Franco Zambonelli, editors,Engineering
Self-Organising Systems: Third International Workshop
(ESOA 2005), Revised Selected Papers, volume 3910
of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

[8] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermar-
rec, and Maarten van Steen. The peer sampling ser-
vice: Experimental evaluation of unstructured gossip-
based implementations. In Hans-Arno Jacobsen, edi-
tor, Middleware 2004, volume 3231 ofLecture Notes in
Computer Science, pages 79–98. Springer-Verlag, 2004.

[9] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu.
Gossip-based aggregation in large dynamic networks.

ACM Transactions on Computer Systems, 23(3):219–
252, August 2005.

[10] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Sta-
ble and accurate network coordinates. InProceedings of
the IEEE ICDCS 2006.

[11] Dennis Lucarelli and I-Jeng Wang. Decentralized syn-
chronization protocols with nearest neighbor communi-
cation. InProceedings of the 2nd international confer-
ence on Embedded networked sensor systems (SenSys
’04), pages 62–68, New York, NY, USA, 2004. ACM
Press.

[12] David L. Mills. Improved algorithms for synchronizing
computer network clocks.IEEEACM Transactions on
networking (TON), 3(3):245–254, 1995.

[13] Renato E. Mirollo and Steven H. Strogatz. Synchroniza-
tion of pulse-coupled biological oscillators.SIAM Jour-
nal on Applied Mathematics, 50(6):1645–1662, 1990.

[14] PeerSim. http://peersim.sourceforge.net/.
[15] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Grib-

ble. A measurement study of peer-to-peer file sharing
systems. InProceedings of Multimedia Computing and
Networking 2002 (MMCN ’02), San Jose, CA, USA,
January 2002.

[16] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel,
Matt Welsh, and Radhika Nagpal. Firefly-inspired sen-
sor network synchronicity with realistic radio effects. In
Proceedings of the 3rd international conference on Em-
bedded networked sensor systems (SenSys ’05), pages
142–153, New York, NY, USA, 2005. ACM Press.

[17] Bernard Wong, Aleksandrs Slivkins, and Emin Gun
Sirer. Meridian: a lightweight network location service
without virtual coordinates.Proceedings of SIGCOMM
2005, pages 85–96.

