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ABSTRACT

Although over the last decade large efforts have been done to de-
sign efficient peer-to-peer (P2P) protocols, very few of them have
taken into account the problem of firewalls and network address
translators (NAT). Most of the existing P2P systems do not work
properly when a high percentage of nodes are behind NAT. While
a few P2P systems tackled the NAT problem, all of them employ
third party nodes to establish a connection towards nodes behind
NAT, and these may become bottlenecks, menacing the health of
the entire system. A possible solution to this problem is to rent ex-
tra resources from the cloud. This paper presents NATCLOUD, a
cloud-assisted NAT-traversal service, where rented cloud resources
are added on demand to the overlay, as third party nodes, to help
other nodes to make connections to nodes behind NAT. We show
the feasibility of integrating our approach with existing gossip-
based peer sampling services and evaluate our solution by simu-
lations, conducting extensive experiments under different network
conditions.
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1. INTRODUCTION

During the last decade, most of the research in the field of peer-to-
peer (P2P) networks has been focused on creating and improving
overlays. While adopting P2P solutions for implementation of the
Internet services and applications, the research community tackled
a wide range of important issues, like cost-efficiency [17], reliabil-
ity [9] and performance [8].
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Despite their effectiveness, most of the proposed approaches are
based on the assumption that all nodes can directly communicate
with each other. Unfortunately, over the last decade the Internet IP
architecture has undergone steady changes, such as the spreading
of NATs gateways and firewall systems, which have progressively
led to the loss of end-to-end addressability. Nowadays the percent-
age of the Internet nodes that are behind NAT, and therefore cannot
be accessed directly, is so high that the well-being of existing P2P
protocols is at risk. An example of such protocols is the peer sam-
pling service (PSS) [24], a service widely used in the context of
gossip-based networks. The PSS continuously provides nodes with
a uniform sample of the live nodes in the network, in fact a partial
view of the entire network. PSS’ are usually exploited as building
blocks for P2P networks, as they help keeping the network updated
and connected. Moreover, PSS’ increase the resilience of the over-
lay to network churn. However, in the presence of NATs, a large
fraction of nodes cannot establish direct connections to each other.
Hence, NATted nodes become under-represented in partial views,
and traditional PSS become biased [10].

Recent papers have extended existing PSS service to work under
NAT [16, 2, 5]. In these works, the main role is played by public
P2P nodes that can directly access the network. These nodes are
used as relaying [16] or rendezvous [5] servers. However, state-
of-art solutions so far did not consider public nodes overloading
and service reliability. In case the amount of public nodes is small,
such nodes may become overloaded by the increasing intensity of
requests from the nodes behind NATs. Moreover, if there are no
available public nodes, NATs nodes become isolated and the whole
network is exposed to the risk of failure. These limitations can
significantly decrease the reliability of the distributed applications
relying on PSS services.

To overcome these limitations, we designed a novel approach, called
NATCLOUD, that can be applied to resolve the NAT issue for real
network P2P applications. The vision of NATCLOUD is to com-
bine P2P and cloud computing technologies for an effective NAT-
traversal peer-sampling. The problem of node overloading is solved
by allowing NATCLOUD to exploit available P2P resources, and
relying on the cloud whenever P2P resources are not enough to
support a given quality of service. Considering the cost of cloud
resources, it is crucial to provision the required cloud resources
properly. If too few cloud resources are available, connectivity to
some private nodes may be lost. On the other hand, if too many
resources are rented, the cost will be unnecessarily high.

To demonstrate the feasibility of our solution, we integrated NAT-
CLoUD with CLOUDCAST PSS [13]. We performed extensive sim-



ulations and evaluated the integrated protocol under dynamic set-
tings and with different network sizes. The evaluation shows that
NATCLOUD has a negligible impact on the PSS when the P2P re-
sources are enough. On the other side, when the P2P public re-
sources are under-represented or not available, NATCLOUD suc-
cessfully involves cloud resources in order to preserve the PSS
quality of service.

2. RELATED WORK

Over the last decades the Internet IP architecture has undergone
steady changes. One of the most important changes is the spreading
of NAT approaches, which have progressively led to the loss of end-
to-end addressability. Therefore in the last years it became crucial
to study techniques able to cope with NAT systems [18, 5, 6].

Here we distinguish two main techniques that are used to commu-
nicate with private nodes behind a NAT: hole punching [20, 4] and
relaying [12]. Hole punching can be used to establish direct con-
nections that traverse the private node’s NAT, while relaying can be
used to send a message to a private node via a third party relay node
that already has a connection with the private node. With relaying,
all data transmitted between two nodes behind the NATs will pass
through a third party node. Hence, this approach consumes a lot of
bandwidth and guaranties little or no privacy. The hole punching
technique allows the nodes behind the NATS to communicate with
the help of a rendezvous server. This server is required only for the
exchange of the addresses, and that creates a little impact on the
bandwidth consumption. For example, in case of the hole punch-
ing procedure implemented by the NatTrav library [4], the peers
willing to receive connections from outside of NAT system register
themselves with an intermediate connection broker.

Gossip-based PSS’ are widely used as building blocks for P2P over-
lay networks. In networks where all nodes can directly communi-
cate with each other, PSS’ can provide nodes with a uniform ran-
dom sample of the nodes in the network [24, 7, 13]. However, in
the Internet, where a high percentage of nodes are behind NATs
and firewalls, traditional gossip-based PSS’ become biased or the
network may even become partitioned [10]. The first PSS that ad-
dresses the problem of NATs was ARRG [3]. In ARRG, each node
maintains a list of nodes with whom it has had a successful gossip
exchange in the past. When a node view exchange fails, it selects
a different node from this list. This approach however, biases the
PSS, since the nodes in the list are selected more frequently for gos-
siping. Nylon [10] is another NAT-aware PSS that uses all existing
nodes in the system (both private and public nodes) as rendezvous
servers. Renesse et al. presented an approach to fairly distribute
relay traffic over public nodes [11].

Gozar is another NAT-aware PSS that replaces rendezvous server
chains with one- hop relaying to all private nodes [16]. Private
nodes discover and maintain a redundant set of public nodes that
act as relay nodes on their behalf. Croupier provided an alternative
NAT-aware PSS without relaying [2]. Instead of routing the mes-
sages to private nodes, the messages are sent only to public nodes
that execute the shuffling of the descriptors on behalf of both pub-
lic and private nodes. An alternative NAT-aware PSS is proposed
by Roverso et al. [21]. The authors propose an algorithm where
each private node randomly chooses a public node and systemati-
cally places samples of itself on nodes in the neighborhood of this
public node. Pouwelse et al. propose a peer-to-peer client Tribler
that uses social phenomena to connect peers and find content in the

network [19]. Usurp is another NAT traversal distributed solution
similar to our work that is designed to support the connectivity of
overlay networks [15]. The authors propose a solution where the
public nodes are organized in a structured overlay network. Each
private node is assigned to a key in the overlay, and the public node
who manages such key also acts as a rendezvous and relay server
to the private node.

While the described NAT-aware methods demonstrate promising
results for PSS support in P2P networks, all of them are limited
by the percentage of available public nodes in the network. In this
paper we propose a solution that combines together both P2P and
Cloud Computing technologies in a way that allows preserving the
overlay connectivity even in case of absence of available public
nodes in the network. We employ an adaptive selection of the ren-
dezvous servers that allows us to optimize resources utilization in
the network, while minimizing the negative impact on the P2P pub-
lic nodes bandwidth consumption and the cloud computing service
costs.

3. PROBLEM STATEMENT

We consider a network of peer machines that contains two types of
nodes: private and public. Private nodes, i.e., client nodes, are the
nodes behind NAT and cannot be accessed directly. Public nodes,
i.e., proxy nodes, are open to end-to-end communication. To allow
client nodes to participate in a P2P protocol, each client node keeps
a list of proxy nodes willing to bootstrap communication channels
on behalf of the client.

In this work, we adopt the so-called NAT-traversal “hole punching”
technique [5]. To establish communication with a client node, one
of the proxy nodes associated with the client needs to be contacted
and acts as rendezvous server. We do not consider here the details
of the hole punching technique that depends on the different types
of NAT systems and communication protocols [22]. Instead, we
focus on the problem of rendezvous servers overloading and relia-
bility. The number of proxy nodes assigned to each client clearly
affects the availability of such clients. We define the availability
factor (AF) of a proxy node as the probability of being up and run-
ning, capable to serve its clients by helping in the establishment of
new connections. The availability factor of a client node is defined
as the probability of being able to accept new communication re-
quests. It thus depends on the availability factor of the proxy clients
associated with it.

The goal of this work is to maximize the availability factor for all
client nodes belonging to the system. Ideally, boosting clients’ AF
requires a large number of proxy nodes. Unfortunately, this is not
generally possible due to the limited number of them. To over-
come this limitation and increase the AF for clients, we propose
to adopt the concept of cloud proxy, as an always-available proxy
node hosted on a cloud provider. While renting a cloud proxy can
ideally solve all our problems, it does come with a cost. Intensive
cloud utilization can hinder in the economical sustainability of the
approach. Therefore, it is important to strike a balance between the
amount of cloud resources used and the overall system QoS.

In this paper, we address the issue of autonomously regulating the
utilization of resources between the cloud and a set of available P2P
public nodes, while maximizing the clients’ AF. To this end, we
propose a self-regulation mechanism that focuses on proxy nodes
management in cloud-assisted NAT-traversal. Our target is to meet
a desired level of QoS while minimizing the economical cost. We



consider the AF as the critical parameter for selecting the proxy. As
a consequence, the problem of self-regulation can be divided into
two parts: (i) availability factor modeling and (ii) cost minimiza-
tion.

4. NAT-TRAVERSAL MODEL

Each node in the system is represented by a descriptor
{Nigy, NATyype, { Pi}}, where N;4 is the unique node identifier,
NATyyp. indicates the node NAT type, i.e., public or private, and
{P;} lists the assigned proxies to the client. This list is empty
for public nodes. The proxy nodes can be chosen from the public
nodes or the cloud proxy. Client nodes can substitute their prox-
ies autonomously among public nodes and the cloud proxy. How-
ever, since each communication with the cloud is associated with
a cost, client nodes try to choose their proxies from public ones,
if the number of available public nodes is enough to guarantee the
minimum level of availability. Instead, when client nodes cannot
achieve the required AF with the existing public nodes, they add a
cloud proxy to their proxy list.

If all proxy nodes of a client node fail simultaneously, the client
node becomes inaccessible from other nodes. Therefore, it is cru-
cial to have a large enough proxy list to decrease the risk of simulta-
neous failure. However, a client node sends a keep-alive message to
its proxy nodes periodically to keep the connection open. Hence,
the more proxy nodes are assigned to a client, the more network
traffic will be generated. Therefore, to avoid network overhead we
introduce the concept of redundant threshold that limits the maxi-
mum number of proxy nodes that is reasonable to keep per client.

The Availability Factor. We present here a model for the availabil-
ity factor that allows the client nodes to compute their number of
proxy nodes according to the desired availability. In order to com-
pute the AF of a client, we need to compute the probability that all
its proxy nodes are off-line at the same time 7. We consider two
issues that can lead to a proxy failure: (i) sub-network failure and
(i1) network churn rate. We assume that each of the nodes belongs
to some sub-network, for example to same Autonomous System
(AS). We consider AS to be a connected group of some IP prefixes
that is run by one or more network operators with a single routing
policy. As it is shown in the work of Sriram et al. [23], ASs can be
subject to malicious attacks that can lead to AS partitioning. In this
case, isolated AS cannot support client nodes. We also consider the
churn rate of the network, that shows the percentage of nodes that
leaves the network over a specific time interval.

More formally, each proxy node belongs to some AS; that has a
failure rate oc;. Moreover, each of the proxy nodes P; has a failure
rate 7; due to churn. Consider, for example, a client node g that has
three proxy nodes P;, P2, Ps, such that P;, Ps € AS; and Ps €
AS3. To compute the AF of ¢, we have to define the probability
that at least one of these proxies is available during the next 7 time
interval. The probability that P; and P are not available at the
same time is defined with the multiplication of their nodes failure
rates: m;m2. Hence, the probability that at least one of them is
available is 1 — ;2. At the same time, if an AS is not available,
all the nodes belonging to it are not available as well. Therefore,
to have at least one of the proxy nodes P; or Py available, AS1
should be available as well: (1 — a;)(1 — ms7m2). In all other
cases the proxies P; and Pg are not available, either because of
their failure or their AS failure: 1 — (1 — oy )(1 —7y72) = s +
w172(1 — o). With the same reasoning for AS2, the probability

that proxies belonging to A S are not available is ae + 75 (1 —az).
Hence the probability that during the 7 time no proxies are available
is (051 +7T17|'2(1 — a1))(a2 +71'3’(1 — 042)) Thus, the AF for this
clientnode gis AF = 1—(a;+mime(1—ay))(az+ms(1—az)).

To simplify the computation, we assume failure probability of the
public nodes are similar and equal r: m; = e = --- = r. We
can, then, write the formula for AF of a client node as AF =1 —
[Licasloi + 77 (1 — o)), where k; is the number of proxy nodes
belonging to AS i.

The Load Factor. The support our NAT-traversal protocol, client
nodes should keep all connections to their proxies open. To do that,
client nodes send keep-alive messages periodically to their proxies.
The higher the number of proxy nodes in a descriptor of a client,
the more bandwidth is needed to support the keep-alive messages
exchange.

We define the load factor (LF) as the average upload bandwidth at
proxy nodes that consumed in keep-alive message exchanges. The
LF can be computed as follows:

LF = MNAT - Np'r'occy . Np'r'ivate _ MNAT * Nprozy (1)
Npublic U v U

Npublic

where v = mpyar is the bandwidth rate of keep-alive

Nprﬂi'uate ’
messages, Nprozy is the average number of proxy nodes per client
node, Nprivate is the number of private nodes in the network,
Npubiic 1s the number of public nodes in the network and U is the
average available upload bandwidth per proxy node.

In order to limit the possible proxy overloading, we introduce the
maximum load factor, LF,., as the maximum percentage of up-
load bandwidth at a proxy node that can be used in keep-alive
messages. We also define the redundant threshold as the max-
imum number of proxy nodes that a client node is allowed to
have. In order to evaluate this value we consider Equation 1, where
LF = LFy4; and Nprozy = redundant:

2

redundant = {
MNAT

LFmaz'VUJ

5. NAT-TRAVERSAL PROXY NODES

The architecture of our system can be described as follows. Each
client node executes three tasks: (i) peer-sampling, (ii) proxy-client
connection support and (iii) NAT-traversal proxy nodes manage-
ment. As a PSS, we adopted CLOUDCAST, a hybrid cloud-P2P
protocol capable to “scale-down” to a very limited number of nodes
thanks to cloud support. To support the proxy-client connection,
clients periodically exchange keep-alive messages with their asso-
ciated proxies. While this is a simple adaptation of existing solu-
tions, the real core of our work is the autonomic management of
proxy nodes.

Algorithm 1 describes the pseudo-code of our algorithm for the
management of proxy nodes. The algorithm execution is divided
in periodic rounds of length AT, which is a parameter of the sys-
tem. At the start of each round, a client requests information about
the current ratio 7; between public and private nodes in the net-
work through function getCurrentRatio(). According to the data
from previous (¢ — 1)-th round and the current ¢-th round, func-



repeat
~i < getCurrentRatio();
Yit1 < getEstimation(v;—1,7:);

5

LFmax¥it1 UJ
MNAT
if redundant; 1 < Critical and Descriptor. Proxies !
contain(cloud) then
addProxy(cloud);
[candidates] <« findBetterProxy(view);
proxyOptimization([candidates]);
return;

redundant;y1 + |

AF; < getCurrentAF();
if Descriptor. Proxies contain(cloud) and Ny ozies > (Critical + 1)
and AF; > AF critical then

| removeProxy(cloud);

if Nyprozies > redundant;yy then
removeProxy ( Nprogies — redundant;1);
[candidates] < findBetterProxy(view);
| proxyOptimization([candidates]);

if Nprozies < redundant; 1 then
if AF; < AF Criticas and Descriptor. Prozies ! contain(cloud)
then

| addProxy(cloud);

| findNewProxy();

wait AT

Algorithm 1: Algorithm executed by client nodes

tion getEstimation() estimates ;1; it then computes the redun-
dancy threshold redundant;+1 for the next protocol round ¢ + 1
(Equation 2). If (i) the estimated redundancy threshold is smaller
or equal than the critical threshold, and (ii) the client descriptor
does not contain a cloud proxy, then the client includes a cloud
as one of its proxies, optimizes the rest of the proxies and exits
the algorithm until the next round. The optimization of the prox-
ies is composed by the following steps. First, each client mon-
itors the partial view given by the peer sampling to find proxy
nodes with better characteristics (such as the load factor in our
case) through method findBetterProxy(). Such proxies are called
candidates. Afterwards, a client replaces the proxies that are
in the descriptor with better ones from the candidates by calling
proxyOptimization([candidates]).

Otherwise, in case the number of proxies is sufficiently high, there-
fore the current availability factor and the number of proxies are
higher than the critical threshold, a client can eliminate the cloud
proxy from the list. If the current number of proxy nodes is higher
than the expected redundancy threshold, then a client removes re-
dundant proxy nodes from its descriptor. The decision about the
proxy to remove is based on their load. In particular, the most
loaded proxies are the candidates to be removed. The other proxies
are optimized according to their load factors.

Finally, in case the number of proxies is smaller than the redundant
threshold, a client promotes additional proxy nodes from the peer
sampling service, through the partial view view; if the availability
factor is less than critical, it also adds a cloud proxy to the proxies
list.

6. EVALUATION RESULTS

In the first part of this section we present a theoretical analysis of
the critical availability factor and the redundancy threshold based
on the model described above (Section 4). Then, we present the

validation and evaluation results of NATCLOUD. In order to val-
idate the approach, we integrated NATCLOUD with the CLOUD-
CAST PSS protocol. CLOUDCAST is a protocol that integrates
cloud storage with gossip protocols in order to maintain the overlay
connected in case of small network sizes and high network churn
rate. Moreover it is also able to maintain the number of accesses to
the cloud under control. Hence, we validate NATCLOUD by con-
trolling that integration of NATCLOUD and CLOUDCAST preserves
these characteristics.

In order to evaluate the performance of NATCLOUD we evaluate
the influence of metrics like ratio v (1, 0.05, 0,01, 0.0025), max-
imum allowed Load FactorLF a. (2%, 1%, 0,5%, 0.25%), net-
work size n (oscillating between 0 and 1024 nodes during the day
period) and churn rate (1%, 0.1%, 0,01%, 0.00%), on perfor-
mance metrics like CLOUDCAST cloud in-degree, availability fac-
tor AF' and monetary costs. The simulations were executed using
PEERSIM [14]. In our evaluation we have considered the average
upload bandwidth per public node U = 512 Kbps and keep-alive
messages rate myar = 11 bps. We set the critical availability
factor AF¢riticar = 0.9.

Theoretical evaluation

This section provides a theoretical evaluation of two important
system parameters: the critical availability factor and redundancy
threshold. The evaluation is based on the theoretical model that is
described in Section 4.

Availability Factor Evaluation. Figure 1 shows the impact of ASs
with different failure rates (0.001, 0.01, 0.1) on AF of a client. To
simulate a stress situation, we consider an high churn rate » = 0.1.
In our test case we consider the worst case of proxies layout in
which all the proxy nodes belong to the same AS.

As we can see, in all the cases AF converges to its maximum when
the number of proxy nodes is around 3. However, the maximum
possible AF for each AS is different and limited by the AS failure
rate. Therefore the proxies layout in terms of AS does not signif-
icantly influence on the optimum number of proxies for a client,
but impacts on the maximum reachable AF. Arguing as above, we
see that a number of proxy nodes greater than 3 yields on high AF
even in case of high network churn. Therefore, we set the critical
threshold to 3.

Load Factor Evaluation. In order to evaluate the LF model, we
consider a “stress test” for the system, where keep-alive messages
are sent every 30 seconds. In a real scenario, the interval between
two consecutive keep-alive messages depends on the NAT type and
can vary from seconds to minutes. Therefore, to evaluate the up-
load bandwidth consumption caused by NAT-traversal support, we
chose a 30 seconds keep-alive interval as a reasonable stress con-
dition. A generic keep-alive message contains no payload and it is
composed only by the header, which results in a TCP/IP message
of 41 bytes.

Figure 2 shows a graphical representation of Equation (1), where
U = 512 Kbps and myar = 11 bps and represents the influence
of a ratio between private and public nodes in the network on a
proxy node overload. The curves are shown for different Nprozy
per client descriptor. While the larger number of proxies assigned
to a client Np,ozy increases LF' the actual impact is not significant.
However, when -y is low (less than 0.5) and so proxy nodes are few
in the network, the risks of overloading increases.
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Figure 1: AF of a client vs. number of its proxy
nodes for different AS failure rates.

Figure 3 shows the required minimum < to support an average
number of proxy nodes per client Nyqy With a maximum allowed
LFy4q. It follows that a client node with more than Npyozy, proxy
nodes in the descriptor should reduce its number of proxies to avoid
overtaking LF,q.. At the same time, the number of assigned prox-
ies cannot be less than the critical threshold (which is around 3
according to the AF model).

Simulation results

The first evaluation validates NATCLOUD by integrating it into the
existing CLOUDCAST PSS and then we evaluate the integration of
the protocols in different network conditions. Finally, we evaluate
the monetary costs.

Integration of NATCLOUD and CLOUDCAST PSS. In order to
validate the NAT-traversal algorithm, we verified whether the scal-
ability properties of CLOUDCAST are preserved. We considered
a network whose size oscillates between 0 and 1024 nodes over
the period of one day. Figure 4 shows the results of 2 simulated
days.The figure demonstrates that the in-degree of a peer in the net-
work oscillates around some average value and does not follow the
growth of the network size. At the same time even in case of empty
network, the cloud entity remains awake and facilitates the network
bootstrapping afterwards. Hence, we show that the integration of
NATCLOUD in CLOUDCAST does not have a negative impact on
the scalability and the described periodic behavior corresponds to
the behavior of the original CLOUDCAST protocol.

Figure 5 evaluates the ability of the protocol to support different
network churn rates. We have evaluated NATCLOUD for various
size of the network and compared them with the original CLOUD-
CAST protocol (Figure 6). For the evaluation we set the maxi-
mum load factor (LFq.) to 1% and the ratio between available
proxy and client nodes in the network () to 0.05. The NATCLOUD
protocol performs well even in case of churn. The average cloud
in-degree remains the same (apart for a small deviation) even for
large network sizes. Nevertheless, as we can see from both fig-
ures, the average in-degree for the CLOUDCAST integrated with
NATCLOUD is higher than without it. We explain this by the small
availability of P2P proxies resulting in possible delays when con-
tacting client peers. Moreover, as well as in the original CLOUD-
CAST work, the system cannot cope with the 1% network churn,
which corresponds to extremely short peer lifetime. The valida-
tion suggests that NATCLOUD can be applied to the PSS without a
significant negative impact on its properties.

0.1

Figure 2: The LF impact for different ratio be-
tween proxy and client nodes for different N ;.04 .

0.15 0.2 0.25 Average number of proxies per client node Ny oy,

A ratio between proxy and client nodes

Figure 3: Maximum number of proxy nodes in a
client descriptor for maximum allowed LF,,

NATCLOUD evaluation. We evaluate now the influence of LF,
~ and churn on the availability factor, CLOUDCAST cloud in-
degree and the economical cost. We considered the average cloud
in-degree of CLOUDCAST PSS with the integrated NAT-traversal
mechanism for different values of maximum load factor LF,.qe
and ratio between proxy and client nodes v (Figures 7, 8 ). As we
can see, with higher value of v and LF'1,,q4z, the average in-degree
for the cloud in the considered PSS decreases. Nevertheless, in
case v = 0.0025 (Figure 7), which corresponds to extremely low
concentration of proxy resources in the network, our experiments
show a relatively low average cloud in-degree. We explain it with
the fact that in case there are not enough proxy resources in the
network, the clients more frequently use the cloud proxy and the
communication is mostly organized with its support. On one side,
this allows us to reduce the negative impact of using P2P nodes and
keep the cloud in-degree for CLOUDCAST PSS low. On the other
side, as we show later, it brings additional economical costs to the
system.

In both cases we see that a large size of the network does not sig-
nificantly influence the in-degree. Instead, the smaller sizes of the
network are characterized with higher value of cloud in-degree. We
explain it with the fact that low levels of available proxy resources
in case of small network size influences on the work of PSS and as
a result the average in-degree of a cloud increases. Instead, start-
ing from some network size, there is enough of proxy resources to
serve the PSS and the average in-degree decreases to a stable value.

In order to evaluate the quality of service supported by the pro-
posed solution, we evaluated the availability factor of client nodes
with multiple network sizes and under different churn rates (Fig-
ure 9). The experiments show that the proposed approach is able to
sustain the critical availability factor almost for all the clients. Nev-
ertheless, with 1% and 0.1% churn rates, the availability factor of
some clients drops below the threshold. We explain this decreasing
with the extremely small lifetime of the nodes and the time needed
for a client to bootstrap the NATCLOUD (to find the proxies).

Costs evaluation. We have evaluated our algorithm using the Ama-
zon S3 storage service [1]. Given the amount of data involved, we
assume that storage costs are negligible. Hence, we base the cloud
costs evaluation just on the prices of the GET and PUT requests .

Figures 10 demonstrate the approximate costs of cloud utilization
for NATCLOUD part in the integration with CLOUDCAST. The fig-

'0.004$ for 10000 GET requests; 0.005$ for 1000 PUT requests;
(accessed March-2015, Region EU (Ireland))



1000

network size -
cloud in-degree

800

600 -

400

Number of nodes

24
Time (hours)

Figure 4: Scalability properties of CLOUDCAST
with NATCLOUD; v = 0.05, LF 0. = 1%

' " 1 Gamma =
24 0.05 Gamma &
0.01 Gamma --#--
0.0025 Gamma ---o-
22
.
g 20
3 -
3 >
£ 18tr -
3 R
3 H
o 16 1%
%
g\&
14 - N . -
12 -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Network size

Figure 7: Average cloud in-degree for different
~30.01% churn rate, LF 0. = 1%

60

¥ 1% churn -
p 0.1% churn =-a--—
50 0.01% churn ~-a--1 E
- 0% churn +--o
40
° *
e 30
b4 g
3
20 Ey S . .
= it i T
3 S S S — i
2 B s T e €
g 10 §§ 1 T 1
o F*
-10

-20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Network size

Fi igure 5: Average cloud in-degree in CLOUD-
CAST with NATCLOUD; v = 0.05, LF' = 1%

24

Qg
22
oo
T
RN

22

20 P g

Cloud in-degree
>
v

s
14 | Xomeee «

T *

[ 1000 2000 3000 4000 5000 6000 7000 8000 9000
Network size

Figure 8: Average cloud in-degree for different
LF 11,0230.01% churn rate, v = 0.05

60

1% churn +-x.
0.1% churn i---a--i
50 - 0.01% churn -~
* 0% churn +--o-=
40 -
o
o 30+
<3
3
S
Z 20 Iﬁ‘- T
ERNis e
2 10f
o *
o @

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Network size

Figure 6: Average cloud in-degree in original
CLOUDCAST protocol

1% churn

0.5 0.1% churn -

0.01% churn --=--

Q% churn - . . . . .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Network size

Percentage of the nodes with AF > 0.9
=

6w bx

Figure 9: % of the client nodes with availability
factor greater then 0.9;LF .., = 1%,~y = 0.01

ures present the simulation of a network with a churn rate of 0.01.
Figure 10(a) demonstrates the influence of different values for the
and different network sizes on the cloud utilization costs per node.
The maximum load factor parameter was set up to 1%. As we can
see from the results the higher the concentration of the potential
proxy nodes in the network, the lower the actual cloud costs. The
Figure 10(b) demonstrates the influence of different network churn
rates on the costs. In the experiment, the ratio between proxy and
client nodes +y is set to 0.05. The experiments show that increasing
the network churn rate increases the intensity of cloud utilization,
while the impact of the network size is negligible.

Finally we would like to notice that the prices in the long term are
not negligible. Nevertheless, NATCLOUD self-adapts to the current
network state. As we can see on the Figures 10, in case the net-
work parameters (v and churn rate) are regular, the NATCLOUD
costs are close to zero. Instead, in extreme cases when the network
is under high churn or lack of P2P proxies, NATCLOUD allows
with a reasonable price to support the regular functioning of PSS.
Here we would like to mention the perturbation of the costs in case
of small networks. We connect this phenomenon with the leak of
proxy bandwidth resources in case of small network sizes, so that
the system is more sensitive for the variation of parameters.

7. CONCLUSION

We approached the problem of NAT-traversal in P2P services by
proposing NATCLOUD, a fully distributed approach that combines
public nodes and cloud resources. We designed a cloud-assisted
solution for NAT-traversal that preserves the effectiveness of P2P-
based services in the real Internet deployments. Together with a

mathematical model of the protocol we validated and evaluated the
approach with PEERSIM simulations.

To demonstrate the applicability of our approach, we successfully
integrated NATCLOUD with CLOUDCAST, an existing peer sam-
pling service, without significant negative impact on its character-
istics. The evaluation of the protocol proved NATCLOUD to be
self-adaptive to the state of the network. In case the network pa-
rameters are regular and public nodes are abundant, the economical
impact of NATCLOUD is practically zero. Instead, in the extreme
case of very high churn rate or lack of public nodes, NATCLOUD
successfully supports the NAT-traversal at a reasonable cost.

Following these results, we believe that NATCLOUD is a candidate
to solve the problem of NAT-traversal for distributed applications
and services.
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