
Brief Announcement: Distributed k–Core Decomposition∗

Alberto Montresor
DISI - University of Trento

via Sommarive 14
IT – 38123

Povo, Trento, Italy
alberto.montresor@unitn.it

Francesco De Pellegrini
CREATE-NET

via Alla Cascata 56/D
IT – 38123

Povo, Trento, Italy
fdepellegrini@create-net.org

Daniele Miorandi
CREATE-NET

via Alla Cascata 56/D
IT – 38123

Povo, Trento, Italy
dmiorandi@create-net.org

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; F.2.1 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Design

Introduction
In the last few years, a number of metrics and methods have
been introduced for studying the relative “importance” of
nodes within complex network structures [6]. Among these
metrics, k-core decomposition is a well-established method
for identifying particular subsets of the graph called k-cores,
or k-shells [7]. Informally, a k-core is obtained by recursively
removing all nodes of degree smaller than k, until the degree
of all remaining vertices is larger than or equal to k. Nodes
are said to have coreness k (or, equivalently, to belong to the
k-shell) if they belong to the k-core but not to the (k + 1)-
core. We consider an undirected graph G = (V,E) with
N = |V | nodes and M = |E| edges. We denote by dG(u) the
degree of node u within G, and by k(u) its coreness index.

Definition 1. A subgraph G(C) induced by the set C ⊆
V is a k-core if and only if ∀u ∈ C : dG(C)(u) ≥ k, and
G(C) is the maximum subgraph with this property.

k-core decomposition has found a number of applications;
for example, it has been used to characterize social net-
works [7], to help in the visualization of complex graphs [1],
to determine the role of proteins in complex proteinomic net-
works [2], and finally to identify nodes with good“spreading”
properties in epidemiological studies [4].

Efficient centralized algorithms for the k-core decomposi-
tion already exist [3]. Here, we consider the distributed ver-
sion of this problem, motivated by the following scenarios.
One Host, one Node Scenario: The graph to be analyzed
could be a “live” distributed system, such as a P2P over-
lay, that needs to inspect itself; one host is also one node
in the graph, and connections among hosts are the edges.
This information could be used at run-time to optimize the

∗This work is supported by the Autonomous Security
project, financed by MIUR Programme PRIN 2008.

Copyright is held by the author/owner(s).
PODC’11, June 6–8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

diffusion of messages in epidemic protocols [4].
One Host, Multiple Nodes Scenario: The graph could be so
large to not fit into a single host, due to memory restric-
tions; or its description could be inherently distributed over
a collection of hosts, making it inconvenient to move each
portion to a central site. So, one host stores many nodes
and their edges.

The two scenarios turn out to be related: the former can
be seen as a special case of the “inherent distribution” of
the latter taken to its extreme consequences, with each host
storing only one node and its edges.

Main Results
The main result of our work is the definition of a distributed
algorithm able to efficiently compute the coreness index for
the one host, one node and one host, multiple nodes cases.

Our distributed algorithm is based on the property of lo-
cality of the k-core decomposition: due to the maximality
of cores, the coreness of node u is the largest value k such
that u has at least k neighbors that belong to a k-core or a
larger core. More formally,

Theorem 1 (Locality). For each u ∈ V , k(u) = k iff

(i) there exist a subset Vk of the neighbours of u such that
|Vk| = k and ∀v ∈ Vk : k(v) ≥ k;

(ii) there is no subset Vk+1 of the neighbours of u such that
|Vk+1| = k + 1 and ∀v ∈ Vk+1 : k(v) ≥ k + 1.

The locality property tells us that the information about
the coreness of the neighbors of a node is sufficient to com-
pute its own coreness. Our algorithm works as follows. Each
node produces an estimate of its own coreness and commu-
nicates it to its neighbors. The initial estimate is set equal
to the node degree. Each nodes receives estimates from its
neighbors and uses them to recompute its own estimate. In
the case of a change, the new value is sent to the neighbors
and the process goes on until convergence. The complete
algorithm, together with optimizations, is reported in [5].

The procedure can be easily generalized to the case where
a host x is responsible for a collection of nodes V (x). In this
case, x runs the algorithm on behalf of its nodes, storing the
estimates for all of them and sending messages to the hosts
that are responsible for their neighbors. The algorithm can
be optimized by having each node x, upon reception of a
message for a node u ∈ V (x), to “internally emulate” the
estimation update protocol. The estimates received from
outside can indeed generate new estimates for some of the

Name |V | |E| � dmax kmax kavg tavg tmin tmax mavg mmax

1) CA-AstroPh 18 772 198 110 14 504 56 12.62 19.55 18 21 47.21 807
2) CA-CondMat 23 133 93 497 15 280 25 4.90 15.65 14 17 13.97 410
3) p2p-Gnutella31 62 590 147 895 11 95 6 2.52 27.45 25 30 9.30 131
4) soc-sign-Slashdot090221 82 145 500 485 11 2 553 54 6.22 25.10 24 26 29.32 3 192
5) soc-Slashdot0902 82 173 582 537 12 2 548 56 7.22 21.15 20 22 31.35 3 319
6) Amazon0601 403 399 2 443 412 21 2 752 10 7.22 55.65 53 59 24.91 2 900
7) web-BerkStan 685 235 6 649 474 669 84 230 201 11.11 306.15 294 322 29.04 86 293
8) roadNet-TX 1 379 922 1 921 664 1049 12 3 1.79 98.60 94 103 4.45 19
9) wiki-Talk 2 394 390 4 659 569 9 100 029 131 1.96 31.60 30 33 5.89 103 895

Table 1: Results with the one-to-one algorithm. Name of the data set, number of nodes, number of edges, diameter,

maximum degree, maximum coreness, average coreness, average-minimum-maximum number of cycles to complete,

average/maximum number of messages sent per node.

nodes in V (x); in turn, these can generate other estimates,
again in V (x); and so on, until no new internal estimate
is generated and the nodes in V (x) become quiescent. At
that point, all the new estimates that have been produced
by this process are sent to the neighboring hosts, where they
can ignite these cascading changes all over again. Such an
optimization proved to reduce consistently the number of
messages sent. The algorithm can be proved to be correct
and to eventually terminate [5].

Theorem 2 (Safety). During the execution, the local
estimate of coreness index at each node is always larger or
equal than the real coreness index.

By induction, we can prove that the algorithm eventually
converges to the exact value.

Theorem 3 (Liveness). There is a time after which
the local estimate of the coreness index is always equal to
the real coreness index.

Both centralized termination mechanisms as well as dis-
tributed ones can be introduced. As shown in [5], most of
real-world graphs can be completed in a very small number
of rounds (few tens); if an approximate k-core decompo-
sition could be sufficient, running the protocol for a fixed
number of rounds is also an option. The next results pro-
vide bounds on the execution time, i.e., the time it takes for
the distributed algorithm to converge to the exact value and
become quiescent. The proofs are again in [5].

Theorem 4. Given a graph G = (V,E), the execution
time is bounded by 1 +

∑
u∈V

[d(u)− k(u)].

A bound on the execution time that depends only on the
graph size (and not on the knowledge of the actual coreness
index of nodes) can be introduced.

Theorem 5. The execution time is not larger than N .

The result can be slightly improved as:

Corollary 1. Let K be the number of nodes with mini-
mal degree in G. Then the execution time on G is not larger
than N −K + 1 rounds.

While one may intuitively associate the execution time
of the algorithm to the diameter of the network, this turns
out not to be always the case. In [5] we identified a class
of graphs with constant diameter 3 having execution time
equal to N − 1.

We have also analysed the message complexity of the pro-
posed algorithm, leading to the following result:

Corollary 2. Given a graph G = (V,E), the message

complexity is bounded by
[∑

v∈V (G) d2(v)
]
− 2M , where ∆

is the largest degree of nodes in the graph.

Based on such result, the message complexity of the dis-
tributed k-core computation results O(∆ ·M).

Outlook
The one host, one node scenario is relevant for optimizing
diffusion of messages in unstructured P2P systems. The
one host, multiple nodes scenario may lend itself to a num-
ber of applications related to the analysis of massive-scale
networks. The next step is the implementation and op-
timization of the proposed techniques in frameworks like
Hadoop [8].

References
[1] Alvarez-hamelin, J. I., Barrat, A., and

Vespignani, A. Large scale networks fingerprinting
and visualization using the k-core decomposition. In
Proc. of NIPS (2005), vol. 18, MIT Press, pp. 41–50.

[2] Bader, G., and Hogue, C. Analyzing yeast
protein–protein interaction data obtained from different
sources. Nature biotechnology 20, 10 (2002), 991–997.

[3] Batagelj, V., and Zaversnik, M. An O(m)
algorithm for cores decomposition of networks. CoRR
cs.DS/0310049 (2003).
http://arxiv.org/abs/cs.DS/0310049.

[4] Kitsak, M., Gallos, L. K., Havlin, S., Liljeros,
F., Muchnik, L., Stanley, H. E., and Makse,
H. A. Identification of influential spreaders in complex
networks. Nature Physics 6 (Nov. 2010), 888–893.

[5] Montresor, A., De Pellegrini, F., and Miorandi,
D. Distributed k-core decomposition. CoRR
cs.OH/1103.5320 (2011).
http://arxiv.org/pdf/1103.5320v2.

[6] Newman, M. The structure and function of complex
networks. SIAM Review 45 (2003), 167–256.

[7] Seidman, S. Network structure and minimum degree.
Social Networks 5, 3 (1983), 269–287.

[8] White, T. Hadoop: The definitive guide (2nd ed.).
Yahoo Press, 2010.

