
Exploring the Interdisciplinary Connections of
Gossip-based Systems∗

Paolo Costa
Vrije Universiteit, Amsterdam

costa@cs.vu.nl

Vincent Gramoli
INRIA, Université Rennes 1

vgramoli@irisa.fr

Márk Jelasity
University of Szeged and HAS
jelasity@inf.u-szeged.hu

Gian Paolo Jesi
University of Bologna
jesi@cs.unibo.it

Erwan Le Merrer
FTR&D/IRISA, France
elemerre@irisa.fr

Alberto Montresor
University of Trento

montreso@dit.unitn.it

Leonardo Querzoni
University of Rome “La Sapienza”
querzoni@dis.uniroma1.it

ABSTRACT

In recent years the labels “gossip” and “gossip-based” have
been applied to an increasingly general class of algorithms,
including approaches to information aggregation, overlay
network management and clock synchronization. These al-
gorithms are intuitively similar, irrespective of their pur-
pose. Their distinctive features include relying on local
information, being round-based and relatively simple, and
having a bounded information transmission and processing
complexity in each round. Our position is that this class can
and should be significantly extended to involve algorithms
from other disciplines that share the same or similar dis-
tinctive features, like certain parallel numerical algorithms,
routing protocols, bio-inspired algorithms and cellular au-
tomata, to name but a few. Such a broader perspective
would allow us to import knowledge and tools to design and
understand gossip-based distributed systems, and we could
also export accumulated knowledge to re-interpret some of
the problems in other disciplines, such as vehicular traffic
control. In this position paper we describe a number of areas
that show parallels with gossip protocols. These example ar-
eas will hopefully serve as inspiration for future research. In
addition, we believe that comparisons with other fields also
helps clarify the definition of gossip protocols and represents
a necessary first step towards an eventual formal definition.

1. INTRODUCTION

1.1 What makes gossip different?
Since the seminal paper of Demers et al. [12] the idea of

epidemic (or gossip) algorithms has gained considerable pop-
ularity within the distributed systems and algorithms com-
munities. The gossip approach to information dissemination
represents a departure from the mainstream of traditional
distributed algorithms. In their case, researchers typically
start with desirable properties, then they design algorithms
with exact provable guarantees for these properties in vari-
ous system models.

In contrast, gossip protocols are inherently probabilistic.
Nodes perform a simple set of operations periodically. They

∗Authors are listed in alphabetical order

are not aware of the state of the entire system, only a very
small fraction of it, and act based on solely local knowledge.
Yet, in a probabilistic sense, the system as a whole achieves
very high levels of robustness to benign failures and a favor-
able (typically logarithmic) convergence time.

At an intuitive level, a key feature is that these favorable
global properties seem to come for “free”, in the sense that
the local algorithm running at each node is extremely simple
that makes no reference to these properties in any way. In
many cases gossip protocols might even display global prop-
erties that are unexpected, that is, that were not thought
of in the design phase. By definition, these properties are
emergent. It is not uncommon that new results on global
properties of well-known gossip protocols appear well after
the first publication of the algorithm itself. In some cases,
useful global properties are known only through experimen-
tation without much useful theory.

1.2 A semantic shift in the term “gossip”
In the past two decades, a number of protocols have been

proposed that share some key intuitive properties of gos-
sip, and can be considered “emergent” in the loose sense
described above. Due to their similar communication and
algorithmic structure, and their similar convergence proper-
ties, these protocols have also been called gossip or gossip-
based protocols. Examples include aggregation [33, 35, 48]
and overlay network construction [31,49].

However, these protocols are clearly not gossip in the
strict sense that implies information dissemination. Instead,
the term gossip has undergone a semantic shift and has come
to signify a certain class of protocols that share the most
salient and discriminating features of the original gossip ap-
proaches.

1.3 Our position
In the light of the observations above, we can now formu-

late our positions.

1. Definition of gossip needs to be revisited. Due to
the semantic shift in the meaning of the term gossip, it
is no longer clear what protocols we should call gossip,
and what it is that is common to all protocols that
we currently do call gossip. Clarifying this problem is

51



1: loop
2: wait(∆)
3: p ← selectPeer()
4: send state to p
5: receive statep from p
6: state ← update(statep)
7: end loop

(a) active thread

1: loop
2: receive stateq from q
3: send state to q
4: state ← update(stateq)
5: end loop

(b) passive thread

Figure 1: The gossip protocol.

important because without clear language it is difficult
to identify the important problems and possibilities of
the field, and professional communication about gossip
protocols looses efficiency as well.

2. Before a formal definition, gossip needs to be
clarified informally. As we will elaborate in Sec-
tion 2, a definition based on a set of strict formal cri-
teria without a firm intuition is likely to be both too
general and too specific: it is likely to cover algorithms
that do not “feel like” gossip, yet it can easily exclude
many protocols that we do consider gossip. Adopt-
ing an informal, prototype-based definition as a first
step, focusing on examples, we hope to be able to make
progress towards an eventual more formal approach.

3. Other disciplines study algorithms that we
would consider gossip. We will present detailed
examples in Sections 3 and 4.

4. We can potentially transfer ideas and tools
among these disciplines. In other words, if we iden-
tify another discipline as falling into the gossip class
of protocols, we can potentially use some of the tools
and results the other discipline accumulated to design
better or new distributed algorithms and systems, or
understand existing ones better.

2. PROTOTYPICAL GOSSIP
According to our position described above, we will avoid

a formal definition of gossip in this position paper, and in-
stead we will follow a prototype-based approach. In other
words, we will describe a set of properties that we consider
characteristic of gossip algorithms, and we will examine a
number of examples for these properties.

To illustrate the potential problems with formal defini-
tions, consider the protocol skeleton in Figure 1. This skele-
ton is often used to define the set of gossip protocols, where
one can implement the three main hooks: selectPeer, state,
and update, to instantiate the framework.

For example, in the case of anti-entropy gossip for
database update spreading, selectPeer returns a random
peer from the network, the state is the set of updates a
peer is aware of, and update merges the new updates in the
received state into the local state. Other protocols can easily
be described a similar way.

However, this framework is too general. Indeed, it covers
practically all message passing protocols. For example, since
the definition of state is unrestricted, in any round a peer can
choose to send a zero length message (that is, no message).
Besides, the frequency of the rounds can be arbitrarily fast.
Furthermore, selectPeer can be deterministic, the messages
can be very large and method update can perform arbitrarily
complex operations.

If we attempt to add further restrictions in order to ar-
rive at a more meaningful definition—such as requiring that
selectPeer is uniform random, or that a protocol must ac-
tually send a message in each round—we obviously exclude
protocols that are clearly gossip. For example, many se-
cure gossip protocols in fact use deterministic peer selection
on controlled networks [34], and, quite clearly, a protocol
remains gossip if message sending is slightly irregular—for
example, due to an optimization that makes a protocol adap-
tive to system load or the progress of information spreading.

For this reason it appears to be more productive to work
with a feature list that defines an idealized prototypical gos-
sip protocol, and compare the features of a given protocol
with this set. In this way, instead of giving a formal, exact
definition of gossip protocols, we make it possible to com-
pare any given protocol to the prototypical gossip protocol
and assess the similarities and differences, avoiding a rigid
binary (gossip/non-gossip) decision over protocols. A flex-
ible approach like this is especially useful for our present
purpose of identifying related interdisciplinary fields. We
propose the following features:

1. random peer selection

2. only local information is available at all peers

3. round-based (periodic)

4. limited transmission and processing capacity
per round

5. all peers run the same algorithm

We should stress here that this list is not meant to be ex-
clusive to gossip protocols: many (some would argue, most)
protocols are round-based, local, etc. In addition, these fea-
tures are intentionally left fuzzy: for example “limited”, “lo-
cal” or “random” is not defined any further.

The inherent and intentional fuzziness in this prototype-
based approach turns the yes/no distinction of a formal def-
inition into a measure of distance from prototypical gossip:
a certain algorithm might have some of the properties, and
might not have some others. Even in the case of matching
properties, we can talk about the degree of matching. For
example, we can ask how random peer selection is, or how
local the decisions are.

Figure 2 is a simple illustration of this idea. The fig-
ure also illustrates the possibility that some algorithms from
other fields might actually be closer to prototypical gossip
than some protocols currently called gossip.

52



peer sampling
service

management
overlay topology

prototypical
gossip

automata
cellular

self−stabilizing
systems

asynchronous
iteration

ant
algorithms

clock
synchronization

current gossip gossip−like algorithms

algorithms (import)

gossip−friendly application areas

(export)

aggregation

routing

cooperation

vehicular traffic control

Figure 2: Prototypical gossip placed in a multidisci-
plinary context through examples discussed in this
paper.

One could argue that prototypical features include scal-
ability and robustness to benign failure. However, these
features are not the function of the algorithm alone, but,
for example, the function of the underlying communication
network as well. A perfectly prototypical gossip protocol
becomes unscalable when put onto a wireless ad hoc net-
work, or on a physical network with a star topology, and
it becomes fragile too, when run on an underlying network
with bottleneck links or nodes.

We do not want to mix issues related to application layer
gossiping and the underlying physical network. The inter-
action of these two components is a very interesting and
important topic, but it is outside the scope of the present
discussion.

3. IMPORTING IDEAS
In this section we will discuss four areas that show signif-

icant similarities to prototypical gossip as described above,
and outline what possible knowledge transfer might be pos-
sible.

The areas discussed here should by no means be in-
terpreted as an exclusive list. Many other fields could
have been added, including evolutionary computing, certain
multi-agent systems, and so on. The examples were selected
to illustrate our position that a multidisciplinary approach
might be useful and productive.

3.1 Asynchronous Numerical Iteration
A traditional application in parallel computing involves

operations on large matrices and vectors. The example that
we will look at is the problem of calculating the dominant
eigenvector of a large sparse matrix. For matrix A, an eigen-
vector of A is any vector x for which Ax = λx, where λ is
the eigenvalue that belongs to x. The dominant (or prin-
cipal) eigenvector is the one that belongs to the eigenvalue
with the largest absolute value. Eigenvectors and eigenval-
ues have a large number of applications, the most well known
within the field of distributed computing probably being the

1: let x(0) be a random vector (‖x(0)‖ = 1)
2: for i = 1, 2, . . . do
3: y ← Ax(i−1)

4: x(i) ← y/‖y‖
5: if |1 − x(i)T

x(i−1)| < ε then

6: return x(i)

7: end if
8: end for

Figure 3: Power method

PageRank algorithm [42].
In our example, the elements of the vector are held by indi-

vidual network nodes, one vector element per one node. The
matrix is represented by links between the network nodes,
and weights assigned to these links. In networking terms, the
links between the nodes can be physical or virtual (overlay
or application level).

For a matrix A, the element Aij is represented by a link
from node j to node i with the assigned weight of Aij . If
there is no link from j to i then Aij = 0.

The dominant eigenvector can be calculated using a num-
ber of iterative methods, the simplest being the power
method [4]. The algorithm of the power method is shown
in Figure 3. To implement the power method, the matrix
needs to be accessed only in the form of a vector multipli-
cation, that is, we need to be able to calculate the product
Ax for a vector x. The only exception is line 4, where we
normalize for length. This step can be omitted if the dom-
inant eigenvalue is 1 or -1. For simplicity, we will assume
this from now on.

Let the element w
(k)
i of the approximation of the dominant

eigenvector in iteration k be stored at node i. With matrix
multiplication w(k+1) = Aw(k), we get

w
(k+1)
i =

X
j

Aijw
(k)
j , (1)

which can be computed if all nodes “propagate weights”
through the links starting from them, that is, they multiply
their own value by the weight of the outgoing link, and send
a message to the target of the link containing this product.
All nodes sum up the weights they receive and this gives the
new vector elements.

This, if done in lockstep by all nodes, implements the
power method. Note the apparent similarity with the gossip
properties: nodes only use local information, the processing
and bandwidth utilization is limited if the matrix is sparse
(that is, if all nodes have a limited number of neighbors), it
is round-based, and finally, all peers run the same protocol.

The only issue is peer selection: in this version of the
protocol all neighbors are contacted in each round. These
neighbors are not selected at random but fixed throughout
the computation. However, randomness can be introduced
without hurting the convergence properties. A version of
this algorithm was proposed [38] that converges to the right
solution even if processes do not work in lockstep, neighbors
are contacted at random, and messages can be delayed or
lost. With this algorithm, peers can be selected at random
from the fixed set of neighbors, making this iteration proto-
col very close to our prototypical gossip protocol, even for
non-sparse matrices.

This striking similarity suggests that perhaps some gossip

53



protocols can be reinterpreted as numeric iterations, which
would make it possible to make use of a wide array of the-
oretical results and tools connected with convergence and
fault tolerance.

3.2 Ant-based Protocols
Ant protocols are a wide family of protocols which find in-

spiration in the behavior of real ants. More than fifty years
ago, a French entomologist named Pierre Paul Grassé ob-
served [22] that a particular breed of termites are sensible
to a chemical substance called pheromone that activates a
genetically encoded reaction. He discovered that ants de-
posit this substance along the trail leading to a food source.
Other ants, able to smell this substance, can therefore follow
the same path and reach the food.

In the famous “binary bridge” experiment [14], some re-
searchers showed experimentally how the pheromone im-
pacts on ant choices. To reach the food, a colony of ants
could choose between two bridges of equal length. In the
early stage of the experiment, ants chose randomly one of
the bridges to reach the food and, on the way back, they
deposited pheromone on the path. Due to stochastic oscil-
lations, one of the two bridges attracted more ants than the
other and hence more pheromone was left. This, in turn,
attracted even more ants and after a few rounds all the ants
started to use the same bridge.

These observations have encouraged active research
among computer scientists to see if similar techniques could
be applied to solve optimization problems. The first suc-
cessful attempt tackled the Traveling Salesman Problem
(TSP) [37], a well-know NP-hard problem. In TSP a set
of towns is given and the distance between each of them is
known. The goal is to find the shortest route that visits all
the towns once and only once. The basic ant protocol works
in an iterative fashion. Initially, a number of artificial ants
are located at each town and they start exploring the solu-
tion space by moving from one town to another. At each
step, an ant chooses the next town to visit according to the
probability associated with the link that connects its cur-
rent town to the next one. This probability depends on the
pheromone previously accumulated on that link and, option-
ally, on some heuristics (e.g., the distance between the two
towns). After a tour has been completed, on the basis of the
quality of the solutions achieved, the pheromone values are
modified to influence ants in future iterations. Ant protocols
have been shown to perform quite well on the TSP [45].

Dorigo and Di Caro [17] have formalized this approach
into a metaheuristic for combinatorial problems called Ant
Colony Optimization (ACO) to provide a conceptual frame-
work for all the ant-based protocols. These protocols have
been applied in many different contexts ranging from typi-
cal optimization problems like scheduling [13] and set cov-
ering [27], to Internet traffic [10, 46] and vehicle routing [9]
problems.

The general scheme is provided in Figure 4. At each iter-
ation, a number of solutions are constructed by the ants
that may be improved using standard local search tech-
niques, and finally, based on the quality of these solutions,
the pheromone values are updated. A generic combinato-
rial problem can be expressed as a graph G(V, E) where the
set V represents the components of the solutions (e.g., the
towns in the TSP). An ant builds its solution incrementally
by moving from a vertex to another along an edge e ∈ E.

1: loop
2: Construct Ant Solutions
3: Apply Local Search (optional)
4: Update Pheromones
5: end loop

Figure 4: The Ant Colony Optimization Meta-
heuristic.

The probability of selecting an edge from i to j for a generic
ant k is usually given by

pk
ij =

(τij)
α · (ηij)

βP
l∈Nk

i

(τil)α · (ηil)β
ifj ∈ N k

i

where ηij is a priori available heuristic information, α
and β are two exponents to weight the influence of the
pheromone τ and the heuristic η and N k

i is the set of possi-
ble choices, e.g., the town not yet visited in the TSP.

Although ant protocols are mostly run in a centralized
fashion (as in the TSP), in network routing [15, 46] a fully
decentralized version of ant protocols is applied. In these
protocols, ants are implemented by messages exploring the
network to discover shortest routes and pheromone is used
to influence routing decisions. Here, the similarities with the
gossip protocols are evident. Both families of protocols rely
only on local information and operate iteratively. In addi-
tion, ant- and gossip-based protocols are intrinsically proba-
bilistic in nature. Pheromone biases ant choices to converge
towards optimal solutions but probability is the key to make
the protocol explore alternative, possibly better solutions,
thus escaping from local minima. Although traditional gos-
sip protocols assume a uniform random probability, some
recent articles [31,49] propose a similar biased approach for
gossip-based overlay management. In these protocols, nodes
gossip more frequently with their “good” neighbors to con-
verge towards the desired overlay but some gossip exchanges
are made with random nodes to discover potentially better
neighbors. Finally, ant and gossip protocols are well-suited
to address dynamism, since both are able to quickly adapt
to ever-changing conditions and to reconfigure properly.

These common features demonstrate that a strong connec-
tion exists between the two families of protocols, which can
be exploited in several ways. On the one hand, gossip proto-
cols may benefit from theoretical work developed in the field
of ACO (e.g., [25]) to improve the understanding of gossip
phenomena. Also, since in many cases the performance of
ant protocols is significantly increased when combined with
traditional local search techniques, it could be investigated
whether this holds for gossip protocols as well. On the other
hand, this may represent a case for exporting gossip proto-
col knowledge to other domains. Indeed, since ant protocols
are good at solving combinatorial problems, our conjecture
is that gossip protocols might represent a viable tool for ad-
dressing these problems too (see [8] for a preliminary study
on the topic).

3.3 Self-stabilizing Systems
Self-stabilizing systems have been defined by Dijkstra

in [16] as distributed systems satisfying a desired predicate p
after a finite number of steps, regardless of the initial state.
The system states that satisfy p are called the legitimate con-
figurations. The characteristic properties of a self-stabilizing

54



system include:

1. Closure: Once p is established in S , it can not be
violated by any legal transition.

2. Convergence: Starting from an arbitrary state, S
reaches a state satisfying p within a finite number of
transitions.

Years after the work of Dijkstra, considered by Lamport
“to be a milestone in work of fault tolerance” [36], self-
stabilization came to be widely regarded as a unified ap-
proach for tolerance to transient failures.

Interestingly, many aspects of self-stabilizing protocols are
shared by gossip protocols. Dijkstra’s notion of privilege
refers to a certain satisfied local condition at a participant.
A privilege enables a corresponding transition. Locality is
clearly a requirement shared by gossip protocols as well.
Furthermore, a privilege must be present in each legitimate
configuration ensuring that at any time at least one partic-
ipant is allowed to make a transition. In gossip protocols,
participants act periodically also leading to an infinite exe-
cution. Finally, a legitimate configuration must be reached
by a self-stabilizing system. Gossip protocols are also de-
signed to achieve a certain global state.

For instance, Dijkstra’s seminal protocol [16] introduces a
set of n+1 nodes arranged as a ring with clockwise increas-
ing ids in [0, n]. Let node i have state xi ∈ {0, . . . , k − 1}.
Each node continuously evaluates one condition to test for
the presence of a privilege. This condition and the corre-
sponding action are different for node 0 and the rest of the
nodes:

0 < i ≤ n : xi−1 �= xi ⇒ xi ← xi−1

i = 0 : xn = x0 ⇒ x0 ← (x0 + 1) mod k.

The legitimate configurations are configurations where ex-
actly one privilege is present in the network. This protocol
self-stabilizes if k > n.

The protocol presented above is similar to a gossip pro-
tocol. The information stored locally is bounded and small,
the number of outgoing neighbors (connected through out-
going links) is a constant (2), hence the protocol is scalable.
Moreover, as mentioned above, each node is assumed to act
infinitely often while the periodic execution of a node in
gossip protocols implies that each node acts infinitely often
too.

These observations raise the important question of
whether gossip protocols and self-stabilizing protocols are
identical. If so, it would be pointless to investigate gossip
protocols any further.

On the one hand, it is clear that not all self-stabilizing
protocols are gossip-related. For instance, the example de-
scribed above associates one node (node 0) with a behavior
different from other node behaviors. This asymmetry vio-
lates one of our prototypical gossip properties.

On the other hand, some gossip protocols do not self-
stabilize. There is an important notion of fix-point in self-
stabilizing protocols that gossip protocols might lack. We
will now give an example of a gossip protocol that has no
fix-point. Similar to a self-stabilizing protocol, the ranking
protocol [19] solves a global problem. This global problem—
known as the distributed slicing problem—is for every node
to guess which portion (namely the slice) of the set of all val-
ues its own value belongs to. The protocol works roughly as

follows: each node periodically shuffles its set of neighbors
then it sends its value to some neighbors. Each node counts
the number g of the last received values and the 	 values
among them that are lower than its own. Based on the uni-
form drawing of neighbors, this leads to an approximation
l
g

of its value position in the system. This approximation

determines which portion/slice its value seems to belong to.
Even though the ranking protocol makes each node act

locally, to periodically gossip with neighbors and to manage
a constant amount of information, this protocol does not
self-stabilize.

The ranking protocol ensures that after an infinite exe-
cution the system reaches a legitimate configuration with a
probability 1. That is, it satisfies the convergence property
of probabilistic self-stabilization as defined in [43]. However,
the closure property of probabilistic self-stabilization is not
ensured since the system can arbitrarily reach a legitimate
configuration at any time before leaving it. This violation is
due to the randomized aspects of this protocol that might
join and leave a legitimate configuration in a finite prefix of
any execution. Although the ranking protocol like other gos-
sip protocols does not self-stabilize, it solves the distributed
slicing task even in the presence of continuous dynamics.
That is, it is noteworthy that gossip protocols achieve a de-
sirable result while not necessarily self-stabilizing.

Self-stabilization is clearly a “formal and unified approach
to fault tolerance under a model of transient failures” as
explained by Schneider [43]. Nowadays, systems are more
complex and experience transient failures in a continuous
manner due to their scale. Apparently, gossip protocols rep-
resent a de facto solution to face these continuous transient
failures that self-stabilization can not handle. Two inter-
esting features of self-stabilization are its formalism and its
unification. As far as we know, prototypical gossip lacks
these two features. A key challenge is to eventually incor-
porate them into a future gossip definition.

3.4 Cellular Automata
A cellular automaton (CA) [21] is a dynamical system

model that is discrete in both space and time. Its original
formulation was given by J. von Neumann and S. Ulam in
the 1940s. The original idea behind it is to study the essence
of the reproduction process, but in a purely abstracted man-
ner. That is why it focuses on the general problem of repro-
ducing information.

A CA consists of an infinite, regular and n-dimensional
grid of cells. Each cell has a finite set of states. The neigh-
borhood set of a cell A can be defined as the cells within a
radius of range r (r = 1 if not otherwise stated). The neigh-
borhood does not change over time. A cell state at time t
is a function of the states of its neighborhood at time t− 1.
All cells in the system share a set of state-transition rules
based on neighborhood states. Essentially, these rules define
a deterministic finite state automaton having a finite set of
states Q, a finite set of inputs X and a transition function
δ : Q × X → Q. When all the cells in the grid have applied
the rule set, a new generation in created.

For practical reasons, a CA is simulated on a finite grid,
but this can lead to problems when computing the current
state of the cells on the border. In two dimensions, for
example, we can solve the problem by bending and taping
the grid borders in order to obtain a toroidal mesh.

A popular example of a CA is given by J. Conway’s ”game

55



of life” [39]. In addition, it is a CA that supports univer-
sal computation. The name comes from the binary state
allowed for cells: empty (dead) or populated (alive). It is a
two dimensional automaton in which cells obey the following
simple rules:

1. loneliness rule: if a populated cell has less than two
neighbors, than it dies (becomes empty)

2. overcrowding rule: if a populated cell has more than
three neighbors then it dies

3. reproduction rule: if an empty cell has exactly three
neighbors then it becomes populated

4. stasis rule: if a cell has exactly two neighbors, then
it does not change its state

Notice that the rules are inspired by the basic properties
of an ecosystem where the population density plays a crucial
role for reproduction.

The game of life can be started from a random initial-
ization; after successive generations, some stable common
patterns will emerge. The patterns can be static or dy-
namic. They can even replicate (self-replication). Using
such patterns one can implement basic memory, counting
and iteration. In fact, the game of life can emulate a Turing
machine.

This brief description of the CA model is far from being
exhaustive, but it is sufficient to understand the relationship
between CA and gossip. Let us mention some differences
first. Instead of talking to a random neighbor in each round,
a cell broadcasts a query to every cell in its neighborhood
and then needs to collect the replies from all its neighbors in
order to compute the next state. Although this broadcast
communication model applies to wireless ad-hoc networks,
it is not typical in gossip-based protocols. Besides, the basic
CA model assumes strong synchronization between two dis-
tinct generations in order maintain state consistency. This
requirement does not exist in prototypical gossip.

The synchrony requirement is somewhat surprising as the
CA model is supposed to describe the self-* properties of
natural systems in which there is no notion of the existence
of a global clock. This motivated the formulation of an
asynchronous cellular automata (ACA) approach [41]. All
the important results achieved in the past 50 years (like self-
reproduction and universal computation) hold in the asyn-
chronous model as well.

A theorem guarantees that for each cellular automaton
A on a graph G(V, E), we can build a second cellular au-
tomaton A′ on the same graph. For each node v ∈ V , the
automaton A′ will have 3n2 states, where n is the num-
ber of states in automaton A. The construction details of
the asynchronous automaton A′ can be found in [41]. The
general idea behind this process is that the asynchronous
transition rule δ′ can distinguish between a “present”, “fu-
ture” and “past” state for neighboring nodes; the transition
rule allows a state change in a node v if no node in its neigh-
borhood gets more than one step behind should update be
needed; otherwise, there is no change at all. Essentially, the
approach ensures some sort of synchronization over time at
the neighborhood level and lazy synchronization emerges at
a global level.

As opposed to the asynchronous numerical iteration
method mentioned in Section 3.1, an ACA has a consid-
erably larger state space than the original, synchronous CA

it intends to model, and it has a relatively complicated con-
struction. What happens if we simply run a CA applying
asynchronous updates? As reported in [7], this can result in
non-trivial behavior for Conway’s “game of life”. If we up-
date cells probabilistically, instead of doing it in lock-step,
we get a wide array of different behaviors depending on the
parameters of the update model.

Let us now summarize the similarities with prototypical
gossip. As we have seen, synchrony can be relaxed. In
addition, in a CA, participants (cells) rely on local knowl-
edge and local interaction. This means that every action
is a function of the local states of the participants and the
knowledge of the system is local as well, as it is limited by
the neighborhood set.

In a CA, the communication scheme is also periodic. The
required processing capacity of a single cell is low, and the
amount of information needed per message is low as well.

As in gossip, every cell runs the same protocol (e.g., it
behaves according to the same set of state-transition rules).
Of course, we consider that all cells are benign. Malicious
cells may lead to arbitrary behavior.

These obvious similarities can form the basis for an inves-
tigation into gossip protocols using the tools typical in CA
theory, like the classification of the dynamics into conver-
gent, periodic, and chaotic behavior, and, indirectly, draw-
ing analogies between systems that are typically modeled by
CA (including several biological, economic and sociological
phenomena), and gossip.

4. EXPORTING IDEAS
Now we will take a completely different view and look at

well-known problems in different disciplines, and investigate
whether we can export some of the gossip principles to get
some of the “good properties” that are normally associated
with gossip protocols. The resulting discussion is not as
clear as that in the previous section: it could be interpreted
as a research agenda or a plan for future work. Only a few
preliminary results are available. Nevertheless, all the ideas
described here look promising and deserve further investiga-
tion.

Before actually presenting the examples, it is important
to introduce the rationale we adopted for selecting each one.
The idea is to look for research topics where we can apply
one of the following principles:

• A global view is undesirable: the idea here is to
attack problems where existing solutions are (i) either
centralized or (ii) are decentralized but strongly de-
pend on each node having a complete (global) view of
the input data. The question we have to pose ourselves
is the following: is this global view really needed? Can
we obtain “reasonably good” results with partial infor-
mation only? The cooperative protocols of Section 4.1
and the clock synchronization example of Section 4.2
fall into this category.

• No global view is possible at all: here the idea
is to tackle problems where it is immediately clear
that no single node can ever have an up-to-date global
view—for example due to the extremely large scale,
dynamism and locality of information. Here the idea
is to discuss whether a gossip approach could produce
benefits in term of robustness and scalability with re-
spect to existing solutions. Examples of this approach

56



include the routing protocols of Section 4.3, especially
those related to MANETS, and the vehicle routing
problem of Section 4.4.

4.1 Cooperative Protocols
The recent growth of peer-to-peer and wireless technolo-

gies has directed the attention of the scientific community
towards models and tools developed in the social sciences
to understand and improve network protocols. An example
of this emergent trend is the famous file-sharing protocol
BitTorrent [11] which is based on the “tit-for-tat” strat-
egy, studied in game theory, to discourage free-riders and
improve download speeds. Similar approaches that exploit
notions from game theory are being investigated in the wire-
less domain as well [18], especially in infrastructure-less net-
works, where users need to cooperate to provide a multi-hop
routing service.

Unfortunately, traditional approaches in game theory of-
ten assume a complete knowledge of the actors in the sys-
tem and observable actions: node behavior should always be
globally visible. In peer-to-peer or wireless scenarios these
assumptions might not hold. The scale of the system pre-
vents complete knowledge and some types of behavior can
be influenced by external factors too, like packet loss that
could be misinterpreted as selfish action.

We believe that gossip protocols are an interesting
paradigm to explore in order to tackle the problem of coop-
eration. To justify our claim, we will discuss Slacer [28],
one of the first contributions that exploits gossip protocols
to create self-organized cooperative networks of peers.

Generally speaking, the Slacer algorithm works as fol-
lows. Each node in the network is connected to a small
set of other nodes in the network which represent its neigh-
bors. Each node is also characterized by a utility function U
which indicates how good its performance is (e.g., its score
in a game or its download rate in a file-sharing applica-
tion). This utility is constantly updated at regular intervals.
Different nodes may run different strategies, e.g., selfish or
cooperative, and hence in general they will have different
values of U . Periodically, a node i selects a random node j
from the system and compares the two utilities Ui and Uj .
If Ui > Uj , no action takes place. Otherwise, if Ui < Uj , i
drops all its neighbors and connects with j’s neighbors. In
addition, it also adopts the same strategy used by j, e.g.,
by downloading the code or tuning some parameters, and
resetting its utility to zero. After each round, with a low
probability, a node may experience a mutation, i.e., it may
select a random strategy or replace one of its neighbors with
another node randomly chosen from the network.

Simulation results indicate that this protocol converges
to 98% of the nodes cooperating, when applied to a typical
game like the Prisoner’s Dilemma [2], even though at the
beginning all the nodes implement a non-cooperative strat-
egy.

These results confirm the suitability of gossip protocols to
create and maintain networks of peers with many desirable
properties of social networks. This shows that cooperation
may represent a fertile area in which gossip protocols can
be successfully applied, providing appealing opportunities
for researchers to explore.

4.2 Clock Synchronization
Clock synchronization is a fundamental building block

for many distributed applications. In a distributed system
each host is equipped with a local hardware clock and can
communicate with other processes by exchanging messages;
clocks embedded on nodes have different drifting rates (i.e.
they “tick” with slightly different frequencies), hence their
values, even if they are started exactly at the same instant,
do not remain synchronized. In order to provide applica-
tions with a virtual global clock, hosts run an algorithm that
tries to synchronize local clocks accounting errors due to
clock drift and message delivery delay. This topic has been
widely studied for almost 20 years, and several algorithms
exist which address the problem of clock synchronization
in systems with different scales, deployed on both local and
wide area networks, with and without external reliable clock
sources.

Some of these algorithms [29, 44] employ a flooding-based
approach where synchronization signals are periodically
broadcasted in the system. Each host that receives such a
message by another sibling uses it to update its local clock
value, taking into account errors introduced by communica-
tion channel delays. The periodic update of clock values, the
continuous exchange of information among hosts, the use of
symmetric algorithms (where each host performs the same
actions) characteristic of these solutions make them quite
close to our prototypical gossip protocol.

Another widely adopted technique for clock synchroniza-
tion requires each host to periodically read clock values
from neighboring hosts, and to consequently adjust its lo-
cal value based on previous readings. Synchronization can
be achieved against an external reliable time source (as in
NTP [40]) or among the independent values maintained by
the hosts by imitating the phenomenon of spontaneous syn-
chronization among coupled oscillators. These algorithms
could probably be greatly helped by the adoption of a gossip-
based communication scheme: the exchange of clock values,
initially limited to neighboring hosts, or realized through a
structured (usually hierarchical) architecture, would be im-
proved and simplified by the adoption of a peer-sampling
service. One recent approach is [3], where a synchronization
primitive based on biological models of synchronized firefly
flashing was proposed.

Another study in this direction was presented in [30]. This
study assumed the presence of a host perfectly synchronized
with an external reliable real-time clock source. Each host
uses a peer sampling service [32] to select another node in
the network and to exchange timing information with it. If
the time read from the contacted node is of a higher qual-
ity (more synchronized with the external time source) than
its own time (e.g. the contacted node is the source), then
the reading node will adopt the clock setting of the other
one. The quality of timing information is evaluated using a
dispersion metric like the one provided by NTP. The adop-
tion of a peer sampling service and a gossip-based interac-
tion makes the algorithm well suited for large-scale dynamic
settings, like those characterizing peer-to-peer applications,
where more rigid schemes, like those imposed by NTP, reveal
their limitations.

Currently, some of the authors of this position paper are
studying whether a similar approach could achieve internal
clock synchronization for very large scale dynamic systems
[5]. In this specific case, one of the main problems is how
synchronized clocks can be made resilient to “perturbations”
stemming from the addition of new non-synchronized clocks

57



to the system.

4.3 Routing protocols for multi-hop networks
Message routing in multi-hop networks is one of the oldest

and most studied problems in the area of computer science.
A multi-hop network is simply a network of nodes where
each node can communicate only with a subset of all its sib-
lings. A multi-hop network is usually represented through a
graph G(N, E) where N is the set of communicating nodes,
and E is the set of links interconnecting them. If the graph G
is connected, each pair of nodes can communicate by send-
ing messages via a path that links them through a set of
network links and nodes. To implement this form of multi-
hop communication in a real network there is a need for a
routing protocol that is able to construct, for each pair of
nodes, the path interconnecting them.

RIP [23,24] is a distance-vector routing protocol based on
the Bellman-Ford algorithm. Despite the advent of some
other protocols like OSPF, RIP is still widely deployed as
an interior gateway protocol (IGP) mainly because of its
ease of configuration. Distance-vector algorithms build a
certain level of knowledge of the system (every other node
of the system is eventually known) with local interactions
only. The aim of such algorithms is to choose the best route
for packets, based on various metrics. RIP’s metric is the
hop, representing a jump from a router to one of its directly
connected neighbor routers. Each router hosts and manages
a distance vector, containing its distance to each other router
of the topology, recorded with the first router on the route
to that network.

Let D(i, j) represent the number of hops on the shortest
path from i to j. The protocol starts with local vectors
initialized as follows: 0 for the current router (D(i, i)), 1
for its directly connected routers, and infinity for its not
yet known routers. Every 30 seconds, each router sends its
entire vector table to its neighbors (1-hop neighbors). When
receiving a vector from a neighbor k, a router i updates
its own vector for each destination router j as D(i, j) =
min([1+D(k, j)], c) where c is the old value. This algorithm
eventually converges, giving one of the shortest paths for all
network destinations to each router.

To improve convergence time, triggered updates are used
in addition to the periodic mechanism: when a gateway
changes the metric for a route, it sends an update message
almost immediately to its neighbors. Only the routers which
have their path using the advertising router may change
their metric and then propagate the update, and so on.

By looking at this protocol overview, some obvious simi-
larities with our definition of prototypical gossip arise. RIP
fits the round-based condition, as the information spread
is periodic, based on a default parameter setting. All the
participants—here, the routers—also participate with equal
responsibilities. Locality does not hold, since the full set
of nodes needs to be known (which is of course suitable for
small scale networks). However, only network address, dis-
tance and next-hop router are kept for each destination site,
while OSPF builds a full map of the network on each site,
including routers, links and costs between them.

On the other hand, the two remaining parts of the defini-
tion are those for which some improvements could be ex-
pected through some kind of technology transfer. First,
there is no random selection as each neighbor router is sys-
tematically contacted to push updates. Secondly, there is no

real limited transmission as the vector is either fully pushed
every period, or updates are propagated in an epidemic non
round-based fashion. As two of the main criticisms about
the RIP protocol are the overhead produced by this way
of updating information, and the relatively important con-
vergence time, one could imagine using traditional gossip
information propagation to improve overall performance.

One approach could be to randomize both neighbor and
vector entry selection, pushing just a small subset of avail-
able information, and at the same time applying a shorter
period: if smaller messages are sent to fewer routers but
more often, it is likely that the overhead will not increase.
It would thus be interesting to examine the variation of over-
head/convergence tradeoff.

While routing protocols for fixed networks (like RIP or
OSPF) have remained “anchored” to more classical interac-
tion schemes for historical reasons, the gossip approach has
found its way into the new area of information routing for
mobile ad-hoc networks (MANET). A MANET is composed
of a set of independent nodes that communicate via wireless
links. Direct communication between two nodes is realized
without the help of any fixed infrastructure, so it is feasible
only as long as the two nodes remain within communica-
tion range. Nodes belonging to a MANET are supposed to
be located within a predefined area where they are free to
move. The absence of a fixed communication infrastructure
makes communication between two distant nodes possible
only through the adoption of a routing protocol that is able
to route information though the “spontaneous” multi-hop
network emerging from the union of all nodes together with
their wireless links. Node movements, however, make the
topology of this network evolve continuously, thus discour-
aging the adoption of classic routing protocols that assume
a rather stable interconnection topology. The interesting
problems proposed by this peculiar setting led to the pro-
posal of many different solutions. Some of these solutions
inherit many of the characteristics of our prototypical gossip
protocol.

For example, [26] proposes a simple approach where a de-
terministic route discovery phase is substituted by a gossip-
like query diffusion mechanism. The intrinsic tolerance of
approaches based on gossiping to system reconfigurations
and node/link failures makes the algorithm better suited to
mobile settings than classic routing algorithms that heav-
ily rely on deterministic data structures containing routing
information.

Gossip-like techniques can also be recognized in [6]. The
proposed algorithm is based on a periodic exchange of bea-
con signals among nodes; these signals are used to maintain
locally at each node routing tables containing probabilistic
information about current node positioning; the accuracy of
the information a node maintains about another node posi-
tion is perfect when they are in direct contact, but tends to
“degrade” with time as soon as they move out of communica-
tion range. The routing phase is realized exploiting this in-
formation and probabilistically forwarding a packet through
nodes that maintain more accurate information about the
destination position, and that are, therefore, closer to it with
a higher probability. This algorithm respects many of the
properties of our prototypical gossip algorithm: (i) the same
algorithm is executed by each node, (ii) it is in some sense
round-based as beacon signals must be sent by every node
with the same period to ensure that a meaningful connection

58



holds between out-of-date information maintained in rout-
ing tables and the relative position of nodes, (iii) the amount
of information periodically sent by each node is limited to
the beacon signal and finally (iv) only local information is
maintained and used during the routing phase.

4.4 Vehicle Traffic Control
An important problem that could be efficiently attacked

through gossip protocols is the autonomous vehicle control
problem [47], where a large collection of independent vehi-
cles must travel from their source to their destination as fast
as possible, interacting with their peers to avoid collisions.

Currently, vehicle control is left to humans; interestingly
enough, they already adopt a degenerate form of “gossip-
based” communication. Consider, for example, the forma-
tion of queues on highways. Here, communication is per-
formed through brake lights: a single vehicle accidently
brakes; starting from it, each vehicle communicates with the
following one; a “brake wave” propagates along the highway,
until the traffic stops completely. When finally vehicles are
able to start again, nothing in front of them can explain the
formation of the queue.

We understand how futuristic a “driver-less” traffic con-
trol system must sound, so we will limit ourselves to propose
a simpler problem that can be solved appropriately via a
gossip approach and existing technology. The idea is to pro-
vide human drivers with congestion information about the
current situation in the path between their sources and des-
tinations. Clearly, a global view of the system is out of the
question for it cannot be centralized or replicated among
vehicles. Locality plays a key role: We are not interested
in the current traffic state hundreds of kilometers away, or
nearby, recently left areas.

An increasing number of modern cars are already
equipped with navigators that contain a collection of useful
“sensors” about current position, direction, and speed. This
information, coupled with a precise knowledge of the area, is
exactly what is required to evaluate traffic conditions. Car-
to-car communication networks are being discussed both in
academic [20] and industrial research [1]. Gossip may be the
glue to enable these two technologies to act together. We
can foresee a system where information about traffic condi-
tions is aggregated [33] and broadcasted using gossip; this
information can be provided as input for the navigator that
could, for example, suggest alternative routes in the case of
congestion.

5. CONCLUSIONS
In this position paper we laid emphasis on the importance

of interdisciplinary explorations, and this should have two
main benefits. First, we can import techniques and tools
to tackle problems in the field of gossip-based protocols,
and we can also export gossip technology by re-interpreting
some problems and systems as gossip-based, which should
allow the application of gossip algorithms and theoretical
results in those fields. Second, interdisciplinary compari-
son not only focuses on similarities but also on differences,
and this should help us crystallize the key properties of the
class of gossip-based algorithms, and in time lead to a more
formal definition.

Our hope is that this paper will, directly or indirectly,
inspire new directions of research by broadening the per-
spective on gossip protocols.

6. REFERENCES
[1] BMW Connected Drive, July 2004.

http://www.connected-drive.de.

[2] R. Axelrod. The Evolution of Cooperation. Basic
books, New York, US, 1984.

[3] O. Babaoglu, T. Binci, M. Jelasity, and A. Montresor.
Firefly-inspired heartbeat synchronization in overlay
networks. In First IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO
2007), 2007.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and
H. van der Vorst, editors. Templates for the Solution
of Algebraic Eigenvalue Problems: a Practical Guide.
SIAM, Philadelphia, 2000.

[5] R. Baldoni, A. Corsaro, L. Querzoni, S. Scipioni, and
S. Tucci-Piergiovanni. An adaptive coupling-based
algorithm for internal clock synchronization of large
scale dynamic systems. Technical report, MidLab 2/07
- Università degli Studi di Roma “La Sapienza”, 2007.

[6] R. Beraldi, L. Querzoni, and R. Baldoni. A hint-based
probabilistic protocol for unicast communications in
manets. Ad Hoc Networks, 4(5):547–566, 2006.

[7] H. J. Blok and B. Bergersen. Synchronous versus
asynchronous updating in the “game of life”. Phys.
Rev. E, 59:3876–9, 1999.
http://rikblok.shorturl.com/lib/blok99.html.

[8] M. Brunato, R. Battiti, and A. Montresor. GOSH!
Gossiping Optimization Search Heuristics. In
Proceedings of the Learning and Intelligent
Optimization Workshop (LION 2007), Andalo, Italy,
2007.

[9] B. Bullnheimer, R. Hartl, and C. Strauss. An
Improved Ant System Algorithm for the Vehicle
Routing Problem. Annals of Operations Research,
89:319–328, 1999.

[10] G. D. Caro and M. Dorigo. AntNet: Distributed
Stigmergetic Control for Communications Networks.
Journal of Artificial Intelligence Research (JAIR),
9:317–365, 1998.

[11] B. Cohen. Incentives Build Robustness in BitTorrent.
In Proceedings of the 1st Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, USA, 2003.

[12] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing
(PODC’87), pages 1–12, Vancouver, British Columbia,
Canada, August 1987. ACM Press.

[13] M. den Besten, T. Stützle, and M. Dorigo. Ant colony
optimization for the total weighted tardiness problem.
In Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature (PPSN), pages
611–620, London, UK, 2000. Springer-Verlag.

[14] J. L. Deneubourg, S. Aron, S. Goss, and J. M.
Pasteels. The self-organizing exploratory pattern of
the argentine ant. Journal of Insect Behavior,
3:159–168, 1990.

[15] G. Di Caro, F. Ducatelle, and L. Gambardella.
AntHocNet: An Adaptive Nature-inspired Algorithm
for Routing in Mobile Ad Hoc Networks. European
Transactions on Telecommunications, 15(4), 2005.

59



[16] E. W. Dijkstra. Self stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, 1974.

[17] M. Dorigo and G. D. Caro. New Ideas in Optimization,
chapter The Ant Colony Optimization metaheuristic,
pages 11–32. McGraw Hill, London, UK, 1999.

[18] M. Felegyhazi and J. P. Hubaux. Game theory in
wireless networks: A tutorial. Technical report, EPFL,
2006.

[19] A. Fernández, V. Gramoli, E. Jiménez, A.-M.
Kermarrec, and M. Raynal. Distributed slicing in
dynamic systems. In Proceedings of the 27th
International Conference on Distributed Computing
Systems (ICDCS’07). IEEE Computer Society, 2007.

[20] A. Festag, H. Fußler, H. Hartenstein, A. Sarma, and
R. Schmitz. FLEETNET: Bringing car-to-car
communication into the real world. Computer,
4(L15):16.

[21] G. W. Flake. The Computational Beauty of Nature:
Computer Explorations of Fractals, Chaos, Complex
Systems, and Adaptation. The MIT Press, 2000.

[22] P. P. Grassé. Les Insectes Dans Leur Univers. Ed. du
Palais de la decouverte, Paris, France, 1946.

[23] N. W. Group. Routing information protocol. rfc 1058,
1988.

[24] N. W. Group. Rip version 2. rfc 2453, 1998.

[25] W. J. Gutjahr. On the finite-time dynamics of ant
colony optimization. Methodology And Computing In
Applied Probability, 8(1):105–133, 2006.

[26] Z. Haas and J. H. L. Li. Gossip-based ad hoc routing.
IEEE/ACM Transactions on Networking,
14(3):479–491, 2006.

[27] R. Hadji, M. Rahoual, E. Talbi, and V. Bachelet. Ant
colonies for the set covering problem. In In
Proceedings of ANTS2000: From Ant Colonies to
Artificial Ants, pages 63–66, Bruxelles, 2000.

[28] D. Hales and S. Arteconi. Slacer: A self-organizing
protocol for coordination in peer-to-peer networks.
IEEE Intelligent Systems, 21(2):29–35, 2006.

[29] J. Y. Halpern, B. Simons, R. Strong, and D. Dolev.
Fault-tolerant clock synchronization. In PODC ’84:
Proceedings of the third annual ACM symposium on
Principles of distributed computing, pages 89–102,
New York, NY, USA, 1984. ACM Press.

[30] K. Iwanicki, M. van Steen, and S. Voulgaris.
Gossip-based clock synchronization for large
decentralized systems. In Proceedings of the Second
IEEE International Workshop on Self-Managed
Networks, Systems and Services (SelfMan 2006),
pages 28–42, Dublin, Ireland, June 2006.

[31] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay topology management. In S. A. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
editors, Engineering Self-Organising Systems: Third
International Workshop (ESOA 2005), Revised
Selected Papers, volume 3910 of Lecture Notes in
Computer Science, pages 1–15. Springer-Verlag, 2006.

[32] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service:
experimental evaluation of unstructured gossip-based
implementations. In Middleware ’04: Proceedings of

the 5th ACM/IFIP/USENIX international conference
on Middleware, pages 79–98, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[33] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Transactions on Computer Systems,
23(3):219–252, August 2005.

[34] H. Johansen, A. Allavena, and R. van Renesse.
Fireflies: Scalable support for intrusion-tolerant
network overlays. In Proc. EuroSys 2006, 2006.

[35] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proceedings
of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’03), pages 482–491.
IEEE Computer Society, 2003.

[36] L. Lamport. Solved problems, unsolved problems and
nonproblems in concurrency. In Proceedings of the
Third Annual ACM Symposium on Principles of
Distributed Computing, Aug. 1984.

[37] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and
D. B. Shmoys. The Travelling Salesman Problem.
John Wiley & Sons, Chichester, UK, 1985.

[38] B. Lubachevsky and D. Mitra. A chaotic asynchronous
algorithm for computing the fixed point of a
nonnegative matrix of unit radius. Journal of the
ACM, 33(1):130–150, January 1986.

[39] J. Matthews. Conway’s game of life project. 5 2000.

[40] D. L. Mills. Network time protocol (version 1)
specification and implementation.

[41] C. L. Nehaniv. Self-reproduction in asynchronous
cellular automata. eh, 00:201, 2002.

[42] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[43] M. Schneider. Self-stabilization. ACM Computing
Surveys, 25(1):45–67, 1993.

[44] T. K. Srikanth and S. Toueg. Optimal clock
synchronization. J. ACM, 34(3):626–645, 1987.

[45] T. Stützle and M. Dorigo. Evolutionary Algorithms in
Engineering and Computer Science, chapter ACO
algorithms for the traveling salesman problem, pages
163–183. John Wiley & Sons, Chichester, UK, 1999.

[46] D. Subramanian, P. Druschel, and J. Chen. Ants and
Reinforcement Learning: A Case Study in Routing in
Dynamic Networks. In Proc. Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI97),
pages 832–839, Nagoya, Japan, 1997.

[47] R. Sumner. In-vehicle traffic congestion information
system, Nov. 17 1992. US Patent 5,164,904.

[48] R. van Renesse, K. P. Birman, and W. Vogels.
Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems,
21(2):164–206, May 2003.

[49] S. Voulgaris and M. van Steen. Epidemic-style
management of semantic overlays for content-based
searching. In J. C. Cunha and P. D. Medeiros, editors,
Proc. Euro-Par, number 3648 in Lecture Notes in
Computer Science, pages 1143–1152. Springer, 2005.

60




